
HAL Id: hal-02992057
https://hal.science/hal-02992057v1

Submitted on 6 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

KATANIN-dependent mechanical properties of the
stigmatic cell wall mediate the pollen tube path in

Arabidopsis
Lucie Riglet, Frédérique Rozier, Chie Kodera, Simone Bovio, Julien Sechet,

Isabelle Fobis-Loisy, Thierry Gaude

To cite this version:
Lucie Riglet, Frédérique Rozier, Chie Kodera, Simone Bovio, Julien Sechet, et al.. KATANIN-
dependent mechanical properties of the stigmatic cell wall mediate the pollen tube path in Arabidopsis.
eLife, 2020, 9, �10.7554/elife.57282�. �hal-02992057�

https://hal.science/hal-02992057v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


*For correspondence:

thierry.gaude@ens-lyon.fr

Present address: †Sainsbury

Laboratory, University of

Cambridge, Cambridge, United

Kingdom; ‡Institut Jean-Pierre

Bourgin, INRAE, AgroParisTech,
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Abstract Successful fertilization in angiosperms depends on the proper trajectory of pollen

tubes through the pistil tissues to reach the ovules. Pollen tubes first grow within the cell wall of

the papilla cells, applying pressure to the cell. Mechanical forces are known to play a major role in

plant cell shape by controlling the orientation of cortical microtubules (CMTs), which in turn

mediate deposition of cellulose microfibrils (CMFs). Here, by combining imaging, genetic and

chemical approaches, we show that isotropic reorientation of CMTs and CMFs in aged Col-0 and

katanin1-5 (ktn1-5) papilla cells is accompanied by a tendency of pollen tubes to coil around the

papillae. We show that this coiled phenotype is associated with specific mechanical properties of

the cell walls that provide less resistance to pollen tube growth. Our results reveal an unexpected

role for KTN1 in pollen tube guidance on the stigma by ensuring mechanical anisotropy of the

papilla cell wall.

Introduction
Following deposition of dehydrated pollen grains on the receptive surface of the female organ, the

stigma, pollen rehydrates, germinates and produces a pollen tube that carries the male gametes

toward the ovules where the double fertilization takes place. This long itinerary through the different

tissues of the pistil is finely controlled, avoiding misrouting of the pollen tube and hence assuring

proper delivery of the sperm cells to the female gametes. How the pollen germinates a tube and

how pollen tube growth is regulated have been the object of many investigations (Palanivelu and

Tsukamoto, 2012; Mizuta and Higashiyama, 2018). The use of in vitro pollen germination as well

as semi-in vivo fertilization assays, together with the analysis of mutants defective in pollen or ovule

functions, have rapidly expanded our knowledge of the mechanisms that sustain pollen tube growth,

its guidance toward the ovule and the final delivery of male gametes within the embryo sac

(Dresselhaus and Franklin-Tong, 2013; Higashiyama and Yang, 2017; Cameron and Geitmann,

2018). At the cellular level, cytoskeleton has been extensively studied during pollen tube elongation

(Fu, 2015), highlighting the critical role played by the actin microfilaments in pollen-tube tip growth

through delivery of materials for the biosynthesis of the plasma membrane and cell wall. By contrast,

CMTs seem to have a lower importance in the pollen tube elongation process, drugs affecting CMT

polymerisation having no significant effects on pollen-tube growth rate, yet altering the capacity of

pollen tubes to change their growth direction (Gossot and Geitmann, 2007).

In Arabidopsis thaliana, pollen tubes grow within the cell wall of papillae of the stigmatic epider-

mis, and then through the transmitting tissue of the style and ovary (Lennon and Lord, 2000). The
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transmitting tissue has an essential function in pollen tube guidance, providing chemical attractants

and nutrients (Crawford and Yanofsky, 2008; Higashiyama and Hamamura, 2008). In contrast to

these accumulating data showing the existence of factors mediating pollen tube growth in the pistil,

whether guidance cues exist at the very early stage of pollen tube emergence and growth in the

papilla cell wall remains largely unknown. The cell wall constitutes a stiff substrate and hence a

mechanical barrier to pollen tube progression. There are numerous examples in animal cells demon-

strating that mechanical properties of the cellular environment, and in particular rigidity, mediate

cell signalling, proliferation, differentiation and migration (Discher et al., 2005; Fu et al., 2010;

Ermis et al., 2018). In plant cells, cell wall rigidity depends mainly on its major component, cellulose,

which is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs) moving

along cortical microtubule (CMT) tracks (Paredez et al., 2006). While penetrating the cell wall, the

pollen tube exerts a pressure onto the stigmatic cell (Sanati Nezhad and Geitmann, 2013). Physical

forces are known to reorganise the cortical microtubules (CMTs), which by directing CSCs to the

plasma membrane, reinforce wall stiffness by novel cellulose microfibril (CMF) synthesis

(Paredez et al., 2006; Sampathkumar et al., 2014). Hence, there is an intricate interconnection

between CMT organisation, CMF deposition and cell wall rigidity (Xiao and Anderson, 2016). A

major regulatory element of CMT dynamics is the KATANIN (KTN1) microtubule-severing enzyme,

which allows CMT reorientation following mechanical stimulation (Uyttewaal et al., 2012;

Sampathkumar et al., 2014; Louveaux et al., 2016). Here we investigated whether the CMT net-

work of papilla cells might contribute to pollen tube growth and guidance in stigmatic cells by com-

bining cell imaging techniques, genetic tools, chemical analysis of the cell wall and atomic force

microscopy. We show that isotropic reorientation of CMTs occurs in aged Col-0 and ktn1-5 papilla

cells, which is accompanied by a change in the growth direction of pollen tubes that tend to make

coils on papillae. We show that CMT reorganisation is associated with isotropic rearrangement of

CMFs, high content of crystalline cellulose and particular cell wall mechanics of ktn1-5 stigmas. Alto-

gether, our results indicate that cytoskeleton dynamics and mechanical properties of the cell wall,

which both depend on KTN1 activity, have a major role in guiding early pollen tube growth in stigma

papillae.

eLife digest Flowering plants produce small particles known as pollen that – with the help of

the wind, bees and other animals – carry male sex cells (sperm) to female sex cells (eggs) contained

within flowers. When a grain of pollen lands on the female organ of a flower, called the pistil, it gives

rise to a tube that grows through the pistil towards the egg cells at the base.

The surface of the pistil is covered in a layer of long cells named papillae. Like most plant cells,

the papillae are surrounded by a rigid structure known as the cell wall, which is mainly composed of

strands known as microfibrils. The pollen tube exerts pressure on a papilla to allow it to grow

through the cell wall towards the base of the pistil. Previous studies have shown that the pistil

produces signals that guide pollen tubes to the eggs. However, it remains unclear how pollen tubes

orient themselves on the surface of papillae to grow in the right direction through the pistil.

Riglet et al. combined microscopy, genetic and chemical approaches to study how pollen tubes

grow through the surface of the pistils of a small weed known as Arabidopsis thaliana. The

experiments showed that an enzyme called KATANIN conferred mechanical properties to the cell

walls of papillae that allowed pollen tubes to grow towards the egg cells, and also altered the

orientation of the microfibrils in these cell walls. In A. thaliana plants that were genetically modified

to lack KATANIN the pollen tubes coiled around the papillae and sometimes grew in the opposite

direction to where the eggs were.

