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Abstract 

 

MMeellttiinngg  ooff  orthorhombic  orthorhombic bboorroonn  ssiilliicciiddee  BB66SSii  hhaass  bbeeeenn  ssttuuddiieedd  aatt  pprreessssuurreess  uupp  ttoo  88  GGPPaa  uussiinngg  iinn  ssiittuu  

eelleeccttrriiccaall  rreessiissttiivviittyy  mmeeaassuurreemmeennttss  aanndd  qquueenncchhiinngg..  IItt  hhaass  bbeeeenn  ffoouunndd  tthhaatt  iinn  tthhee  22..66––77..77  GGPPaa  rraannggee  

BB66SSii  mmeellttss  ccoonnggrruueennttllyy,,  aanndd  tthhee  mmeellttiinngg  ccuurrvvee  eexxhhiibbiittss  nneeggaattiivvee  ssllooppee  ooff  --3311((22))  KK//GGPPaa  tthhaatt  ppooiinnttss  

ttoo  aa  hhiigghheerr  ddeennssiittyy  ooff  tthhee  mmeelltt  aass  ccoommppaarreedd  ttoo  tthhee  ssoolliidd  pphhaassee..  AAtt  vveerryy  hhiigghh  tteemmppeerraattuurreess  BB66SSii  mmeelltt  

aappppeeaarrss  ttoo  bbee  uunnssttaabbllee  aanndd  uunnddeerrggooeess  ddiisspprrooppoorrttiioonnaattiioonn  iinnttoo  ssiilliiccoonn  aanndd  bboorroonn--rriicchh  ssiilliicciiddeess  BBnnSSii  

((nn    1122))..  TThhee  oonnsseett  tteemmppeerraattuurree  ooff  ddiisspprrooppoorrttiioonnaattiioonn  ssttrroonnggllyy  ddeeppeennddss  oonn  pprreessssuurree,,  aanndd  tthhee  

ccoorrrreessppoonnddiinngg  llooww--tteemmppeerraattuurree  bboouunnddaarryy  eexxhhiibbiittss  nneeggaattiivvee  ssllooppee  ooff  --9922((33))  KK//GGPPaa  wwhhiicchh  iiss  

iinnddiiccaattiivvee  ooff  ssiiggnniiffiiccaanntt  vvoolluummee  ddeeccrreeaassee  iinn  tthhee  ccoouurrssee  ooff  BB66SSii  mmeelltt  ddeeccoommppoossiittiioonn..
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1. Introduction 

 

The boron–silicon system – despite of rather long research history – remains not fully understood 

even at ambient pressure [1]. There are three main groups of B–Si binary compounds usually 

referred to as "B3Si" (with the stoichiometry ranging from B2.8Si to B4.8Si); B6Si; and boron-rich 

silicides i.e. BnSi (12  n  50) (for details see [2] and references therein). Boron silicides attract 

considerable attention due to superior thermal stability, excellent chemical resistance, promising 

mechanical and electronic properties that offers potential for their use as advanced engineering and 

smart functional materials. The boron-silicon phase diagram at ambient pressure is rather 

complicated and includes a number of peritectic reactions and intermediate phases of different 

stoichiometries [3]. As for the phase relations in the B–Si system at high pressures and high 

temperatures, they have not been studied at all.  

B6Si is the most explored boron-rich silicide that is used in nuclear technology [4], some 

nanotechnology applications [5] and as high-temperature thermoelectric material [6]. It has an 
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orthorhombic unit cell (space group Pnnm) containing 43 silicon atoms and 238 boron atoms 

forming a dense framework of 18 icosahedra and 4 icosihexahedra [7] (Fig. 1a). According to the 

predictions made in the framework of thermodynamic model of hardness [8], B6Si is expected to 

exhibit hardness of about 35 GPa [9] comparable to that of polycrystalline boron carbide. High 

pressure – high temperature behavior of B6Si has not been studied so far. In the present work we 

have performed the first investigation of solid and liquid B6Si at pressures up to 8 GPa. 

