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Within the inertial confinement fusion (ICF) framework, the solid-to-plasma transition of the ablator arouses increas-
ingly interest, in particular due to the laser-imprint issue. Phase evolution of the ablator is linked to the evolution of the
electron collision frequency which is of crucial importance since it drives electron heating by laser energy absorption,
and lattice-ion heating due to collisions between electrons and the lattice-ion system. Thus, an accurate description
of electron collisions over the whole temperature range occurring in ICF, starting from a few tens of kelvins (solid
state) up to tens of millions of kelvins (plasma state), is necessary. In this work, polystyrene ablator is considered and
a model of chemical fragmentation is presented to describe the heated polystyrene evolution. Electron collisions are
described by electron-phonon collisions in the solid state, and by electron-ion and electron-neutral collisions in plasma
state. An effective electron collision frequency valid over the whole range of temperatures reached in ICF experiments
is established and discussed. Thermal conductivity is also deduced from collisions in the plasma state and shows a good
agreement with the one evaluated by ab initio calculations.

I. INTRODUCTION

To achieve controlled thermonuclear fusion, direct-drive in-
ertial confinement fusion (ICF) has been intensively pursued
over the past decades1–4. This process consists of focusing
several intense laser beams onto a spherical target in order to
compress it to reach temperature and density conditions that
are required to generate fusion reactions. The target is usually
composed of a cryogenic deuterium-tritium (DT) shell filled
with gaseous DT. This cryo-DT shell is covered with an abla-
tor that is usually made of polystyrene5. Upon the laser flux,
the solid polystyrene layer absorbs the incident energy laser,
is converted to a plasma, and is removed from the target lead-
ing to the DT compression through the so-called rocket effect.
However, the overlapped laser beams can induce spatial vari-
ations of intensities on the ICF target surface bringing about a
non-uniform ablation of the ablator. This is the so-called laser-
imprinting process6. If the target ablation is non-uniform, per-
turbations in density and pressure can be induced, becoming
the seed of the Rayleigh-Taylor instability. As a consequence,
ICF target performances are drastically reduced7–9 because of
these spatial perturbations. Despite this, the ablation process
is partially described in the current ICF hydro-codes where
materials are initially assumed in plasma state but the solid-to-
plasma transition is generally neglected. As a result, a factor
of two was observed between experimental measurements and
hydrodynamic simulations of shock velocity modulations10.

A first approach5 modeling the evolution of the ablator
properties during the solid-to-plasma transition has recently
been developed. The developed model includes electron dy-
namic upon the laser radiation, and a two-temperature model
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to describe the electron energy transfer to the lattice-ion sys-
tem. One of the main conclusions is that the solid-to-plasma
transition takes place over a timescale of a hundred of picosec-
onds, which is not small enough to be neglected in compari-
son to typical ICF laser pulses, of the order of a few nanosec-
onds. Among the various parameters involved in this model,
the electron collision frequency appears to be one of the most
important since it drives the laser absorption efficiency and en-
ergy transfer from electrons to the lattice-ion system. Within
this first approach, a generic description of the electron col-
lision frequency considering both solid and plasma state has
been proposed. Electron-phonon collisions are considered in
solid state and assumed to be proportional to the temperature
of the lattice-ion system. Electron-ion collisions in plasma are
modeled with the usual Spitzer’s law. These two asymptotic
regimes are then linked by the help of the mean free path. Al-
though it led to some first conclusions, it has to be improved
for more accurate ICF simulations, especially accounting for
the ablator properties under consideration.

The goal of this work is to present an electron collision fre-
quency model in polystyrene including its transformation to-
ward a dense plasma. First of all, it is assumed that electron-
electron collisions, which main influence is to make isotropic
the electron distribution, can be neglected. This assumption is
supported by the fact that the isotropisation takes place over
∼1 ps11 which is much shorter than the timescale of solid-
to-plasma transition (∼100 ps)5. A four-step scenario of the
chemical fragmentation of the ablator with the lattice-ion tem-
perature increase is developed (Sec. II). For each state, an ac-
curate expression of the electron collision frequency is derived
(Sec. III). Electron collisions with both acoustic and optical
phonons are used for solid state. For the plasma state, standard
electron-ion collision frequency is adapted for dense plasmas
to account for screening effects. Collisions between electrons
and neutrals are considered in states between solid and fully
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ionized plasma. An effective collision frequency valid over
the whole temperature range reached in ICF experiments is
finally presented in Section IV and used to calculate the ther-
mal conductivity evolution with respect to the temperature of
the ablator. A good agreement is obtained with thermal con-
ductivity evolution deduced by ab initio calculations. Conclu-
sions and outlooks are drawn in Section V.

II. SCENARIO OF POLYSTYRENE FRAGMENTATION

This section is devoted to the establishment of a scenario of
polystyrene fragmentation in terms of the lattice-ion tempera-
ture. Polystyrene is a polymer molecule composed of carbon
and hydrogen which the chemical formula is (C8H8)n with
C8H8 the repeat unit and n their number. Each molecule of
polystyrene consists of the repetition of several hundreds of
this repeat unit. The structure of polystyrene is given in Fig 1.
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FIG. 1. Chemical structure of polystyrene. The circle indicates that
the six C−C bonds in the phenyl group are equivalent.

The proposed scenario of polystyrene fragmentation is
given in Fig. 2. It presents the successive dissociation reac-
tions of the different species occurring during the polystyrene
heating. It has been obtained following an estimation of the
chemical bond energies. This is a four-step scenario of frag-
mentation corresponding to three dissociations that are as-
sumed instantaneous (∼ps) compared to the timescale of the
solid-to-plasma transition. In addition, the solid-to-plasma
transition is assumed to take place over a timescale shorter
than the hydrodynamical timescale5. This allows to consider
the fragmentation as an isochoric process.

At low temperature, the polystyrene is in a solid state.
When the lattice temperature is about the melting point, it
transforms into a liquid state, but the internal structure of the
polystyrene molecules is not modified, polystyrene molecules
do not break. As they are made of several hundreds of re-
peat units, it is assumed that it is still possible to define a lo-
cal periodicity in the liquid state. Phonons still exist and it is
assumed collisions are between electrons and phonons when
polystyrene is in this state. Therefore, from a collisional point
of view, there is no difference between polystyrene in solid
and liquid state.

When the so-called ceiling temperature Tc is reached, the

depolymerization process (inverse process of polymeriza-
tion) takes place and the polymer dissociates into monomers.
For polystyrene, Tc =58 meV (670 K)12 and becomes
styrene13–16. The periodicity disappears and phonons are re-
moved. Below 58 meV, matter is in the solid state and col-
lisions are between electrons and phonons. Above 58 meV,
matter is composed of atoms and molecules that will be gradu-
ally ionized as the temperature increases. In this regime, elec-
trons collide with neutrals and ions.