KATANIN is known to cut structural filaments inside the cells of plants, animals and most other

living things. By revealing an additional role for KATANIN in regulating the mechanical properties of

the papilla cell wall, these findings indicate this enzyme may also regulate the mechanical properties

of cells involved in other biological processes.
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Results

CMT dynamic pattern and pollen tube growth during stigma
development
To assess the functional role of stigmatic CMTs

in pollen-papilla cell interaction, we first analysed

their organisation in papillae at stages 12 to 15

of stigma development as described

(Smyth et al., 1990; Figure 1A,B). We gener-

ated a transgenic line expressing the CMT

marker MAP65.1-citrine under the control of the

stigma-specific promoter SLR1 (Fobis-

Loisy et al., 2007). Before (stage 12) and at

anthesis (stage 13), where flowers are fully fertile

(Kandasamy et al., 1994), the CMTs were

aligned perpendicularly to the longitudinal axis

of papilla cells and were highly anisotropic

(median value of 0.40) (Figure 1C,D). At stage

14, when anthers extend above the stigma, the

CMT pattern became less organised, with a

higher variability in anisotropy values. Finally, at

stage 15 when the stigma extends above

anthers, CMT anisotropy had a median value of

0.09 indicative of an isotropic orientation of

CMTs (Figure 1C,D). These findings reveal that

the papilla CMT cytoskeleton is dynamic during

development, with a change of CMT array orien-

tation from anisotropy to isotropy. We then won-

dered whether this change in CMT organisation

could be correlated with pollen tube growth. To

this end, we self-pollinated Col-0 papillae from

stages 12 to 15 and examined pollen tube

growth one hour after pollination by scanning

electron microscopy (SEM) (Figure 2A). At stage

12 and 13, we found most (~60%) pollen tubes

grew straight in the papillae, whereas about 30%

and 10% of tubes made half-turn or one turn

around stigmatic cells, respectively (Figure 2B).

At later stages of development, the tendency to

coil around the papillae increased, with 3.5-fold

more pollen tubes at stage 14 and 5.5-fold more

at stage 15 making one or more than one turn

around papillae. These results suggest that CMT

organisation in the papilla impacts the direction

of growth of pollen tubes and that loss of CMT

anisotropy is associated with coiled growth.

Pollen tube penetration in the
papilla cell wall does not alter
CMT Organisation
We next asked whether the pressure exerted by

the growing pollen tube in the cell wall may

induce changes in the CMT organisation of the

papilla cell. To this end, we set up a live imaging

system where pollinated stigmas were

Figure 1. CMT organisation during papilla cell

development. (A) Flower development of A. thaliana

from developmental stages 12 to 15. Scale bar, 500

mm. (B) Upper view of the stigma during development

by SEM. Scale bar, 50 mm. (C) Confocal images of

papilla cells expressing MAP65-citrine at each stage of

development. Scale bar, 5 mm. (D) Quantitative analysis

of CMT array anisotropy of papilla cells from stages 12

to 15. The red dots correspond to the mean values of

the three replicates. Statistical differences were

calculated using a Shapiro-Wilk test to evaluate the

normality and then a Wilcoxon test, ***p<0.01. N > 4

stigmas, n > 60 papilla cells for each stage. Figure 1—

source data 1 provides data for assessing CMT

anisotropy shown in D.

The online version of this article includes the following

source data for figure 1:

Source data 1. Source data for CMT organisation

shown in Figure 1D.
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maintained in air so as to prevent immediate hydration and burst of pollen grains. During the time

course of the experiment, starting at the beginning of pollen tube emergence on the stigma papilla

at stage 13 (t0) up to 13 min after germination, we found no major alteration of CMT arrays from

early to late penetration stages (Figure 3A). This result was in contradiction with previous immunos-

taining analysis that showed fragmentation of CMTs following compatible pollination in Brassica

napus (Samuel et al., 2011). To confirm our result and gain better insight into CMT organisation, we

then observed pollinated stigmas at a single time point, that is 30 min after pollination, using a

mounting medium to get higher resolution images. Again, we did not detect any reorganisation or

degradation of CMTs (Figure 3B). However, we found the stability of CMTs to be very sensitive to

strong pressure, as when the coverslip was applied not cautiously on the stigma, a break-down of

CMT arrays occurred (Figure 3—figure supplement 1). These results indicate that the pressure

exerted by the pollen tube while growing in the papilla cell wall does not alter the organisation of

stigmatic CMTs.

Impaired CMT dynamics of papillae affects pollen tube growth
direction
To test the direct impact of stigma CMTs on pollen tube growth direction, we examined whether

the destabilization of CMTs in Col-0 papillae could affect pollen tube growth. To this end, we

treated stigmas by local application of the depolymerizing microtubule drug oryzalin in lanolin

pasted around the style. After 4 hr of drug treatment, no more CMT labelling was detected in papil-

lae, while CMTs were clearly visible in mock-treated (DMSO) stigmas (Figure 4A). Stigmas were then

pollinated with Col-0 pollen and one hour later observed by SEM. Pollen tubes were found to make

one turn more frequently on drug-treated than on control papillae, with more than a 3-fold increase

of tubes making one turn (Figure 4B,C). To confirm the relation between stigma CMTs and pollen

behaviour, we examined pollen tube growth on stigmas of the katanin1-5 mutant, which is known to

exhibit reduced CMT array anisotropy in root cells (Bichet et al., 2001; Burk et al., 2001; Burk and

Figure 2. Pollen tube growth behaviour on papillae during development. (A) SEM images of Col-0 papillae pollinated with Col-0 pollen, one hour post

pollination, from stages 12 to 15. Scale bar, 5 mm. (B) Quantification of the number of turns (T) made by the pollen tube on papillae from stages 12 to

15. Data are expressed as mean +/- s.e.m. A Chi-Square test for independence (at 6 degrees of freedom) was used to compare all stages and

demonstrated that the number of turns was significantly different between stages (p<0.01). N corresponds to the number of stigmas analysed in this

study and n, the number of papillae. Figure 2—source data 1 provides data for the quantification of the number of turns made by Col-0 pollen tubes

on papillae from stage 12 to 15 shown in B.

The online version of this article includes the following source data for figure 2:

Source data 1. Source data for the number of turns made by the pollen tube on papillae from stage 12 to 15 shown in Figure 2B.
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Ye, 2002). Because the CMT organisation in ktn1-5 papillae is unknown, we crossed ktn1-5 with the

MAP65-1-citrine marker line and found that CMT arrays were more isotropic in ktn1-5 papillae when

compared with those of the WT (Figure 5A,C). We then analysed Col-0 pollen behaviour on ktn1-5

stigmatic cells at stage 13 (Figure 5B). We observed that Col-0 pollen tubes acquired a strong ten-

dency to coil around ktn1-5 papillae, with more than 60% of tubes making one or more than one

turn around papillae, sometimes making up to six turns, before reaching the base of the cell

(Figure 5D; Figure 5—figure supplement 1A–C). In some rare cases, pollen tubes even grew

upward in the ktn1-5 mutant and appeared blocked at the tip of the papilla (Figure 5—figure sup-

plement 1B,D). The number of coils was significantly higher than on oryzalin-treated papillae.

Indeed, 25% of the pollen tubes made at least two coils in ktn1-5 papillae whereas this percentage

represented only 4% on the oryzalin treated stigmas (Figure 4C; Figure 5D). To check whether

papilla receptivity to pollen might be impaired in ktn1-5 stigmas, we examined hydration and tube

growth of Col-0 pollen deposited on stage-13 Col-0 or ktn1-5 stigmas. We found no significant dif-

ferences in pollen hydration related to the stigma type (Figure 5—figure supplement 2A) and pol-

len tubes grew in the transmitting tract and reached the ovules in ktn1-5 pistils like in Col-0

Figure 3. CMT organisation following pollen tube growth. (A) Time-lapse imaging of Col-0 pollen tube growth

within a papilla cell expressing MAP65.1-citrine. Pollen outline and pollen tube path were highlighted in magenta

for a better visualisation. N = 5 papillae. (B) Confocal images of papilla cells expressing MAP65.1-citrine (in green),

30 min after pollination with RFP labelled pollen grains (in magenta). The magenta dots are chloroplasts. Right

image: close-up of a pollinated papilla, 3D projection. N = 13 papillae. Scale bars, 10 mm. Figure 3—figure

supplement 1 shows the destabilisation and fragmentation of CMTs upon mechanical stimulation.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Confocal image of the effect of mechanical stimulation on CMT organisation.
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(Figure 5—figure supplement 2B). We then

wondered whether alteration of the KATANIN

function in pollen might affect pollen tube

growth directionality on Col-0 or ktn1-5 stigmas.