 

2. Experimental 

 

Powder (particles size less than 45 μm) of orthorhombic  B6Si was used as received from ABCR 

GmbH (Germany). High-pressure experiments in the 2–8 GPa range have been performed using a 

toroid-type high-pressure apparatus with a specially designed high-temperature (up to 3500 K) cell 

[10,11]. The cell was pressure-calibrated at room temperature using phase transitions in Bi (2.55 

and 7.7 GPa), PbSe (4.2 GPa), and PbTe (5.2 GPa). The temperature calibration under pressure was 

made using well-established reference points: melting of Si, NaCl, CsCl, Pt, Rh, Al2O3, Mo and 

Ni-Mn-C ternary eutectic. B6Si powder was compacted into pellets and placed in boron nitride 

(Saint-Gobain, grade AX05) capsules. After isothermal holding time of 60-300 s at desired pressure 

and temperature the samples were either quenched by switching off the power or stepwise cooled 

down to room temperature, and then slowly decompressed down to ambient pressure. In some 

experiments no BN capsule has been used (the sample was in a direct contact with graphite heater), 

and the appearance of a liquid phase upon heating could be detected in situ by electrical resistance 

measurements using the method described earlier [12-14]. In a special set of experiments it was 

found that B6Si does not react with BN and graphite in the whole studied pressure–temperature 

range. 

The samples recovered from high-pressure experiments have been studied by powder X-ray 

diffraction (Equinox 1000 Inel diffractometer; Cu Kα and Co Kα radiation). The characteristic 

diffraction patterns are presented in Fig. 2. 

 

3. Results and Discussion 

 

Melting of orthorhombic boron silicide B6Si has been studied in the 2.6-7.7 GPa pressure range 

using in situ electrical resistivity measurements and quenching (the results are shown in Fig. 3). The 

melting curve exhibits negative slope of -31(2) K/GPa that points to a higher density of the melt as 

compared to the solid phase. 

The electrical conductivity of B6Si sample before melting is comparable to that of graphite heater at 

the same temperature, which corresponds to the literature data [15], taking into account a possible 

decrease in semiconductor band gap and an conductivity increase at high pressure. Upon melting, a 

slight (several percent) increase in sample resistance was observed. Melting occurs in a fairly 
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narrow temperature range, comparable to the T-gradient value in the sample. In the samples 

quenched from the melt at temperatures slightly above the melting curve, no traces of any other 

phases were found except for orthorhombic B6Si, i.e. the melting is congruent. It should be noted 

that according to the literature, at ambient pressure B6Si melts incongruently, and the width of the 

melting interval differs from one publication to another [3,16,17]. Extrapolation of the melting line 

obtained by us to the low-pressure region gives the value of 2110(20) K for melting point at 

ambient pressure, which is in good agreement with B6Si peritectic point (2123 K) according to the 

assessed equilibrium phase diagram of the B–Si system [3]. 

Quenching experiments with significant overheating of the melt relative to the melting curve 

resulted in decomposition of B6Si into silicon and boron-rich silicides. X-ray diffraction patterns of 

decomposition products are rather complex (see Fig. 2), but it is obvious that formation of neither 

B6Si and B3Si, nor pure boron was observed. The main diffraction lines (in addition to reflections of 

crystalline silicon) can be attributed to B14Si, B36Si (Fig. 1b), and B50Si compounds and/or their 

mixtures (note that diffraction patterns of these compounds differ significantly from one publication 

to another). The onset of B6Si decomposition at different pressures is observed at different degrees 

of overheating relative to the melting point: from 450 K at 2.7 GPa to 150 K at 7.7 GPa (Fig. 3). 

The melt decomposition boundary has a large negative slope of –92(3) K/GPa, which indicates that 

the decomposition is accompanied by a significant volume decrease. When extrapolating the lines 

of melting and decomposition to the high-pressure region, their intersection is observed at ~10 GPa, 

which suggests that at higher pressures B6Si decomposition into silicon and boron-rich silicides 

should be observed already in solid state. 

The instability of B6Si under pressure with respect to disproportionation into silicon and boron-rich 

silicides can be explained by analyzing the volume effects of two hypothetical reactions 

 6B6Si  B36Si + 5Si (1) 

 2B6Si  B12Si + Si (2) 

For convenience and simplification of the assessment of the second reaction, the B12Si 

stoichiometry rather than B14Si was taken which, however, does not affect the final result. Under 

normal conditions, the densities of the phases involved are as follows: 2.33 g·cm-3 for Si; 

2.42-2.44 g·cm-3 for B6Si [7]; 2.48-2.51 g·cm-3 for B14Si [18]; and 2.34-2.37 g·cm-3 for B36Si [19]. 