When the temperature keeps increasing, styrene dissociates
into smaller molecules that dissociate themselves into even
smaller molecules up to a fully dissociated state composed
only of partially ionized atoms. Each dissociation step is de-
fined by a dissociation temperature. Regarding styrene, the
main channel of dissociation gives one molecule of benzene
and one molecule of acetylene17. This dissociation is expected
in regards to the structure of the styrene (see Fig. 2). It is ba-
sically composed of a phenyl group and an alkyl group. The
phenyl group is difficult to break due to its structure stability.
Electrons involved in the carbon-carbon bonds are delocalized
all over the cycle and the six bonds are equivalent with an en-
ergy between C−C and C = C bond energies. The alkyl
group is composed of one C−C bond and one C = C bond.
Due to a more important atomic orbital overlap in C=C than
in C−C, it results the C=C bond is stronger than the C−C
bond. Thus, the C−C alkyl bond appears as the weakest
and then first breaks. Measurements of styrene fragmentation
induced by 308nm and 355nm lasers showed that the disso-
ciation takes place at18 2.32±0.1 eV and19 2.43±0.05 eV re-
spectively. Therefore, it is assumed that the styrene dissocia-
tion happens between 2.32 eV and 2.43 eV. Between these two
temperatures, both styrene and the benzene-acetylene mixture
are considered.

Benzene and acetylene fragmentations should be then con-
sidered. Differently from the acetylene fragmentation which
products can be easily identified due to its simple structure,
the benzene fragmentation is more complicated to determine
because of its stability. However, it is possible to assume the
only bonds present in the fragments of benzene are C−C,
C = C, C ≡ C and C−H. In addition, it is assumed that the
aromatic carbon-carbon bond energy are between C−C and
C = C bond energy. Table I proposes an overview of the dif-
ferent bond energies that can be found in the literature to our
knowledge. It is observed that most of bond energies are be-
tween 4 and 8 eV. Therefore, a lot of molecules and radicals
can appear and disappear on this small temperature range (in
regards to the solid-plasma transition temperature range). In
order not to deal with this very complex mixture evolving very
fast, it is set that benzene and acetylene molecules dissociate
directly into a carbon-hydrogen mixture between 4 and 8 eV.
This scenario is supported by the fact that the target remains
only a few picoseconds in this temperature range5. As for
styrene dissociation, between 4 and 8 eV both the benzene-
acetylene mixture and the carbon-hydrogen mixture are con-
sidered.

A summary of the various species that are considered in
terms of the lattice-ion temperature Til is given in Fig. 3.

Considering polystyrene at standard density27 ρPS =
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FIG. 2. Polystyrene fragmentation model. Only the species are represented, not the matter state (neutral or ionized). The names of the
molecules are written underneath.

Chemical bond Energy bond (eV) References
C C 3.59 20

3.64 21

C C 6.35 20

7.57 21

C C 8.70 20

10.04 21

C H 4.32 20

4.26 21

C6H5 H 4.85 22

HCC H 5.65 (0K) ; 5.71 (298K) 23

5.73 22

5.73 24

5.44-5.68 25

5.42 26

HC CH 9.84 (0K) ; 9.92 (298K) 23

9.80 22

9.92 24

9.93 26

CC H (radical) 5.00(0K) ; 5.07 (298K) 23

4.81 22

5.02 24

C CH (radical) 7.63 (0K) ; 7.68 (298K) 23

7.67 22

7.66 24

C C (radical) 6.06 23

6.12 24

TABLE I. Energies of the bonds involved in the benzene and acety-
lene fragments and subfragments.

Til

PS S S+BA BA BA+CH CH

58 meV 2.32 eV 2.43 eV 4 eV 8 eV

FIG. 3. Species considered in terms of the lattice-ion temperature.
PS corresponds to polystyrene, S to styrene, BA to the benzene-
acetylene mixture and CH to the carbon-hydrogen mixture.

1.1 g.cm−3 leads to a total density of styrene particles (neu-
trals and ions) nS = 6.31× 1021 cm−3 between 58 meV and
2.32 eV. Between 2.43 eV and 4 eV, the total particle density
is nBA = nB+nA = 2nS = 1.27×1022 cm−3. For temperatures
higher than 8 eV, the dissociation of benzene and acetylene
gives 8 carbon atoms and 8 hydrogen atoms. In that case, the
total particle density is nCH = nC +nH = 16nS = 1.02×1023

cm−3 with nC and nH the density of carbon and hydrogen
respectively. In the transition zones, i.e. between 2.32 and
2.43 eV, and 4 and 8 eV, densities are obtained by linear inter-
polation.

III. ELECTRON COLLISIONS

It was established that two regimes can be exhibited in
terms of the lattice-ion temperature. If it is smaller than 58
meV, collisions are between electrons and phonons. If it is
higher, electrons collisions are with both neutrals and ions.

A. Electron-phonon collisions

Polystyrene is a dielectric material which is assumed
to be ideal (no impurities nor defects) implying that only
electron-phonon collisions take place. As the unit cell of the
polystyrene is composed of several atoms, both acoustic and
optical phonons have to be taken into account. The collision
between electrons and phonons results in the absorption or
emission of a phonon by an electron. The electron acous-
tic phonon (EAP) collision frequency and the electron optical
phonon (EOP) collision frequency are given by Eqs. (1) and
(2) respectively. The derivation of these collision frequencies
is presented in Appendix A.

The (EAP) collision frequency is given by28:

νA(
#»

k ) =
U 2kBTilm∗

2πρc2
s h̄3k

[
k2 +

(
m∗cs

h̄

)2
]

(1)

with kB the Boltzmann constant, h̄ = h/2π the reduced Planck
constant, the lattice-ion temperature Til , the material density
ρ , the sound speed cs and U the deformation potential.
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Electron optical phonon (EOP) collision frequency is given
by28:

νLO(
#»

k ) =
e2m∗ωLO

h̄2k

(
1

ε∞
r
− 1

ε0
r

)
×[

gLO ln

(√
1+2m∗ωLO/h̄k2 +1√
1+2m∗ωLO/h̄k2−1

)

+(gLO +1) ln

(
1+
√

1−2m∗ωLO/h̄k2

1−
√

1−2m∗ωLO/h̄k2

)]
(2)

The first and second terms in the brackets correspond to the
absorption and emission of an optical phonon, respectively. It
is expressed in terms of the elementary charge e, the optical
phonon energy h̄ωLO, the dielectric constant ε0

r and ε∞
r at low

and high frequency, respectively, and the phonon distribution
function gLO = [exp(h̄ωLO/kBTil)−1]−1. For polystyrene, the
dielectric constants are12 ε0

r = 2.5 and29 ε∞
r = 1.01.