Cross-pollination revealed that ktn1-5 pollen

tubes grew like Col-0 pollen tubes on stage-13

Col-0 papillae, while they coiled on ktn1-5 papil-

lae (Figure 5—figure supplement 2C). Seed

counts showed that fertility slightly decreased

when ktn1-5 pollen was used to pollinate Col-0

stigmas, and was strongly affected when ktn1-5

was used as female, irrespective of whether the

pollen was Col-0 or ktn1-5 (Figure 5—figure sup-

plement 2D). This indicates that the fertilisation

process is impaired in ktn1-5 ovules. Altogether,

these results show that the coiled phenotype

observed on ktn1-5 stigmas is only dependent on

defects occurring at the papilla level, that the

stigma receptivity of ktn1-5 mutant is not altered

and confirm that stigmatic CMTs, somehow, con-

tribute to the directional growth of pollen tubes

in papilla cells.

Defects in papilla cell wall
composition are not sufficient to
affect Col-0 pollen tube behaviour
The katanin1/fra2 mutant was initially described

as a mutant impaired in cell wall biosynthesis and

CMT array organisation (Burk et al., 2001). This

prompted us to investigate whether other

mutants affected in cell wall biogenesis might

exhibit the coiled pollen tube phenotype. We

selected mutants impaired in the cellulose syn-

thase complex (kor1.1, prc1 and any1), hemicellu-

lose biosynthesis (xxt1 xxt2, xyl1.4) and pectin

content (qua2.1), for which expression of the cor-

responding genes in stigma was confirmed (Fig-

ure 5—source data 2). Strikingly, none of the 6

cell wall mutants displayed the coiled pollen tube

phenotype (Figure 5—figure supplement 3A–F).

To ascertain that the cell wall composition was

altered in the stigma papillae of ktn1-5 and cell

wall mutants, we undertook sugar analysis of

ktn1-5 and xxt1 xxt2 stigmas and compared

them with that of Col-0. We chose the xxt1 xxt2

mutant because its cell wall composition had

been already well described (Cavalier et al.,

2008; Xiao et al., 2016). The relative abundance

of monosaccharides in pistil cell walls varied

between the three genotypes with major differ-

ences detected in the ktn1-5 cell wall composi-

tion that had an increased abundance of glucose,

this latter deriving either from hemicellulose and

amorphous cellulose or from crystalline cellulose

(Figure 5—figure supplement 4A). ktn1-5 cell

wall was characterized by the highest relative

Figure 4. Local oryzalin application on Col-0 stigmas

promotes MT destabilization and induces Col-0 pollen

tube coils. (A) Col-0 papilla cells expressing MAP65.1-

citrine after 4 hr of DMSO (top) or oryzalin (bottom)

local treatment. (B) SEM images of DMSO- (top) or

oryzalin-treated (bottom) Col-0 stigmas pollinated with

Col-0 pollen grains. (A and B) Scale bars, 5 mm. (C)

Quantification of the number of turns (T) made by Col-

0 pollen tubes on drug-treated and control papillae.

Data are expressed as mean +/- s.e.m. Statistical

difference was found between pollen tube path within

DMSO (control) and oryzalin-treated papillae and was

calculated using an adjusted Chi-Square test for

homogeneity (2 degrees of freedom), p<0.01. N

(DMSO)=12 stigmas, n(DMSO)=117 papillae, N

(oryzalin)=16 stigmas, n(oryzalin)=149 papillae.

Figure 4—source data 1 provides data for the

quantification of the number of turns made by Col-0

pollen tubes on drug-treated and control papillae

shown in C.

The online version of this article includes the following

source data for figure 4:

Source data 1. Source data for the quantification of

the number of turns made by Col-0 pollen tubes on

drug-treated and control papillae shown in Figure 4C.
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Figure 5. Effect of CMT organisation on pollen tube path. (A) Confocal images of papilla cells expressing

MAP65.1-citrine in Col-0 and ktn1-5 at stage 13. Scale bars, 5 mm. (B) SEM images of Col-0 and ktn1-5 papillae

pollinated with Col-0 pollen grains. Scale bar, 10 mm. (C) CMT anisotropy of Col-0 and ktn1-5 papilla cells at stage

13. N(Col-0)=10 stigmas, n(Col-0)=106 papillae, N(ktn1-5)=11 stigmas, n(ktn1-5)=114 papillae. Statistical

differences were calculated using a Shapiro-Wilk test to evaluate the normality and then a Wilcoxon test with

***p<0.01. (D) Quantification of the number of turns (T) made by Col-0 pollen tubes on ktn1-5 and Col-0 papillae.

Data are expressed as mean +/- s.e.m. Statistical difference was found between pollen tube path within ktn1-5

and Col-0 papillae and was calculated using an adjusted Chi-Square test for homogeneity (2 degrees of freedom),

p<0.01. N(Col-0)=27 stigmas, n(Col-0)=251 papillae, N(ktn1-5)=23 stigmas, n(ktn1-5)=327 papillae. Figure 5—

figure supplement 1 shows SEM images of the behaviour of Col-0 pollen tubes on Col-0 and ktn1-5 papillae at

stage 13. Figure 5—figure supplement 2 illustrates the receptivity and fertility of the ktn1-5 mutant. Figure 5—

figure supplement 3 shows that mutants impaired in cell wall genes behave like Col-0. Figure 5—figure

supplement 4 gives the saccharide composition of Col-0, ktn1-5 and xxt1 xxt2 stigmatic cell walls. Figure 5—

figure supplement 5 compares the length and width of papilla cells from Col-0, ktn1-5, xxt1 xxt2 and any1.

Figure 5—source data 1 provides source data for the quantification of CMT anisotropy of Col-0 and ktn1-5

papilla cells at stage 13 shown in C, for the quantification of the number of turns made by Col-0 pollen tubes on

ktn1-5 and Col-0 papillae shown in D, and source data for the Figure 5—figure supplement 2, Figure 5—figure

supplement 3 and Figure 5—figure supplement 4. Figure 5—source data 2 provides information on the six cell

wall genes analysed and shows that they are expressed in stigmas.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for the quantification of CMT anisotropy of Col-0 and ktn1-5 papilla cells at stage 13

shown in Figure 5C and the quantification of the number of turns made by Col-0 pollen tubes on ktn1-5 and Col-0

papillae shown in Figure 5D.

Source data 2. Table of cell wall mutants analysed.

Figure supplement 1. Col-0 pollen tube behaviour on Col-0 and ktn1-5 papillae at stage 13.

Figure supplement 2. ktn1-5 is impaired in female receptivity and fertility.

Figure supplement 3. Quantification of the number of coils made by Col-0 pollen tubes on papillae from cell-wall

mutants at stage 13.