It is easy to see that under normal conditions reaction (1) proceeds with a significant increase in 

volume, while in reaction (2) the volume practically does not change, i.e. both reactions cannot be 

stimulated by pressure. 

The situation, however, changes drastically at high pressures and high temperatures. In the 

temperature range under study thermal expansion leads to an increase in the specific volume (by 

3-4% [20]) for all compounds formed as a result of the considered disproportionation reactions. On 

the other hand, melting of silicon leads to its density increase by 10%, while the melting of boron-

rich solids usually occurs with the preservation of B12 icosahedra as the main structural units, and 
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thus the volume change does not exceed 1-3%. In addition, all considered boron-rich silicides have 

bulk moduli of 170-190 GPa [21], which is twice as high as that of liquid silicon†. As a result, at 

high temperatures reaction (1) occurs with 1-3% volume decrease at pressures above 2 GPa; and 

reaction (2) occurs with a significant (5-7%) volume decrease in the whole pressure range under 

study. Thus, the observed large negative slope of the B6Si decomposition line is in full agreement 

with the thermodynamic estimations. 

At ambient pressure B14Si compound is a semiconductor with a high resistivity, but at high 

temperatures (~2000 K) it has a semi-metallic conductivity of the order of 102 Ohm-1·cm-1 [24]. 

There is no data on electrical conductivity of rhombohedral B36Si, however, it can be assumed that 

this compound is close in properties to β-rhombohedral boron. The decomposition of B6Si in our 

experiments, as a rule, was accompanied by an increase in conductivity, which is obviously 

associated with the very high conductivity of liquid silicon. 

Note that the assumption about the possibility of solid-state decomposition of B6Si at pressures 

above 10 GPa does not contradict our estimates, since silicon at high (above 11 GPa) pressures 

passes into the high-pressure phase with a white-tin structure (SiII). This transformation in 

crystalline silicon is accompanied by ~20% volume decrease [23], therefore, the thermodynamic 

stimulus of reactions (1) and (2) at high pressures can only increase. 

 

4. Conclusions 

 

Summarizing, we can conclude that in the 2.6–7.7 GPa pressure range B6Si melts congruently, and 

both the solid phase and the melt have a bad-metal conductivity. Melting is accompanied by a small 

drop in electrical conductivity and a slight volume decrease. At significant overheating relative to 

the melting line, the decomposition of B6Si into silicon and boron-rich silicides is observed, and the 

onset temperature of decomposition decreases strongly with increasing pressure. In the future, it 

would be of interest to study B6Si up to the megabar pressure range. Apparently, at ultrahigh 

pressures and room temperature the diffusion processes are strongly suppressed, and decomposition 

of B6Si can occur at nanoscale only resulting in solid-state amorphization.  
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†  In fact, bulk modulus of liquid Si has never been measured. 300-K bulk modulus of crystalline silicon makes 98 GPa, 

while in vicinity of melting point it drops down to 80-85 GPa [22]. Since Si melting curve under pressure is linear 

[23], one can conclude that at melting temperature bulk moduli of crystalline and liquid silicon should be very close. 
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Fig. 1 Crystal structures of orthorhombic B6Si [6] (a) and rhombohedral B36Si [19] (b). 

B12-units are presented by green icosahedral polyhedral; silicon and boron atoms 

are presented by blue and green balls, respectively. 
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Fig. 2 X-ray diffraction patterns of pristine orthorhombic B6Si (bottom) and samples 

quenched from melt at different pressures and temperatures. Vertical red ticks 

correspond to positions of diffraction lines the cubic (Fd-3m) silicon. 
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Fig. 3 B6Si melting and decomposition under pressure. Half-filled stars show the melting 

onset registered in situ by electrical resistivity measurements; blue dashed line is 

the pressure dependence of melting temperature. The results of quenching 

experiments are presented by circles (solid, half-filled and open symbols correspond 

to B6Si, B6Si + B12Si + Si, and BnSi + Si (12  n  50) in the recovered samples, 

respectively). Red dashed line is the low-temperature boundary of B6Si melt 

disproportionation. 

 