In order to get a macroscopic description for ICF pur-
pose, these frequencies are averaged over the Brillouin zone
weighted by the electron distribution function f (

#»

k ) and the
density of states g(

#»

k ):

ν̄ =

∫ kBZ
kmin

ν(
#»

k )g(
#»

k ) f (
#»

k )d
#»

k∫ kBZ
kmin

g(
#»

k ) f (
#»

k )d
#»

k
(3)

For acoustic phonons, the different assumptions allowing to
obtain Eq. (1) have led not to make differences between elec-
tron collisions by phonon emission or by phonon absorp-
tion. Therefore, one has kmin = m∗cs/h̄ for EAP collision
frequency because an electron cannot emit a phonon if its
momentum is smaller than the phonon momentum. For EOP
collision frequency, one has kmin = 0 for absorption because
an electron can absorb a phonon regardless of its momentum,
and kmin = kLO for emission in the same way as for acous-
tic phonons. Note that in practice Eq. (3) is split into two
parts in order to calculate the emission part and the absorption
part separately. The density of states g(

#»

k ) in Eq. (3) is taken
in the free electron gas approximation g(

#»

k ) = 2V/8π3 and
the electron distribution function is given by the Fermi-Dirac
distribution function f (

#»

k ) = [exp((E(
#»

k )−µ)/kBTe)+ 1]−1

where the energy of the bottom of the conduction band has
been set to zero. An approximation of the chemical potential
µ is derived in Appendix C.

Two optical phonons are considered for polystyrene with
h̄ωLO,1 = 33.53 meV and h̄ωLO,2 = 88.73 meV. The derivation
of the relation dispersion leading to the phonon number and
the optical phonon energies is given in Appendix B. Finally,
the total electron collision is given by the Mathieusen rule30 :

νe−ph = ν̄A + ν̄LO,1 + ν̄LO,2 (4)

Figure 4 presents the total electron-phonon collision fre-
quency given by Eq. (4) as a function of Te and Til , for
Til ≤ 58 meV and for Te > Til because Te < Til is usually
not observed in ICF experiments. It is set ne = 1010 cm−3

corresponding to the number of electrons that are present in

FIG. 4. Electron-phonon collision frequency as a function of the
electron and lattice-ion temperatures assuming a free electron density
ne = 1010 cm−3. It is plotted for Te > Til which account for realistic
physical conditions.

the conduction band of dielectrics31. Note that the electron-
phonon collision frequency depends on the electron density
due to the chemical potential. Within ICF conditions, values
of both electron temperature and density are such that5 the
chemical potential is defined by Eq. (C6). Thus, the chem-
ical potential exhibits a logarithmic dependence and electron
density variations will slightly modify the collision frequency.

The increase in the collision frequency with the lattice-
ion temperature is due to phonon population increasing. The
higher the temperature Til , the larger the phonon density, and
the larger the number of collisions. The evolution of the col-
lision frequency as a function of Te is similar to the behavior
of the collision frequency as a function of the electron energy
E(

#»

k ), especially the one related to the emission of an opti-
cal phonon by an electron,that is defined by Eq. (2). Note
that Eq. (2) can be written with respect to the electron energy
by using E(

#»

k ) = h̄2k2/2m∗. This collision frequency first
increases with the electron energy up to a maximum where
the electron energy becomes of the order of magnitude of the
phonon energy, and decreases for higher electron energies.
Such a behavior is standard for electron optical phonon col-
lision frequency32. In addition, values of the total collision
frequency lie in the range of other dielectrics, as silicon diox-
ide32.

B. Electron collisions in the dense plasma state

In the plasma state, electrons can collide with ions and neu-
trals. These collisions depending on the particles (electrons,
ions and neutrals) densities and the Coulomb logarithm, the
latter are first evaluated before presenting the collision fre-
quencies.
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1. Ionization

This subsection is devoted to the presentation of the mod-
els used to describe ionization of styrene, benzene, acetylene,
carbon and hydrogen. Thermal ionization models are consid-
ered.

Ionization of styrene, benzene and acetylene is described
by the Saha equation. Because styrene exists for temperatures
smaller than 2.43 eV (see Fig. 3), only the first ionization is
considered. In the same way, benzene and acetylene exist for
temperatures smaller than 8 eV and only the first ionization
state are considered. Ionization energies for styrene, benzene
and acetylene are17,33 8.46 eV, 9.24 eV and 11.42 eV, respec-
tively. Ionization of the CH mixture is obtained by ab initio
calculations. As it exists starting from 4 eV, all of the ion-
ization states are considered which ionization energies range
from 11.26 eV to 490 eV. Saha equations and the model asso-
ciated to ab initio calculations are detailed in Appendix D.

Figure 5 (a) shows the averaged ionization state < Z > as
a function of temperature. Assuming that the plasma behav-
ior, i.e. when density of charged particles in the medium be-
comes large enough so that its properties are modified, ap-
pears from an ionization degree34 α = ni/nT ≈ 10−3, it can
be deduced from Fig. 5(a) that the plasma behavior starts
from around 650 meV. Note that for low temperatures, ne ≈ ni
and α ≈ < Z >. Therefore, between 58 meV and 650 meV,
styrene can be considered as a dense neutral gas.

Figure 5 (b) displays the density of electrons, neutrals and
ions between 58 meV and 1 keV for Te = Til . It appears
that neutrals are mainly present for temperatures smaller than
around 4 eV. A drop in the neutral density is observed beyond
this temperature because it has been defined as nn = nT − ni
where ni = min(ne,nT ) for the CH mixture. Because the
ionization model of CH gives only the electron density, it is
impossible to access to the density of each ion population.
Therefore, it is assumed that when electron density is higher
than the total density, it means that all of the atoms are ion-
ized so the density of neutral particles drops to zero. This may
result in an overestimation of the ion density and an underes-
timation of the neutral density for temperature around 10 eV.

It is possible to deduce that electron-neutral collisions are
the dominant process for temperatures up to 4 eV, there is
a competition between electron-neutral and electron-ion for
temperatures between 4 and 8 eV, and beyond, electron-ion
collisions are the dominant process.

2. Coulomb logarithm

Usually, the Coulomb logarithm lnΛ appearing in the
electron-ion collision frequency is obtained assuming parti-
cles interacting in a Coulomb potential, i.e. without screening
effects. In such a potential, the Coulomb logarithm reads in
the well-known form :

(lnΛ)C =
1
2

ln
(

1+
b2

max

b2
min

)
(5)

FIG. 5. (a) Averaged ionization state < Z > as a function of the
temperature. (b) Density of species as a function of the temperature.
The dotted curve represents the electron density ne, the dashed curve
the total ion density ni, the dash-dot curve the total neutral density nn
and the solid curve the total particles density nT = nn + ni. Vertical
dashed lines indicate dissociation temperatures at 2.32, 2.43, 4 and 8
eV. Both (a) and (b) are plotted for Te = Til .

with bmin and bmax the lower and upper cut-off lengths respec-
tively. In dense plasmas, screening effects have to be taken
into account and the previous definition is no longer valid.
Based on an evaluation of the stopping power, a definition of
the Coulomb logarithm available for any potential U(r) has
been proposed35:

lnΛ=
1

b2
min

∫ bmax

0
bsin2

(
θ

2

)
db (6)

with b the impact parameter. The scattering angle θ of the
electron is defined by36 :