Figure 5 continued on next page
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abundance of crystalline cellulose, which was 25% higher than in Col-0 and xxt1 xxt2. To explore

whether side chains of hemicellulose might also be affected in the katanin mutant, we performed an

enzymatic fingerprinting of xyloglucans from dissected stigmas of Col-0 and ktn1-5; xxt1xxt2 was

not analysed as it lacks xyloglucan side chains. We found in ktn1-5 a decrease in relative abundance

of short side chains with terminal xylose (XXG and XXXG) and an increase in the longer ones with ter-

minal fucose (e.g XXFG) (Figure 5—figure supplement 4B). The chemical analysis confirms that the

cell wall composition is altered in ktn1-5 stigmas and presents some specific features compared with

Col-0 and xxt1 xxt2 stigmas. However, combined with the results of pollination on the six cell wall

mutants, we cannot establish a causal effect of chemical alterations on the pollen tube coiled pheno-

type. This suggests that the relation between CMT organisation, cell wall composition and pollen

tube trajectory is more complex than anticipated.

Shape of papilla cells is not a determining factor of the pollen tube
phenotype
Because CMTs guide cellulose deposition, they also control the directional elongation of plant cells

(Baskin, 2005). Indeed, katanin1/fra2 cells are wider and shorter than wild type (Bichet et al., 2001;

Burk et al., 2001), and we may predict that the shape of papilla cells in the mutant might be simi-

larly altered. The contribution of stigmatic CMTs to pollen tube growth may thus be mediated by

papilla cell shape only; for instance, wider papilla cells in ktn1-5 would promote pollen tube coiling.

To check that possibility, we measured the length and width of papilla cells in Col-0 (at stage 13 and

15), ktn1-5, xxt1 xxt2 and any1 (Figure 5—figure supplement 5). We did not find any correlation

between papilla length and the coiled phenotype. Indeed, coiled phenotype was observed in stage-

15 WT papillae that were longer than those at stage-13, as well as in ktn1-5 papillae that had a

length similar to stage-13 WT papillae. The correlation between papilla width and coiled phenotype

was also not clear-cut. As anticipated, ktn1-5 mutant exhibited wider papillae than Col-0. However,

xxt1 xxt2 and any1 papillae were also wider than the WT but did not display the coiled phenotype.

Altogether, this suggests that papilla morphology is not sufficient to explain the coiled phenotype.

Mechanical properties of the cell wall are disturbed in ktn1-5 papilla
cells
Because the main role of CMTs in plant cells is to guide the trajectory of CSCs, thereby impacting

the mechanical anisotropy of the cell wall, we analysed the cell walls of Col-0 and ktn1-5 papillae fol-

lowing pollination. First, using Transmission Electron Microscopy (TEM), we found Col-0 pollen tubes

penetrated the cuticle and grew between the two layers of the papilla cell wall, as previously

described (Kandasamy et al., 1994), in both Col-0 and ktn1-5 papilla cells (Figure 6A). We did not

detect any significant difference in the ultrastructure of cell walls (Figure 6—figure supplement 1).

Interestingly, as the pollen tube progresses through the papilla cell wall, it generates a bump (exter-

nal deformation) and an invagination (internal deformation) in the cell wall (Figure 6A). As such

deformations could reflect differences in wall properties, we quantified the external (extD) and inter-

nal (intD) deformation following pollination of Col-0 and ktn1-5 stigmas. To visualize more clearly

this deformation, we pollinated stigmas expressing the plasma membrane protein LTI6B fused to

GFP (LTI6B-GFP) with pollen whose tube was labelled with the red fluorescent protein RFP driven by

the ACT11 promoter (Rotman et al., 2005; Figure 6B). We found that Col-0 pollen tubes grew with

almost equal extD and intD values in Col-0 cell wall. However, the ratio between extD and intD was

about three when Col-0 pollen tubes grew in ktn1-5 papilla cells (Figure 6B–D). These quantitative

data were consistent with the observation that pollen tubes appeared more prominent on ktn1-5

stigmatic cells using SEM (Figure 5B; Figure 5—figure supplement 1B). Assuming that stigmatic

cells are pressurized by their turgor pressure, this may reflect the presence of softer walls in ktn1-5

papillae. To test this hypothesis, we assessed the stiffness of Col-0 and ktn1-5 papilla cell walls using

Atomic Force Microscopy (AFM) with a 200 nm indentation. We found that cell wall stiffness in ktn1-

Figure 5 continued

Figure supplement 4. Cell wall composition is altered in katanin1 and different from xxt1 xxt2.

Figure supplement 5. Size of the papilla cells of Col-0 and cell wall mutants.
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Figure 6. Mechanical properties of papilla cell walls. (A) Location of a Col-0 pollen tube in the cell-wall of Col-0 and ktn1-5 papillae by TEM. pt = pollen

tube, C = stigma cuticle, sCW = stigma cell wall, sp = stigma papilla. Scale bar, 1 mm. (B) Confocal images of Col-0 and ktn1-5 papillae expressing the

plasma membrane marker LTI6B-GFP pollinated with an RFP-expressing pollen. Scale bar, 5 mm. (C) Diagram showing the procedure used for

evaluating the external (extD) and internal (intD) deformations made by Col-0 pollen tubes. (D) External and internal deformations caused by Col-0

pollen tube growth in Col-0 and ktn1-5 papillae. (E) Drawing of the AFM experimental setup. Dissected pistils were inserted in agarose medium and

fixed with low-melting agarose for measurements. (F) Young’s modulus values of the papilla cell wall for Col-0 at stage 13 (N = 4 stigmas, n = 8

papillae), ktn1-5 (N = 5 stigmas, n = 9 papillae), xxt1 xxt2 (N = 4 stigmas, n = 11 papillae) and Col-0 at stage15 (N = 4 stigmas, n = 10 papillae. (G)

Mean of travel distances made by Col-0 pollen tubes in Col-0 and ktn1-5 papillae. (H) Mean of travel distances made by Col-0 pollen tubes in papillae

of Col-0 at stage 13, Col-0 at stage 15, xxt1 xxt2 at stage 13. D,F and G,H: Statistical differences were calculated using a Shapiro-Wilk test to evaluate

the normality and then a T-test. ***p<0.01, n.s. = not significant. For H, we found a significant difference (***p<0.01) between Col-0 at stage 13 and 15,

but not significant (n.s.) between Col-0 at stage 13 and xxt1 xxt2 at stage 13. Figure 6—figure supplement 1 shows the similar ultrastructural features

of Col-0 and ktn1-5 papilla cell walls. Figure 6—source data 1 are values measured to define the mechanical properties of the papilla cell walls shown

in D, F, G, H.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for defining the mechanical properties of the papilla cell walls shown in Figure 6D, Figure 6F, Figure 6G, Figure 6H.

Figure supplement 1. Ultrastructural features of Col-0 and ktn1-5 papilla cells.

Riglet et al. eLife 2020;9:e57282. DOI: https://doi.org/10.7554/eLife.57282 9 of 21

Research article Plant Biology

https://doi.org/10.7554/eLife.57282


5 papilla cells was about 30% lower than that in stage 13 WT cells (Figure 6E,F). To confirm this

result, we investigated the stiffness of the papilla cell wall on WT stigmas at stage 15, where

increased coiled pollen tubes were detected (Figure 2A,B). We found the cell wall to be softer than

that of papillae at stage 13 but stiffer than that of the ktn1-5 (Figure 6E,F). We then reasoned that

the presence of softer walls should also affect the pollen tube growth rate, stiffer walls reducing

growth. Thus, measuring the growth rate would provide an indication of the resistance force encoun-

tered by the tube while growing in the papilla cell wall. We thus monitored the growth rate of Col-0

pollen tubes in Col-0 and ktn1-5 papillae. We found that pollen tubes grew faster (~x 1.8) within

ktn1-5 papillae (Figure 6G). Similarly, we found that pollen tube growth on stage 15 papillae was

faster (~x 1.6) than on stage 13 papillae (Figure 6H). These results suggest that the coiled pheno-

type is associated with a higher pollen tube growth rate and hence, that papilla cell walls of ktn1-5

and stage-15 papillae exhibit less resistance to tube penetration. Altogether, these data suggest

that KATANIN-dependent mechanical properties of papilla cell wall play a role in pollen tube

guidance.

Mechanical anisotropy of the papilla cell wall mediates pollen tube
directionality
Because CMT disorganisation in papillae affects both wall stiffness and mechanical anisotropy, we

next investigated the relative contribution of these two parameters in pollen tube growth. Hypocotyl

cells of the xxt1 xxt2 double mutant were reported to display CMT orientation defects and reduced

stiffness of the cell wall (Xiao et al., 2016), features that we found in ktn1-5 papilla cells. However,

growing pollen tubes on xxt1 xxt2 stigmas did not coil and grew like on WT stigmas, questioning

whether the cell wall stiffness of stigmatic cells was actually affected in the mutant. Using AFM, we

found the cell wall of xxt1 xxt2 papillae to be about 30% softer than that of Col-0 papillae, i.e. very

similar to that of ktn1-5 (Figure 6F). Despite this similarity, the pollen tube growth rate in xxt1 xxt2

stigmas was identical to Col-0 stigmas at stage 13 (Figure 6H). In addition, contrary to ktn1-5, pollen

tubes were not prominent while growing in xxt1 xxt2 papilla cell walls (Figure 5—figure supple-

ment 3G). These results suggested that although ktn1-5 and xxt1 xxt2 papillae had similar cell wall

stiffness as inferred from AFM measurements, they exhibited different mechanical constraints to pol-

len tube growth. Because of the close relationship between CMT organisation, CMF deposition and

cell wall rigidity (Xiao et al., 2016; Xiao and Anderson, 2016), we suspected that CMT and CMF

organisation might be different between the two mutants and be the possible causal agent of the

mechanical differences and related tube coiled phenotype observed in ktn1-5. To check this possibil-

ity, and to gain insight into the predominant cellulose pattern in the stigmatic cell walls, we stained

CMFs by using Direct Red 23. We found cellulose fibres to be highly aligned and slanted to the lon-

gitudinal axis of the papilla in stage 13 Col-0 stigmas, whereas ktn1-5 and stage 15 Col-0 papillae

both displayed a clearly disordered CMF pattern (Figure 7A) with CMFs forming thicker and more

spaced bundles (Figure 7B). By contrast, CMFs in xxt1 xxt2 papillae at stage 13 organised in a dense

and well oriented pattern of fibres, mostly perpendicular to the papilla long axis, which resembled

Col-0 stage 13 CMF organisation (Figure 7A,B). These results suggest that KTN1 loss-of-function

alters mechanical properties of the papilla cell wall in a complex manner, lowering both its stiffness

to pressure applied perpendicularly to its surface (e.g., by the AFM indenter) and its resistance to

pollen tube progression. This latter modification appears as the main cause of the pollen tube coiled

phenotype. By contrast, loss of XXT1 and XXT2 functions, by perturbing cell wall stiffness to indenter

pressure only, does not induce change in pollen tube growth. Altogether, our data suggest that the

mechanical anisotropy of papilla cell walls plays a key role in pollen tube trajectory.

Discussion
Previous work reported that rearrangements of actin microfilaments (Iwano et al., 2007;

Rozier et al., 2020) and destabilization of CMTs (Samuel et al., 2011) occur in stigmas following

compatible pollination in Brassicaceae species. However, CMT pattern and dynamics during papilla

development have never been described. Our data show that during the course of stigma matura-

tion, which is associated with papilla cell elongation, CMT bundles progressively move from perpen-

dicular (anisotropic) to the elongation axis at stage 12 to disorganised (isotropic) at stage 15. This

correlates with the known CMT dynamics during elongation in plant cells, where CMT arrays are
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highly anisotropic in young cells and become more isotropic as cells differentiate (Baskin, 2005;

Landrein and Hamant, 2013).

During invasion of plant cells by fungal or Oomycete pathogens or upon mechanical stimulation,

the network of microtubules is rearranged, generally associated first with the depolymerization of

CMTs at the contact site and later with the formation of an array of microtubules surrounding the

invading organism or microneedle (Hardham, 2013). Interestingly, penetration of the pollen tube in

the papilla cell wall does not lead to such microtubule reorganisation (Figure 3). This suggests that

at the cellular level, the invading pollen tube does not elicit a defence-like response in the papilla,

which accepts and supports pollen tube growth. In addition, we show that when the stigma is manu-

ally pressed between slide and coverslip, the mechanical stimulation applied perpendicularly to the

wall leads to CMT fragmentation (Figure 3—figure supplement 1). This indicates that although the

papilla microtubule network is sensitive to mechanical forces, the pressure exerted by the pollen

tube is not strong enough to perturb CMT organisation. One possible explanation is that the pene-

tration force developed by the growing pollen tube acts mainly in plane to the cell wall surface and

hence would only have a little effect on the papilla cell, contrary to a pressure applied perpendicu-

larly to the wall. Our data are in contradiction with the earlier observation that growing pollen tube

provokes fragmentation of CMTs in the papilla (Samuel et al., 2011). This discrepancy is likely to

relate to the microscopic approaches used between the two studies, live imaging and a fluorescent

microtubule probe in our case, chemically fixed material and immunostaining of microtubules in

Samuel et al., 2011.

The progressive randomisation of CMT orientation we observed in papilla cells during ageing is

accompanied by an increased coiled growth of pollen tubes in papillae. Similarly, when CMTs are

destabilized by the microtubule depolymerizing drug oryzalin, coiled pollen tubes are more fre-

quently observed compared with untreated control stigmas. These results reveal a link between the

stigmatic CMT cytoskeleton organisation and the trajectory that pollen tube takes while growing in
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Figure 7. Cellulose microfibril organisation in Col-0 stage 13, ktn1-5, Col-0 stage 15 and xxt1 xxt2 papillae. (A) 3D-

projections of z-stack images of Col-0 stage 13, ktn1-5, Col-0 stage 15 and xxt1 xxt2 papilla cells stained with

Direct Red 23 dye. Scale bars, 10 mm. (B) Plot profiles of the fluorescence intensity (AFU, Arbitrary Fluorescence

Units) along the yellow lines. Note the similarities of profiles between Col-0 stage 13 and xxt1 xxt2 on one hand,

and between ktn1-5 and Col-0 on the other hand. At least eight papillae per genotype were observed.
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the papilla cell wall, although the effects of oryzalin on cell wall properties remain unknown. The fact

that the most striking effect on pollen tube growth was found on ktn1-5 mutant suggests that the

coiled phenotype depends not only on the CMT organisation but implicates other factors. Among

various phenotypic alterations described in loss-of-function mutants for KTN1, are the impaired cell

mechanical properties and cell elongation, defects in CMT organisation, cell wall composition and

CMF orientation (Burk et al., 2001; Burk and Ye, 2002; Ryden et al., 2003). Interestingly, we found

that the protuberance of pollen tubes at the surface of ktn1-5 papillae was associated with a faster

growth rate and a lower rigidity of the cell wall compared with Col-0 (Figure 6). This places mechan-

ics of the cell wall as a likely component involved in the coiled phenotype. Surprisingly, of the six cell

wall mutants we analysed, including xxt1 xxt2 and prc1 known to exhibit both abnormal CMT organi-

sation and softer cell walls, none induced the coiled phenotype displayed by ktn1-5 papillae. More

remarkably, despite the similar stiffness of xxt1 xxt2 and ktn1-5 papilla cell walls as measured by

AFM, pollen tubes behaved differently on these two stigma types, pollen tubes not only coiling but

also growing faster on ktn1-5 stigmas. This observation is in accordance with the recent findings that

changes in indentation properties of plant cell walls do not correlate with changes in tensile stiffness

as described in cell-free strips of onion epidermal walls (Zhang et al., 2019). In our experiments,

indentations tell us about the elasticity of the wall to a pressure normal to the plane of the wall sur-

face (i.e. out-of-plane mechanics), while pollen tube growth rates inform about the resistance of the

wall to a force in-plane to the papilla wall (i.e. in-plane mechanics). Several lines of evidence lead us

to suggest that mechanical properties of the cell wall are not identical in the two mutants. Previous

work showed that cellulose crystallinity is one factor implicated in cell wall mechanics. Indeed, the

epidermal cells of the inflorescence stem in the any1 mutant have the relative amount of crystalline

cellulose significantly reduced, while the total content of cellulose in the cell wall is unaltered, and

this is accompanied by reduced stiffness of the cell wall (Fujita et al., 2013; Altartouri et al., 2019).