θ = π−2b
∫ +∞

r0

1
r2

(
1− 2U(r)

kBT e
− b2

r2

)−1/2

dr (7)

where r0 is the distance of closest approach and satisfies the
relation 1− 2U(r0)/kBT e− b2/r2

0 = 0. Interactions between
ions of charge Ze and electrons are modeled by the Debye-
Hückel potential UDH(r) which is the generalization of the
Coulomb potential including screening effects37 :

UDH(r) =
Ze2

r
exp
(
− r

λDH

)
(8)
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The Debye-Hückel length λDH characterizing the screening
effects is written in a two-temperature model38 :

1
λ 2

DH
=

4πnee2

kB

√
T 2

e +T 2
F

+
4πniZ2e2

kBTil
(9)

where the Fermi temperature TF allows to take into account
the degeneracy correction appearing in a dense plasma within
a good approximation39. By using Eq. (8), the distance of
closest approach for b = 0 is given by :

r⊥ = λDH Wp
(

2Ze2

λDHkBTe

)
(10)

where Wp is the principal branch of the Lambert W-
function40. Finally, the parameters bmin and bmax in Eq. (6)
are defined as :

bmin =
1
2

max [r⊥,λ B] ; bmax =
√

λ 2
DH +a2

i (11)

with λ B = h̄/
√

mekBTe the De Broglie length41 ensuring
to respect the Heisenberg uncertainty principle42 and ai =
(3/4πni)

1/3 the ion sphere radius allowing to take into ac-
count the effects of a high density plasma43. Note that the
integration in Eq. (6) is done up to b = bmax and not b→+∞.
It has been assumed that U(r) = 0 for r> λD leading to θ = 0.
This ensures the convergence of the Coulomb logarithm while
having a screened potential inside the Debye sphere and with-
out double counting screening effects.

By modeling a CH plasma over a wide range of temper-
atures and densities occurring in ICF with ab initio calcula-
tions based on quantum molecular dynamics, a fitted formula
for a generalized Coulomb logarithm (lnΛ)QMD has been ob-
tained44. These ab initio calculations were performed using
quantum molecular dynamics methods where the electronic
potential is evaluated by the density functional theory. A CH
plasma was modeled over a wide range of temperatures and
densities relevant of ICF applications. The Coulomb loga-
rithm was deduced from the thermal conductivity calculated in
terms of the Onsager coefficients using the Kubo-Greenwood
formalism. This allows to examine the validity of the previous
two Coulomb logarithm evaluations designed to be introduced
in models of laser-matter interaction.

Figure 6 compares the usual Coulomb logarithm (lnΛ)C de-
fined by Eq. (5), the Coulomb logarithm (lnΛ)DH defined by
Eq. (6)-(7) using the Debye-Hückel potential, and the QMD
Coulomb logarithm (lnΛ)QMD for Te = Til . The latter is plot-
ted only for T > 8 eV since it has only been developed for a
CH mixture. It is reminded a pure CH mixture is considered
in this work only for T > 8 eV (see Fig. 3).

It appears that (lnΛ)C cannot be used for the range of tem-
perature and density of ICF. Despite a reasonable order of
magnitude for temperatures higher than 100 eV, it underesti-
mates by a factor from 2 to 4 for temperatures between 8 and
100 eV. Moreover, it shows a non-physical behavior for tem-
peratures smaller than 8 eV as it increases when the tempera-
ture decreases. This is due to the cut-off lengths. For (lnΛ)C,
they are defined by Eq. (11), as for (lnΛ)DH , except that r⊥ =

FIG. 6. Coulomb logarithm for various models as a function of the
temperature. Calculations have been done with Te = Til . It is re-
minded vertical dashed lines indicate dissociation temperatures at
2.32, 2.43, 4 and 8 eV.

2Ze2/kBTe. When Te becomes very small, one has bmin ≈ λ B
and bmax ≈ λDH . Thus, b2

max/b2
min ≈ mek2

BT 2
e /π h̄2e2ne using

the fact that λDH ≈ kBTe/4πnee2 for small electron tempera-
tures. Because a small variation of temperature leads to large
variation of ne (see Fig. 5), the ratio b2

max/b2
min is driven by the

behavior of ne. So b2
max/b2

min→+∞ and (lnΛ)C→+∞ when
the temperature becomes very small.

Relatively good agreements are observed between (lnΛ)DH
and (lnΛ)QMD. Despite differences of 40% can be observed
for temperatures around 10 eV, they are quite similar for tem-
peratures higher than 40 eV. For temperatures smaller than
about 2 eV, the definition of (lnΛ)DH proposed in this work
goes wrong as it leads to (lnΛ)DH � 1. Thus, in that case,
we impose (lnΛ)DH = 1. However, the consequences of not
correctly evaluating lnΛ in this domain are relatively not im-
portant because the dominant processes are collisions between
electrons and neutrals.

It can be noticed that the slope-changing points at 2 eV for
lnΛC and at 3 and 20 eV for lnΛDH correspond to the tem-
peratures where the switch between λ B and r0 takes place in
Eq. (11).

3. Collision frequencies

For electron-neutral collisions, a simple model based on the
classical diffusion cross section σ is used41:

νen = nnσ

√
kBTe

me
(12)

with nn the density of neutral. The diffusion cross section is
expressed by assuming neutrals as hard spheres and neglect-
ing the deformation of the electronic cloud during the colli-
sion with an electron. Then45, σ = πa2 with a the character-
istic size of the neutral ranging from several tens to several
hundreds of ångströms depending on if atoms or molecules
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are considered. Polarization effects due to the interaction be-
tween an electron and the electric dipole moment of neutral
particles are indeed neglected in our expression of electron-
neutral collisions. This assumption is supported by the fol-
lowing considerations. Styrene, benzene and acetylene are
nonpolar molecules, i.e. the total permanent dipole moment
is equal to zero. Because permanent dipole moments of each
C-H bond cancel each other out due to the molecule symme-
try. In addition, models based on induced polarization are
relevant for temperatures higher than several eV for which
the plasma is almost fully ionized in our model and electron-
neutral collisions are negligible. Thus the polarization influ-
ence for electron scattering onto neutrals is expected to be
negligible within the present conditions.

For laser intensities in ICF applications, the electron quiver
velocity is generally lower than the electron thermal veloc-
ity. Electron-ion collisions can thus be described in the clas-
sical regime46–50. Since the solid-to-plasma transition takes
place on a timescale smaller than hydrodynamic timescale5,
the plasma density remains close to the solid density. The
Spitzer’s model is no longer valid and the Lee and More model
is used38 :

νei =
2
√

2π

3
Z2e4ni√

me(kBTe)3/2

(lnΛ)DH

(1+ exp(−µ/kBTe))F1/2
(13)

where F1/2 is the complete Fermi-Dirac integral:

F1/2

(
µ

kBTe

)
=
∫ +∞

0

√
t

1+ exp(t−µ/kBTe)
dt (14)

and µ is defined by Eq. (C6)-(C8). The Coulomb logarithm
(lnΛ)DH defined by Eq. (6)-(8) is used to take into account
the screening effects.

Figure 7 shows the total electron collision frequency νei +
νen as a function of electron and lattice-ion temperatures be-
tween 58 meV and 1 keV. As for the electron-phonon collision
frequency, it is plotted for Te > Til since it is usually not ob-
served Te < Til in ICF experiments.

The general behavior of the electron collision frequency is
relatively standard. It increases with the lattice-ion tempera-
ture because when Til increases, the successive chemical dis-
sociations of the ablator lead to a growing number of atoms
and molecules. Concerning its evolution as a function of the
electron temperature, it first increases between 58 meV and
around a few eV. The electron temperature is not large enough
to ionize molecules, so the density of neutrals remains quite
constant and the electron collision frequency increases with
the electron temperature (see Eq. (12)). For higher electron
temperatures, atoms and molecules are ionized and the de-
crease in the electron collision frequency corresponds to the
characteristic behavior of electron-ion collisions, i.e. the elec-
tron collision frequency evolves as T−3/2

e (see Eq. (13)). It
appears electron-neutral collisions are the dominant process
for electron temperature smaller than a few eV and beyond,
electron-ion collisions are the dominant process.

FIG. 7. Total electron collision frequency νei + νen in the plasma
state as a function of electron and lattice-ion temperatures for Te > Til
which account for realistic physical conditions.

IV. APPLICATIONS OF DERIVED COLLISION
FREQUENCIES

A. E�ective electron collision frequency

A collision frequency νe f f valid over the whole range of
temperature occurring in inertial confinement fusion can be
deduced from what has been presented previously. If Til ≤ Tc,
with Tc = 58 meV, the ablator is in the solid state and electrons
collide with phonons. Otherwise, it is a dense partially ionized
gas and electrons collide with neutrals and ions. Thus νe f f
reads :

νe f f = νephxPS +(νei +νen)xAM (15)

where νeph, νen and νei are defined by Eq. (4), Eq. (12) and
Eq. (13), respectively. Fractions xPS and xAM , which are
both function of the temperature, represent fractions of poly-
mer and atoms/molecules densities respectively. They are the
dominant species for temperatures smaller and higher than Tc
respectively. These fractions satisfy xPS → 1 and xAM → 0
when T � Tc, xPS → 0 and xAM → 1 when T � Tc, and
xPS = xAM = 1/2 when T = Tc. Variations of the species frac-
tions around the transition are described by a second-order
polynome. Such a definition allows to have an effective col-
lision frequency that is continuous during the transition from
the solid state to the plasma state taking place over a range δT
around Tc. This temperature range being much smaller than
the one considered to plot the effective collision frequency51

in Fig. 8, this transition appears as a jump.
It can be seen that when the ablator is in the solid state,

the collision frequency increases with the temperature. This
is due to the excitation of phonon modes. At T = 58 meV, a
drop by a factor 10 is induced by both phonon removal and
small electron temperature in the plasma state. Then, due to
the increase of electron density and temperature, the collision
frequency increases up to around 1016 s−1 for temperatures
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FIG. 8. Effective collision frequency νe f f developed in this work
and the generic electron collision frequency νc used in5 as a function
of the temperature assuming Te = Til .

between 15 eV and 20 eV. Finally, beyond 20 eV, the collision
frequency decreases with a typical plasma behavior.

The generic electron collision frequency νc developed in5

is also presented in Fig. 8. In that previous work, the col-
lision frequency is defined as νc = ν0Til/T0 with ν0 = 1014

s−1 and T0 = 300 K if Til <0.1 eV. If Til >0.1 eV, ν−1
c =

ν
−1
mp f + ν

−1
e−i which is defined in terms of νm f p = ven1/3

a the
mean free path with ve and na = 3× 1022 cm−3 the elec-
tron thermal velocity and the atomic density respectively, and
νe−i = 3.10−6ZneT−3/2

e lnΛ the usual Spitzer’s electron-ion
collision frequency with Te in eV and assuming Z lnΛ = 10,
and ne = 3× 1022 cm−3 which corresponds to the order of
magnitude of the critical density used in hydro-codes as ini-
tial condition. Note that this is a generic approach in the sense
that it does not account for material specificities as its chemi-
cal fragmentation.

Large differences can be observed between the generic col-
lision frequency and the one of this work in terms of behavior
and amplitude depending on the temperature. At low tem-
peratures, this is due to the fact that evaluating the electron-
phonon collision frequency as ν0Til/T0 includes only colli-
sions between electrons and acoustic phonons. Collisions be-
tween electrons and optical phonons are neglected. However,
it has been shown32 that in dielectrics, electron-optical phonon
collisions are the dominant processes and electron-acoustic
phonon collisions only gives a small correction to the total
electron-phonon collision frequency. At high temperatures,
the difference by a factor of 10 is explained by the difference
by a factor of 10 between electron densities used in the var-
ious collision frequencies. As mentioned previously, a large
jump around Tc seems to appears. In addition to the fact that
the energy range of Fig. 8 does not allow to see the continuous
transition at Tc, this jump also appears because the total col-
lision frequency is plotted for Te = Til which does not repre-
sent relevant conditions of ICF. Within ICF conditions, when
polystyrene depolymerizes at 0.058 eV, electron temperature

is about a few eV5. Thus, having an electron temperature of a
few eV instead of 0.058 eV leads to a decrease of the electron-
phonon collision (see Fig. 4) and an increase of the electron-
neutral collision frequency (see Fig. 7), so a reduction of the
jump.

Despite such discrepancies, a relatively small difference in
the solid-to-plasma transition timescale is expected because
it mainly depends on the time required to reach the critical
plasma density, the latter being mainly imposed by the pho-
toionization rate5 that is not considered in this work. To in-
clude photoionization processes, it is necessary to model the
electron dynamics coupled to a description of the temporal
evolution of both electron and ion-lattice temperatures. This
is beyond the scope of the present work as done in5.

However a significant influence on both optical and thermal
matter responses is expected. It appears from Fig. 8 that the
effective collision frequency is mostly smaller than the laser
pulsation considering a 351nm laser. This leads to a conduc-
tivity and a laser absorption proportional to the collision fre-
quency. Thus, higher conductivity and laser absorption for
smallest (solid state) and highest temperatures (full plasma
state) are expected. In the transition zone for temperatures
around a few eV, a smaller conductivity is expected. In addi-
tion, note that their value is also strongly driven by the free
electron density that, in case where the laser interaction is
included in the modeling, is driven by photoionization pro-
cesses. Such a study is out of the scope of the present work
and will be adressed in a forthcoming study.

B. Plasma thermal conductivity

In order to evaluate the thermal response of the ablator, this
section is devoted to the evaluation of the thermal conductiv-
ity. Here, only the plasma state for temperatures higher than
1 eV is considered so that the electron density is large enough
to ensure that the thermal conductivity is mainly due to elec-
tron collisions (which are well described in the present mod-
eling). Below 1 eV, the ionized degree is very low (see Fig 5),
the contribution of neutrals to the thermal conductivity is thus
significant, and the present modeling no longer holds in that
case.