Our chemical analysis reveals that the cell wall composition is different between xxt1 xxt2 and ktn1-

5 stigmas, with this latter having 25% more crystalline cellulose, and hence should exhibit stiffer cell

walls (Figure 5—figure supplement 4). This data is at odds with AFM measurements but a possible

explanation would be that the two layers detected by TEM in the papilla cell wall (Figure 6—figure

supplement 1) display different mechanical properties, the inner layer being stiffer than the outer

one in the ktn1-5 mutant. This may explain the protruding growth of pollen tubes observed in ktn1-5

papillae, the tube pushing away the softer outer layer but not the inner (Figure 6A–D). Interestingly,

Zhang et al., 2019 reported that cellulose networks largely determine in-plane mechanics whereas

out-of-plane mechanics depends on both homogalacturonan (pectin) and cellulose networks. Cell

walls of the qua2-1 mutant are specifically affected in pectins, with a 50% reduction in homogalactur-

onan content compared with Col-0 without observable changes in other polysaccharides

(Mouille et al., 2007). In light of these data, it is noteworthy that papilla cells of the qua2-1 mutant

do not induce pollen tube turns (Figure 5—figure supplement 3), which suggests that pectins play

no significant role in the pollen tube phenotype and that the main factor contributing to pollen tube

guidance is in-plane mechanics, and hence relies on the cellulose network. The orientation of the

rigid CMFs is another determinant of cell wall mechanics. The ktn1-5 mutant was described to have

a severe reduction in cell length and an increase in cell width in all organs (Burk et al., 2001). This

cellular phenotype was attributed to the distorted deposition of CMFs correlated with the isotropic

orientation of CMTs, whereas in WT cells, CMFs like CMTs are oriented perpendicularly to the elon-

gation axis (Burk and Ye, 2002). Similarly, we found that orientation of CMFs is also altered in ktn1-

5 papillae (Figure 7) and this was associated with larger papilla cells (Figure 5—figure supplement

5). Hence, we may assume that mechanical anisotropy, described as the cell wall anisotropy made

by the orientation of the rigid CMFs (Sassi et al., 2014), is impaired in ktn1-5 papillae. Contrary to

the ktn1-5 mutant, papillae of the xxt1 xxt2 double mutant display an anisotropic CMF pattern with

parallel fibres approximatively oriented transversally to the papilla axis. These data are in agreement

with those reported for etiolated hypocotyl cells, where CMFs are largely parallel to one another,

straighter than in WT and oriented almost transversely to the long axis of the cell (Xiao et al., 2016).

In addition, we found the papilla cell shape of xxt1 xxt2 stigmas to be closer to that of Col-0 than

that of ktn1-5 papillae, which is consistent with an anisotropic growth of the papillae in the xxt1 xxt2

mutant compared with ktn1-5. Apart from the similar stiffness of papilla cell walls as deduced from

AFM measurements, the main differences between ktn1-5 and xxt1 xxt2 cell walls are the cell wall

composition, orientation of CMFs, and possible changes in molecular connections between cell wall
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components and plasma membrane and/or cytoskeleton proteins. Indeed, a recent proteomic study

revealed that loss of KATANIN function is associated with the decrease in abundance of several cyto-

skeleton proteins, such as profilin 1, actin-depolymerizing factor 3 and actin 7 (Takáč et al., 2017),

whereas targeted quantitative RT-PCR showed that several Microtubule-associated protein (MAP)

and wall signal receptor genes showed lower expression levels in xxt1 xxt2 (Xiao et al., 2016). In

this latter study, KTN1 expression level was shown to be unchanged compared with Col-0. Alto-

gether, our study suggests that KTN1, by maintaining the papilla mechanical anisotropy, has a key

function in mediating early pollen tube guidance on stigma papillae.

The coiled phenotype was not only observed in ktn1-5 but also in the WT Col-0 papillae at stage

15. Remarkably, several lines of evidence reveal that papilla cells from stage 15 share common fea-

tures with ktn1-5 papillae, such as CMT and CMF increased isotropy, decreased stiffness of the cell

wall as deduced from AFM and less resistance of the wall to pollen tube growth. Isotropic orienta-

tion of the cytoskeleton at stage 15 is likely to relate to cell elongation, which is known to be accom-

panied by cytoskeleton reorganisation (Crowell et al., 2011; Zhang et al., 2014). At the organ

level, it has been suggested that the mechanical anisotropy of the wall restrains organ emergence

(Sassi et al., 2014). The authors propose that for the same wall stiffness, a cell wall with isotropic

properties would lead to larger outgrowth than a wall with anisotropic properties. Our data are con-

sistent with this hypothesis, albeit at the subcellular scale, since large protuberance of papilla wall

following pollen tube growth is observed in ktn1-5 papilla cells, exhibiting walls with isotropic

properties.

It remains unclear how mechanical anisotropy guides pollen tube growth. We can hypothesise

that as pollen tube grows inside the wall, it encounters recently deposited CMFs on the inner side of

the wall (facing the cytoplasm) and older CMFs on the outer side. It is likely that these layers have

different mechanical properties related to CMF orientation (Baskin, 2005). KATANIN, by acting on

CMT dynamics and CMF organisation, would fine-tune the mechanical properties of the matrix

through which the pollen tube grows. It is worth noting that growth rate of pollen tubes germinated

in vitro is slowed down when pollen tubes pass through a microgap of a microfluidic device, the

tubes adapting their invasive force to the mechanical constraints (Sanati Nezhad et al., 2013).

Based on measurements of pollen tube growth rates, our data show that the tube tip, while pro-

gressing in the papilla wall, senses the mechanical features of its environment and reacts accord-

ingly. Hence, it reveals some unanticipated internal and hidden properties of the cell wall.

Our study shows that mechanics plays a key role in early pollen tube guidance in the papilla cell.

This role is mediated by a specific CMT/CMF organisation and mechanical anisotropy of the papilla

cell, which both are dependent on KTN1. Importantly, these specific mechanical properties of the

stigmatic cells prevent emerging pollen tubes to grow upward on papillae and straighten pollen

tube direction, helping the tube to find its correct path to the stylar transmitting tract. Our findings

also raise the question about the biological importance of the mechanical changes that occur during

stigma development. Indeed, for aged stigmas, modifications of the mechanical properties of the

cell wall, accompanied by an acceleration of pollen tube growth, could be seen as beneficial for the

plant by favouring ultimate fertilization and seed set on old flowers, and hence supporting dissemi-

nation of the species. This assumption is particularly relevant given that the pistil length increases

with ageing and similarly the journey the pollen tube has to travel to reach the ovules. A recent work

showed that ageing is associated with decreased fertility due to stigma senescence, which is initiated

at stage 16–17 (Gao et al., 2018). The faster the pollen tube will grow in old stigmas, the more

chance it will have to circumvent papilla cell death and hence to fertilize the ovule. We may suggest

that KTN1, by mediating mechanical anisotropy of stigmatic cells and promoting pollen tube growth

in old stigmas, has played an evolutionary role in the success of fertilization.

To conclude, we uncovered a yet unexpected function for KTN1 in early pollen tube guidance on

the stigma. In addition, our study also clearly unveils that the mechanical properties of one single

cell (e.g., the stigmatic papilla) impact the behaviour of its neighbouring cell (e.g., the pollen tube).

Materials and methods

Key resources table

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
Arabidopsis
thaliana

ktn1-5 Lin et al., 2013 AT1G80350

Genetic
reagent
Arabidopsis
thaliana

xxt1 xxt2 Cavalier et al., 2008 AT3G62720
AT4G02500

Genetic
reagent
Arabidopsis
thaliana

prc1.1 Fagard et al., 2000 AT5G64740

Genetic
reagent
Arabidopsis
thaliana

qua2.1 Mouille et al., 2007 AT1G78240

Genetic
reagent
Arabidopsis
thaliana

xyl1.4 Sampedro et al., 2010 AT1G68560

Genetic
reagent
Arabidopsis
thaliana

kor1.1 Nicol et al., 1998 AT5G49720

Genetic
reagent
Arabidopsis
thaliana

any1 Fujita et al., 2013 AT4G32410

Genetic
reagent
Arabidopsis
thaliana

pSLR1::
MAP65.1-
citrine

This paper Transgenic line
expressing MAP65.1-
citrine in stigmas,
request to RDP
laboratory, ENS
Lyon, France

Genetic
reagent
Arabidopsis
thaliana

pSLR1::LTI6B-GFP This paper Transgenic line
expressing LTI6B-
GFP in stigmas
used in Figure 6,
request to RDP
laboratory, ENS
Lyon, France

Genetic
reagent
Arabidopsis
thaliana

pACT11::RFP This paper Transgenic line
expressing RFP
under the ACTIN11
promoter used to
visualize pollen
and pollen tubes
in Figure 3 and
Figure 6, request
to RDP laboratory,
ENS Lyon, France

Chemical
compound,
drug

Oryzalin Chemical
Service,
Supelco

36182 833 mg/mL

Chemical
compound,
drug

RedDirect23 Sigma-Aldrich 212490 0.02% (w/v)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

Adigor Syngenta 2.5% (v/v
in water)

Software,
algorithm

ImageJ RRID:SCR_003070 https://imagej.net

Software,
algorithm

FibrilTool Boudaoud
et al., 2014

RRID:SCR_016773 https://biii.eu/
fibriltool

Software,
algorithm

Rstudio RStudio Team, 2015 RRID:SCR_000432 https://
rstudio.com/

Plant materials and growth conditions
Arabidopsis thaliana, ecotype Columbia (Col-0), Arabidopsis transgenic plants generated in this

study and Arabidopsis mutants were grown in soil under long-day conditions (16 hr of light/8 hr of

dark, 21 ˚C / 19˚C) with a relative humidity around 60%. ktn1-5 (SAIL_343_D12), xxt1xxt2, prc1.1,

qua2.1, xyl1.4, kor1.1 and any1 mutant lines were described previously (Cavalier et al., 2008;

Fagard et al., 2000; Fujita et al., 2013; Lin et al., 2013; Mouille et al., 2007; Nicol et al., 1998;

Sampedro et al., 2010; Shoji et al., 2004). All mutants were in Col-0 background except kor1.1

which was in WS. All stigmas were analysed at stage 13 of flower development (Smyth et al., 1990)

except when specified.

Plasmid construction
We used the Gateway technology (Life Technologies, USA) and two sets of Gateway-compatible

binary T-DNA destination vectors (Hellens et al., 2000; Karimi et al., 2002) for expression of trans-

genes in A. thaliana. The DNA fragment containing the Brassica oleracea SLR1 promoter was

inserted into the pDONP4-P1R vector. The 165 bp-LTI6B fragment was introduced into the

pDONR207 vector. MAP65 gene spanning the coding region from start to stop codons was intro-

duced into the pDONR221 vector. CDS from citrine or GFP were cloned into the pDONP2R-P3 vec-

tor. Final constructs, pSLR1::MAP65-citrine and pSLR1::LTI6B-GFP were obtained by a three-

fragment recombination system (Life Technologies) using the pK7m34GW and the pB7m34GW des-

tination vectors, respectively. We generated a pACT11::RFP construct by amplifying the promoter of

the A. thaliana ACTIN-11 gene and cloning it into the pGreenII gateway vector in front of the RFP

coding sequence.

Generation of transgenic lines and crossing
Transgenic lines were generated by Agrobacterium tumefaciens-mediated transformation of A. thali-

ana Col-0 as described (Logemann et al., 2006). Unique insertion lines, homozygous for the trans-

gene were selected. We introduced the pSLR1::LTI6B-GFP or pSLR1::MAP65-citrine construct in

ktn1-5 background by crossing and further selecting the progeny on antibiotic containing medium.

Microscopy
Confocal microscopy
Flowers at stages 12 to 15 (Smyth et al., 1990) collected from fluorescent lines were emasculated

and stigmas were observed under a Zeiss LSM800 microscope (AxioObserver Z1) using a 40x Plan-

Apochromat objective (numerical aperture 1.3, oil immersion). For pollination experiments using the

MAP65.1-citrine line, flowers were emasculated and pollinated with mature pollen from the

pACT11::RFP line. 30 min after pollination, stigmas were observed under the confocal microscope.

Citrine was excited at 515 nm and fluorescence detected between 530 and 560 nm. GFP was excited

at 488 nm and fluorescence detected between 500 and 550 nm. RFP was excited at 561 nm and

fluorescence detected between 600 and 650 nm.
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Live imaging
Flowers at stage 13 and 15 were emasculated and pollinated on plants with mature pollen from the

pACT11::RFP line. Immediately after pollination, stigmas were mounted between two coverslips

maintained separated by four grease plugs placed at each coverslip corner. To maintain a constant

humidity without adding liquid directly on the stigma surface, we used a wet piece of tissue in con-

tact with the base of the stigma. Pollinated stigmas were observed under a Zeiss microscope (Axi-

oObserver Z1) equipped with a spinning disk module (CSU-W1-T3, Yokogawa) using a 40x Plan-

Apochromat objective (numerical aperture 1.1, water immersion). Serial confocal images were

acquired in the entire volume of the stigma every 1 mm and every minute. Images were processed

with Image J software and pollen tube lengths were measured.

Atomic Force Microscopy
Pistils were placed straight in a 2% agar MS medium and 0.8% low-melting agarose was added up

to a certain level where the papilla cells were maintained well immobilised in agarose while leaving

the top accessible to the indenter. This set up allowed accurate measurements of cell wall stiffness

on the dome-shaped top of papilla cells. AFM indentation experiments were carried out with a Cata-

lyst Bioscope (Bruker Nano Surface, Santa Barbara, CA, USA) that was mounted on an optical micro-

scope (MacroFluo, Leica, Germany) equipped with a x10 objective. All quantitative measurements

were performed using standard pyramidal tips (RFESP-190 (Bruker)). The tip radius given by the

manufacturer was 8–12 nm. The spring constant of the cantilever was measured using the thermal

tune method and was 35 N/m. The deflection sensitivity of the cantilever was calibrated against a

sapphire wafer. All experiments were made in ambient air at room temperature. Matrix of 10 � 10

measurements (step 500 nm) was obtained for each papilla, with a 1mN force. The Young’s Modulus

was estimated using the Nanoscope Analysis (Bruker) software, using the Sneddon model with

a < 200 nm indentation.