Starting from the electron collision frequency in the plasma
state, it is possible to deduce the thermal conductivity. This
is a quantity of interest because it is involved (i) in the heat
transport in plasmas, (ii) it is related to the evolution of hy-
drodynamic instabilities and (iii) it is one of the key parameter
for target ablation when the electron density becomes higher
than the critical density.

The thermal conductivity κth in a dense plasma can be de-
scribed by the Lee & More model38. However, electron-
electron collisions are neglected in this model leading to an
overestimation of the thermal conductivity. To include these
collisions, the Lee & More model is weighted by a function
R(Z) that can be defined as52 R(Z) = (Z + 0.25)/(Z + 4.26).
Thus, the thermal conductivity κth is given by :

κth =
nekB(kBTe)

meνe f f
A
(

µ

kBTe

)
R(Z) (16)
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with the function A defined by :

A
(

µ

kBTe

)
=

20
9

F4
(
1−16F2

3 /15F2F4
)

[1+ exp(−µ/kBTe)]F2
1/2

(17)

FIG. 9. Analytical κth, analytical κth, w/o F without the fragmenta-
tion processes and ab initio κQMD thermal conductivities as a func-
tion of the temperature with Te = Til .

A good agreement is observed in Fig. 9 for temperatures
higher than 8 eV. Differences for temperatures smaller than
8 eV come from the fact that the ab initio model considers a
CH mixture for any temperatures and neglects the chemical
fragmentation of the ablator below 8 eV whereas this frag-
mentation is taken into consideration in the present work (see
Fig. 3). Below 8 eV, the ablator is mainly composed of ben-
zene and acetylene, and below 2.3 eV, it is mainly composed
of styrene. Thus, the total density is smaller leading to an elec-
tron density smaller than the one in ab initio calculations. It
results κth becomes smaller than κQMD for temperatures below
8 eV. This origin of the differences is confirmed by compar-
ing κth,w/o F to the other two as it corresponds to the thermal
conductivity defined by Eq. (16) but where the fragmentation
processes are not taken into account and a plasma composed
of carbon and hydrogen is considered.

This smaller thermal conductivity will lead to a smaller heat
flux and thus a slower heating of the ablator. Because at the
same time, the ablator is ionized by the laser pulse, the con-
duction zone will be smaller when the critical density will be
reached. In the end, thermal smoothing occurring in the con-
duction zone will be less efficient and the laser imprint will be
more important as more perturbation modes will be able to be
transmitted to the ablation front.

V. CONCLUSION

Two collision frequencies relevant from inertial confine-
ment fusion conditions have been presented in this work. An
electron-phonon collision frequency taking both acoustic and

optical phonons into consideration has been derived in or-
der to describe electron collisions when the ablator is in the
solid state. Electron collisions when the ablator is in the
plasma state are described considering both electron-neutral
and electron-ion collisions. For the latter, a modified Coulomb
logarithm has been used in order to account for screening ef-
fects, showing a good agreement when compared to ab ini-
tio calculations. By coupling these two collision frequencies
with a four-step fragmentation model for polystyrene abla-
tor, which describes the successive chemical dissociations of
polystyrene leading to a carbon-hydrogen mixture, an effec-
tive collision frequency valid over the whole range of tem-
peratures reached in inertial confinement fusion experiments
has been obtained. This effective collision frequency has been
compared to a generic collision frequency used to describe the
solid-to-plasma transition of the ablator. Relatively large dif-
ferences in behavior and amplitude depending on temperature
are observed but the timescale of solid-to-plasma transition
should not be strongly modified as it mainly depends on the
photo-ionization rate. However, larger modifications of ther-
mal and hydrodynamic responses are expected since they are
driven by the electron collision frequency due to laser heating.
In addition, this effective collision frequency has been used
to evaluate the thermal conductivity for temperatures above
1 eV. When compared to a thermal conductivity obtained by
ab initio calculations, good agreements have been observed
for temperatures larger than 10 eV. But below 10 eV, a smaller
conductivity was found, coming from the consideration of the
chemical fragmentation of the ablator, which could lead to a
more important laser imprint.

Such an accurate description of the collision frequency will
be used in future studies dedicated to model the laser-induced
solid-to-plasma transition.
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Appendix A: Electron-phonon collision frequency

Electrons in the conduction band are described under the
parabolic band approximation and their energies are given by
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E(k) = h̄2k2/2m∗, with m∗ the effective electron mass as-
sumed to be equal to the free electron mass. Electron-phonon
collisions are assumed to be limited to the first Brillouin zone
as electron energies do not exceed the energy E(kBZ) associ-
ated to the Brillouin zone wave vector kBZ . This implies that
umklapp processes, corresponding to collisions where the re-
ciprocal lattice vector has to be considered in crystal momen-
tum conservation53, are not considered. Because the number
of phonons and their respective energies are calculated in one
dimension (see Appendix B), the Brillouin zone wave vector
reads kBZ = 2π/a with a = 2dC−C the size of the unit cell
and54 dC−C = 1.53 Å the distance between two atoms of the
carbon chain. This leads to E(kBZ) ≈ 16 eV. Note that it has
been assumed in Section II polystyrene is considered for Til 6
58 meV. In a one-temperature model, Te = Til and it clearly
appears electrons have an energy much smaller than E(kBZ).
But, in the laser-matter interaction framework, electrons are
heated first, well before the ion-lattice system. However, even
in that case, it has been shown5 that when Til ≈ 58 meV, elec-
tron energies are the order of magnitude of E(kBZ). Therefore,
both in one-temperature and two-temperature model, electron
energies are not higher than E(kBZ), thus confirming the de-
scription with one band in the first Brillouin zone.

Assuming the electron distribution function fe can be only
modified by collisions, the Boltzmann equation reads in the
relaxation time approximation ∂t fe =−( fe− f 0

e )/τ(
#»

k )30. f 0
e

is the unperturbed distribution function and τ(
#»

k ) is the relax-
ation time defined as:

1

τ
( #»

k
) = ν(

#»

k ) =
V

8π3

∫ [
S−
( #»

k ,
#»

k ′
)
+S+

( #»

k ,
#»

k ′
)]

d
#»

k ′

(A1)
The term S±(

#»

k ,
#»

k ′) corresponds to the electron transition rate
from a state

#»

k to a state
#»

k ′ by absorbing (−) or emitting (+)
a phonon of momentum #»q . It is given by the Fermi golden
rule53:

S±(
#»

k ,
#»

k ′) =
2π

h̄
|〈 #»

k ′|H±e−ph|
#»

k 〉|2δ

(
E #»

k ′ −E #»

k ∓ h̄ωβ (q)
)

(A2)
with E #»

k and E #»

k ′ the energies of the states
#»

k and
#»

k
′

respec-
tively and ωβ (q) the frequency of the β -mode phonon. If the
umklapp processes are neglected, matrix elements read53:

〈 #»

k ′|H±e−ph|
#»

k 〉=
(

h̄
2ρV ωβ (q)

)1/2(
gβ +

1
2
± 1

2

)1/2

×I #»q ,p(
#»

k ,
#»

k ′) δ

(
#»

k ′− #»

k ± #»q
)

(A3)

which depends on the density ρ , the volume V and the lat-
tice temperature Til through the Bose-Einstein distribution
gβ = [exp

(
h̄ωβ (q)/kBTil

)
− 1]−1. δ

(
#»

k ′ − #»

k ± #»q
)

repre-

sents the momentum conservation and I #»q ,p(
#»

k ,
#»

k ′) the cou-
pling between the lattice potential and the electronic states. It
is calculated in the deformation potential approximation as a
compromise between a simple model and good results leading
to53:

I #»q ,p(
#»

k ,
#»

k ′) = i #»q · #»e #»q ,p U (q,ωβ (q)) (A4)

The potential U (q,ωβ (q)) depends on whether an acoustic or
an optical phonon is considered. For an acoustic phonon, it
is constant equal to a few eV in the limit of small momentum
transfer and one has U = δE /∆. It corresponds to a measure
of the deformation potential δE due to the lattice dilatation
∆ induced by the acoustic mode53. Neither U nor δE nor
∆ can be evaluated simply for dielectrics. Based on cross
section evaluation, Fishcetti et al.28 set U ≈ 3.5 eV for SiO2,
that is around 40% of the band gap energy Eg. By analogy
with metals where the deformation potential is proportional to
the Fermi energy, it is assumed that the deformation potential
of dielectric materials is proportional to the band gap. With
Eg = 4.05 eV55 for polystyrene, this leads to U = 1.62 eV.
This ensures to obtain the standard order of magnitude of a
few eV for the deformation potential53. For an optical phonon,
it is given by the Fröhlich formalism53,56,57:

U (q,ωβ (q)) =−
(

4πe2
ρ ω

2
β
( #»q )

(
1

ε∞
r
− 1

ε0
r

))1/2 1
#»q 2

(A5)
where ε0

r and ε∞
r are the dielectric constants at low and high

frequencies respectively. The momentum conservation equa-
tion giving

#»

k ′
2
=

#»

k
2
+ #»q 2 ± 2kqcos(θ), it is possible to

write the term representing the energy conservation as:

δ

(
E #»

k ′ −E #»

k ∓ h̄ωβ (q)
)

=
m∗

h̄2kq
δ

(
±cos(θ)+

q
2k
∓

m∗ωβ (q)
h̄kq

)
(A6)

where the parabolic band approximation has been used E #»

k ′ =

h̄2 #»

k
2
/2m∗ with m∗ the effective electron mass assumed to be

equal to the free electron mass me. Finally:

S±(
#»

k ,
#»

k ′) =
πqm∗U 2(q,ωβ (q))

h̄2
ρV ωβ (q)

(
gβ +

1
2
± 1

2

)
×δ

(
±cos(θ)+

q
2k
∓

m∗ωβ (q)
h̄kq

)
(A7)

It appears S±(
#»

k ,
#»

k ′) depends only on q and cosθ and
Eq. (A1) becomes

ν(
#»

k )=
V

4π3

∫
∞

0

∫ 1

−1

(
S−(

#»

k ,
#»

k ′)+S+(
#»

k ,
#»

k ′)
)

q2 dqdcos(θ)

(A8)
Assuming q→ 0, this leads to a linear relation dispersion for
acoustic phonon: ωLA(

#»q )≈ csq, and constant dispersion rela-
tion for optical phonon: ωLO(

#»q ) ≈ ωLO. The demonstration
of these approximations is given in Appendix B. Finally, plug-
ging Eq. (A7) and (A8), this leads to the following collision
frequency for acoustic phonons28:

νAC(
#»

k ) =
U 2kBTilm∗

2πρc2
s h̄3k

(
k2 +

(
m∗cs

h̄

)2
)

(A9)

where it has been supposed the temperature is much higher
than the phonon energy leading to a simplified phonon distri-
bution: nAC ≈ nAC +1≈ kBTil/h̄csq. For optical phonons one
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has:

νOP(
#»

k ) =
e2m∗ωLO

h̄2k

(
1

ε∞
r
− 1

ε0

)
×(

nLO ln

(√
1+2m∗ωLO/h̄k2 +1√
1+2m∗ωLO/h̄k2−1

)

+(nLO +1) ln

(
1+
√

1−2m∗ωLO/h̄k2

1−
√

1−2m∗ωLO/h̄k2

))
(A10)

Appendix B: Polystyrene dispersion relation

The polystyrene consists of a chain of the unit cell
CH(Ph)−CH2 where Ph refers to the phenyl group C6H5
(see Fig. 1). Even if it is not always possible to define a pe-
riodicity from a macroscopic point view, it can be defined a
local periodicity of the unit cell CH(PH)−CH2 in order to
get the phonon relation dispersion. However, the unit cell
is here composed of 16 atoms leading to 48 eigenmodes in
three dimensions. In order to get a problem easier to handle,
only phonons propagating along the carbon chain, which is
assumed linear, are considered in a first approximation. This
allows us to consider a one dimension problem. In addition,
the unit cell is also simplified by assuming it is composed of
the phenyl group with a mass mPh = 6mC + 5mH , the group
CH with a mass mCH = mC +mH and the group CH2 with a
mass mCH

2
= mC +2mH . This simplified form of the unit cell

is given by Fig. 10.

CH

Ph

CH2



n

FIG. 10. Simplified structure of the unit cell of polystyrene

Within this simplification, one acoustic mode and two op-
tical modes are expected. Finally, it is assumed only the
closest neighbors interact among themselves and the inter-
action potential is taken in the harmonic approximation, i.e.
U(x) = kx2/2 with k the interaction energy determined exper-
imentally. This leads to :

UTOT =UPh+UCH+UCH
2

(B1)

UPh-CH =
G
2 ∑

n

[
uPh

(
na,d1

)
−uCH

(
na,0

)]2
(B2)

UCH-CH
2
=

K
2 ∑

n

[
uCH

(
na,0

)
−uCH

2

(
na,0

)]2
(B3)

UCH
2

-CH =
K
2 ∑

n

[
uCH

2

(
na,0

)
−uCH

(
(n+1)a,0

)]2
(B4)

The constants G and K characterize the CH−Ph and CH−
CH2 bonds respectively. They are defined in terms of the
sound speed cs with G/K = 1.2137558. The constant a is the
CH−CH2 bond length, and quantities uX (x,y) represent the
displacement of the group X having the initial position x and y.

The motion equations are given by the Euler-Lagrange equa-
tions :

mPh
∂2uPh(na,d1)

∂t2 =− ∂UTOT

∂uPh(na,d1)
(B5)

mCH
∂2uCH(na,0)

∂t2 =− ∂UTOT

∂uCH(na,0)
(B6)

mCH
2

∂2uCH
2
(na,0)

∂t2 =− ∂UTOT

∂uCH
2
(na,0)

(B7)

By seeking for solutions in the form uX (x,y) =

UX ei(kxx+kyy−ωt) with UX the amplitude, this leads to a
linear system that has a solution if and only if :∣∣∣∣∣∣
(G−mPhω2)eikyd1 −G 0
−Geikyd1 G+2K−mCHω2 −K(1+ e−ikxa)

0 −K(1+ eikxa) 2K−mCH
2
ω2

∣∣∣∣∣∣= 0

(B8)
It appears the term eikyd1 vanishes, because only longitudinal
modes are considered. The nullity of the determinant leads to
a 6th-order polynomial equation:

αω
6 +βω

4 + γω
2 +δ = 0 (B9)

where the coefficients α , β , γ and δ are given by:

α =−mPhmCHmCH
2

(B10)

β = GmCH
2
(mCH+mPh)+2KmPh(mCH+mCH

2
)(B11)

γ =

[
4K2 cos2

(
kxa
2

)
−2K(2K +G)

]
mPh

−2GK(mCH+mCH
2
) (B12)

δ = 4GK2
[

1− cos2
(

kxa
2

)]
(B13)

Finally, the eigenmodes of the polystyrene are given by :

ω
2
m = zm−

β

3α
, m ∈ {0,1,2} (B14)

zm = 2
√
− p

3
cos

[
1
3

arccos

(
3q
2p

√
− 3

p

)
+

2(m+1)π
3

]
(B15)

with

p =− β 2

3α2 +
γ

α
(B16)

q =
2β 3

27α3 −
9βγ

27α2 +
δ

α
(B17)

Figure 11 plots these three modes. It is observed one acous-
tic mode and two optical modes as expected. The acoustic and
optical modes are characterized in the limit of q→ 0 by a lin-
ear and constant behavior respectively. It is found that phonon
energies lie in the range of other dielectrics, as SiO2

59,60.
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FIG. 11. Polystyrene eigenmodes

Appendix C: Approximation of the chemical potential

In the free electron gas model, the electron density is de-
fined by:

ne =
∫ +∞

0

√
2m3/2

e

h̄3
π2

√
ε

e(ε−µ)/kBTe +1
dε (C1)

where the bottom of the conduction band is set to zero. By
defining the two following dimensionless parameters

x =
µ

kBTe
; y =

h̄3
π2ne√

2(mekBTe)3/2
(C2)

it is possible to write Eq. (C1) in such a way that the Fermi-
Dirac integral F1/2 appears:

y =
∫ +∞

0

√
t

et−x +1
= F1/2(x) (C3)

As a consequence, looking for an expression of the chemical
potential becomes equivalent to find the inverse function of
F1/2. This is done by taking approximations of F1/2 in the two
asymptotic cases61,62:

x< 1.13⇔ y< 1.52 ⇒ F1/2(x) =
√

π

0.5+2e−x (C4)

x> 1.13⇔ y> 1.52 ⇒ F1/2(x) =
2
3

(
x2 +

π2

6

)3/4

(C5)

Because these approximations lead to a discontinuity for x =
1.13,y= 1.52, it is possible to get a continuous approximation
by weighting the previous two expressions with the logistic
function V (y,y0,k) = [1 + e−a(y−y0)]−1 around these values.
Thus, the following approximation of the chemical potential

is deduced:

y< 1 : µ ≈ kBTe ln
(

4y
2
√

π− y

)
(C6)

1< y< 2.5 : µ ≈ kBTe

{
ln
[
4y/(2

√
π− y)

]
1+ ea(y−y0)

+

√
(3y/2)4/3−π2/6
1+ e−a(y−y0)

}
(C7)

y> 2.5 : µ ≈ kBTe

√(
3y
2

)4/3

− π2

6
(C8)

with the parameters chosen as y0 = 1.52 and a = 15 in order
to have a good approximation in the transition zone.

Appendix D: Ionization

Saha equations are used in order to describe ionization of
styrene, benzene and acetylene because it has already been
shown valid for ICF conditions44. They were originally estab-
lished assuming thermal equilibrium Te = Til but it is possible
to establish modified Saha equations for Te 6= Til as follows63:

n j+1ne

n j
= 2

(
2πmekBTe

h2

)3/2 Q j+1(Te)

Q j(Te)
exp
(
−

U j+1

kBTe

)
(D1)

where U j+1 is the ( j + 1)th ionization potential, n j and
n j+1 are the densities of atoms ionized j and j + 1 times
respectively, and Q j(Te) and Q j+1(Te) are their partition
functions reduced to the translational, rotational and vibra-
tional contributions. As a first approximation, the rotational
and vibrational parts can be neglected leading to the ratio
Q j+1(Te)/Q j(Te) equal to unity. Because the mass of the
atoms ionized j and j+1 times can be considered as the same,
the translational partition functions cancel. Note that the pref-
actor 2 corresponds to the electron spin degeneracy. This
equation involves three densities and the problem is closed
with the two following relations:

ne =
N

∑
j=1

Z jn j =
N

∑
j=1

jn j ; nT = nn +
N

∑
j=1

n j (D2)

N is the number of ionized states taken into account. In an
exact description, it is equal to the number of electrons of the
particle. Z j = j and n j are the charge state and the density
of particles ionized j times respectively. nn is the density of
neutrals and nT is the total density. The averaged ionization
state < Z > is given by:

< Z >=
ne

nT
(D3)

The ionization model of the carbon hydrogen mixture is ob-
tained by ab initio calculations and the averaged ionization
state < Z > is given by44:

< Z >=
ξ

2

(√
1+

4
ξ
−1

)
Zmax (D4)
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with Zmax = (ZH +ZC)/2 = 3.5 and:

ξ =
α0

ni

(
2πmekBT

h2

)3/2

exp
(
− fZ

kBT

)
(D5)

while the average-ionization potential is given by:

fZ = α1 +α2kBT
[(

1+
√

3Γ0

)1/4
−1
]
+α3(kBT )0.9

+

(
α4

r0
+

α5

r2
0
+

α6

r3
0

)
kBT (D6)

with r0 = ai/aB the ion-ion interdistance defined as the ratio
of the ion sphere radius ai = (3/4πni)

1/3 over the Bohr radius
aB, Γ0 = 1/r0kBT the ion-ion coupling parameter in atomic
units, and αi fitting parameters: α0 = 87.222, α1 = 10.866,
α2 = −28.412, α3 = 17.915, α4 = −2.422, α5 = 0.595 and
α6 = −2.369× 10−2. Finally, the electron, ion and neutral
densities ne, ni and n0 are given by:

ne =< Z > nT ; ni = min(ne,nT ) ; n0 = nT −ni
(D7)

Note that defining ni by this way does not allow to access to
densities of each ion existing nH+ , nC+ , nC2+ , etc. As the
rigorous relation linking the electron density and the density
of each charge state is given by Eq. (D2), if ne is known, it is
impossible to deduce each ion density n j.
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