Environmental Scanning Electron Microscopy (SEM)
Flowers from stages 12 to 15 were emasculated and pollinated on plants with mature WT pollen.

One hour after pollination, pistils were cut in the middle of the ovary, deposited on a SEM platform

and observed under Hirox SEM SH-3000 at �20˚C, with an accelerating voltage of 15kV. Images

were processed with ImageJ software and pollen tube direction was quantified by counting the num-

ber of turns made by the tube, only on papillae that received one unique pollen grain.

Transmission Electron Microscopy
Stage 13 flowers were emasculated and pollinated on plants with mature WT pollen. One hour after

pollination, pistils were immersed in fixative solution containing 2.5% glutaraldehyde and 2.5% para-

formaldehyde in 0.1 M phosphate buffer (pH 7.2) and after 4 rounds of 30 min vacuum, they were

incubated in fixative for 12 hr at room temperature. Pistils were then washed in phosphate buffer

and further fixed in 1% osmium tetroxide in 0.1 M phosphate buffer (pH 7.2) for 1.5 hr at room tem-

perature. After rinsing in phosphate buffer and distilled water, samples were dehydrated through an

ethanol series, impregnated in increasing concentrations of SPURR resin over a period of 3 days

before being polymerized at 70˚C for 18 hr, sectioned (65 nm sections) and imaged at 80 kV using

an FEI TEM tecnaiSpirit with 4 k x 4 k eagle CCD.

Anisotropy estimation
Flowers from MAP65 lines were emasculated and stigmas were observed under confocal micro-

scope. Images were processed with ImageJ software and quantitative analyses of the average orien-

tation and anisotropy of CMTs were performed using FibrilTool, an ImageJ plug-in

(Boudaoud et al., 2014). Anisotropy values range from 0 to 1; 0 indicates pure isotropy, and one

pure anisotropy.

Cellulose staining
A droplet of Adigor was applied at 2.5% (v/v in water) on the stigma during 4 hr to facilitate subse-

quent chemical treatments. As described for hypocotyls (Landrein and Hamant, 2013), pistils were

incubated in 12.5% glacial acetic acid for 1 hr and dehydrated in 100% and then 50% ethanol for 20
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min each. Pistils were then washed in water during 20 min and stored in 1M KOH during 2 days. Pis-

tils were then stained using 0.02% (w/v) Direct Red 23 dye (Sigma-Aldrich) during 4 hr and washed

with distilled water. Pistils were observed with a mRFP filter (excited at 561 nm) under a Zeiss LSM

880 confocal microscope using a 63x Plan-Apochromat objective (numerical aperture 1.4, oil immer-

sion). Stigmas were imaged by taking a z-stack of 0.2 mm sections in the papilla cells. Image analysis

was performed by doing a 3D-projection and measuring the fluorescence intensity longitudinally

along the papilla axis using ImageJ software.

Membrane deformation estimation
Flowers from LTI6B lines were emasculated and pollinated with mature pollen from the pACT11::

RFP line. 20 min after pollination, stigmas were observed under confocal microscope. Serial confocal

images every 1 mm encompassing the entire volume of the stigma were recorded and processed

with ImageJ software. Plasma membrane deformation was estimated by choosing the slide from the

stack that corresponded to the focus plan of the contact site with the RFP-labelled pollen tube. On

the bright field image corresponding to the selected slide, a line was drawn connecting the two

ridges of the invagination of the papilla. Two perpendicular lines, one toward the exterior (ExtD) of

the papilla to the maximum point of deformation, and the other toward the interior (IntD) on the

GFP image were measured, respectively.

Oryzalin treatment
To avoid contact of pollen grains with liquid, we performed local applications of oryzalin (Chemical

service, Supelco) as described (Sassi et al., 2014), using lanolin pasted around the style, just under

the stigmatic cells, at 833 mg/mL (DMSO), for 4 hr at 21˚C. Oryzalin-treated pistils were pollinated

with mature WT pollen and 1 hr after pollination observed under SEM.

Cell wall composition analyses
XyG composition of stigmas was performed following the oligosaccharide fingerprinting set up by

Lerouxel et al., 2002. 10 stigmas per genotype were dissected and kept in 96% ethanol. After etha-

nol removal, XyG oligosaccharides were generated by treating samples with endoglucanase in 50

mM sodium acetate buffer, pH 5, overnight at 37˚C. Matrix-assisted laser-desorption ionization time

of flight mass spectrometry of the XyG oligosaccharides was recorded with a MALDI/TOF Bruker

Reflex III using super-DHB (9:1 mixture of 2,5-dihydroxy-benzoic acid and 2-hydroxy-5-methoxy-ben-

zoic acid; Sigma-Aldrich, sigmaaldrich.com) as matrix. Alcohol insoluble residues were obtained

from around 3 to 5 mg of fresh pistils. They were collected for analysis and fixed in 96% ethanol

before incubation for 30 min at 70˚C. The pellet was then washed twice with 96% ethanol and twice

with acetone. The remaining pellet is called alcohol insoluble residues (AIR) and was dried in a fume

hood overnight at room temperature. Cell wall monosaccharide content of the non-cellulosic fraction

was determined by hydrolysis of all the AIR obtained from the pistils with 2 M TFA for 1 hr at 120˚C.

After cooling and centrifugation, the supernatant was dried under a vacuum, resuspended in 200 ml

of water and retained for analysis. To obtain the glucose content of the crystalline cellulose fraction,

the TFA-insoluble pellet was further hydrolysed with 72% (v/v) sulfuric acid for 1 hr at room tempera-

ture. The sulfuric acid was then diluted to 1 M with water and the samples incubated at 100˚C for 3

hr. All samples were filtered using a 20-mm filter caps, and quantified by HPAEC-PAD on a Dionex

ICS-5000 instrument (ThermoFisher Scientific) as described (Fang et al., 2016).

Statistical analysis
Graph and statistics were obtained with R software or Excel. Statistical tests performed are specified

in figure legends.

Acknowledgements
We thank O Hamant for critical reading of the manuscript and fruitful discussion, A Boudaoud and V

Battu for advice on AFM experiments, the Sice and MechanoDevo team members for discussion, P

Bolland, A Lacroix and J Berger for plant care and the PLATIM imaging facility of the SFR Bioscien-

ces Gerland-Lyon Sud. We thank the Bordeaux Imaging Centre especially L Brocard and B Batailler

Riglet et al. eLife 2020;9:e57282. DOI: https://doi.org/10.7554/eLife.57282 17 of 21

Research article Plant Biology

https://www.sigmaaldrich.com/
https://doi.org/10.7554/eLife.57282


for TEM microscopy. We also thank the BioMeca society and Pascale Milani for the AFM measure-

ments. LR was funded by a fellowship from the French Ministry of Higher Education and Research.
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Karimi M, Inzé D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation.
Trends in Plant Science 7:193–195. DOI: https://doi.org/10.1016/S1360-1385(02)02251-3, PMID: 11992820

Landrein B, Hamant O. 2013. How mechanical stress controls microtubule behavior and morphogenesis in plants:
history, experiments and revisited theories. The Plant Journal 75:324–338. DOI: https://doi.org/10.1111/tpj.
12188, PMID: 23551516

Lennon KA, Lord EM. 2000. In vivo pollen tube cell of Arabidopsis thaliana I. tube cell cytoplasm and wall.
Protoplasma 214:45–56. DOI: https://doi.org/10.1007/BF02524261
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