
HAL Id: hal-02991999
https://hal.science/hal-02991999v1

Submitted on 6 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Library Modeling Language for the Static Analysis of
C Programs

Abdelraouf Ouadjaout, Antoine Miné

To cite this version:
Abdelraouf Ouadjaout, Antoine Miné. A Library Modeling Language for the Static Analysis of C Pro-
grams. 27th Static Analysis Symposium, Nov 2020, Chicago, United States. pp.223-247, �10.1007/978-
3-030-65474-0_11�. �hal-02991999�

https://hal.science/hal-02991999v1
https://hal.archives-ouvertes.fr

A Library Modeling Language for the Static
Analysis of C Programs?

Abdelraouf Ouadjaout1 Antoine Miné1,2

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
firstname.lastname@lip6.fr

2 Institut Universitaire de France, F-75005, Paris, France

Abstract. We present a specification language aiming at soundly mod-
eling unavailable functions in a static analyzer for C by abstract interpre-
tation. It takes inspiration from Behavioral Interface Specification Lan-
guages popular in deductive verification, notably Frama-C’s ACSL, as
we annotate function prototypes with pre and post-conditions expressed
concisely in a first-order logic, but with key differences. Firstly, the speci-
fication aims at replacing a function implementation in a safety analysis,
not verifying its functional correctness. Secondly, we do not rely on the-
orem provers; instead, specifications are interpreted at function calls by
our abstract interpreter.
We implemented the language into Mopsa, a static analyzer designed to
easily reuse abstract domains across widely different languages (such as
C and Python). We show how its design helped us support a logic-based
language with minimal effort. Notably, it was sufficient to add only a
handful transfer functions (including very selective support for quanti-
fiers) to achieve a sound and precise analysis. We modeled a large part
of the GNU C library and C execution environment in our language,
including the manipulation of unbounded strings, file descriptors, and
programs with an unbounded number of symbolic command-line param-
eters, which allows verifying programs in a realistic setting. We report
on the analysis of C programs from the Juliet benchmarks and Coreutils.

1 Introduction

Sound static analysis of real-world C programs is hampered by several difficult
challenges. In this work, we address the key problem of analyzing calls to ex-
ternal library functions, when analyzing library code is not an option (e.g., it is
unavailable, has unsupported features such as system calls or assembly). More
specifically, we target the GNU implementation of the C library [13], a library
used in a large number of applications and featuring thousands of functions
covering various aspects, such as file management, socket communication, string
processing, etc. Several approaches have been proposed to analyze programs that
depend on such complex libraries:

? This work is partially supported by the European Research Council under Consol-
idator Grant Agreement 681393 — MOPSA.

2 A. Ouadjaout and A. Miné

1 size_t strlen(const char* s) {

2 int size;

3 __require_allocated_array(s);

4 size = __get_array_length(s);

5 return size - 1;

6 }

(a) Stub of strlen in Infer

1 /*@ requires: valid_read_string(s);

2 @ assigns \result \from indirect:s[0..];

3 @ ensures: \result == strlen(s);

4 @*/

5 size_t strlen (const char *s);

(b) Stub of strlen in Frama-C

1 /*$

2 * requires: s != NULL ∧ offset(s) ∈ [0, size(s));

3 * requires: ∃i ∈ [0, size(s)-offset(s)): s[i] == 0;

4 * ensures : return ∈ [0, size(s)-offset(s));

5 * ensures : s[return] == 0;

6 * ensures : ∀i ∈ [0, return): s[i] != 0;

7 */

8 size_t strlen(const char s);

(c) Stub of strlen in Mopsa

1 int n = rand()%100;

2 char *p = malloc(n + 1);

3 if (!p) exit (1);

4 for(int i=0;i<n;i++)

5 p[i] = ’x’;

6 a[n] = ’\0’;

7 int m = strlen(p);

(d) Example with strlen

Fig. 1. Examples of stubs in different analyzers.

Stubs as C code. A common solution is to provide alternative C implementations
of the library functions, called stubs. In order to remain sound and be effectively
analyzed, stubs are generally simpler and contain calls to special builtins of
the analyzer that provide more abstract information than the classic constructs
of the language. This approach is adopted by many static analyzers, such as
Astrée [4] and Infer [6]. For example, Fig. 1a shows the stub of strlen in Infer:
it uses builtin functions to check that the argument points to a valid block
before returning its allocation size. The approach makes it difficult for the stub
programmer to express complex specifications with higher levels of abstractions,
as key parts of the semantics are hidden within the builtin implementation.
Moreover, writing stubs as C code and hard-coding builtins is acceptable when
targeting embedded code [4], that does not rely much on libraries, but is not
scalable to programs with more dependencies.

Stubs as logic formulas. More adapted specification languages have been pro-
posed to overcome these drawbacks, principally based on formulas written in
first-order logic. Some of them exploit the flexibility of the host language in
order to define an embedded domain specific language, such as CodeContracts
checker [11] that can express specifications of C# functions in C# itself. Other
solutions propose a dedicated language and specifications are written as com-
ments annotating the function. The most notable examples are JML for Java
[18] and ACSL for C [3]. They have been widely used in deductive verification,
employing theorem provers that naturally handle logic-based languages, but less
in value static analysis by abstract interpretation. We show in Fig. 1b the spec-
ification of strlen in ACSL, as defined by Frama-C’s value analyzer [9]. The
syntax is less verbose than the C counterpart. Yet, essential parts of the stub

A Library Modeling Language for the Static Analysis of C Programs 3

are still computed through builtins. It is worth noting that Frama-C features
another, more natural, specification of strlen, exploiting the expressiveness of
the logic to avoid builtins. But this specification is large (64 lines) and employs
quantified formulas that are too complex for the value analysis engine: it is used
only by the deductive verification engine.

Abstract interpretation of logic formulas. In this paper, we propose a novel ap-
proach based on abstract interpretation [7] that can interpret specifications writ-
ten in a logic-based language of library functions when they are called. Similarly
to CodeContracts checker [11], we do not rely on theorem provers to interpret
formulas; instead, specifications are interpreted by abstract domains tailored to
this task. The key novelty of our solution is that we consider the logic language
as a separate language with its own concrete and abstract semantics, while con-
tracts in cccheck are embedded within the host language as function calls. We
believe that this decoupling makes the design more generic and the language is
not limited by the semantic nor the syntax of the host language.

We implemented the proposed approach into Mopsa [16], a static analyzer
that features a modular architecture that helps reusing abstract domains across
different languages. We leverage this modularity and we illustrate how we can
improve the analysis by extending C abstract domains to add transfer functions
that exploit the expressiveness of formulas and infer better invariants. For exam-
ple, the stub of strlen as defined in Mopsa is shown Fig. 1c. It relies essentially
on constraints expressed as formulas instead of specific analyzer builtins. These
formulas can be handled by Mopsa, and string lengths can be computed precisely
even in the case of dynamically allocated arrays. For instance, at the end of the
program shown in Fig. 1d, Mopsa can infer that m = n.

Contributions. In summary, we propose the following contributions:

– We present in Sec. 2 a new specification language for C functions and we
formalize it with an operational concrete semantic. In addition to standard
constructs found in existing languages, it features a resource management
system that is general enough to model various objects, such as blocks al-
located by malloc/realloc or file descriptors returned by open. Illustrative
examples can be found in App. A.

– We present in Sec. 3 a generic abstract domain for interpreting the specifi-
cation language, that is agnostic of the underlying abstraction of C.

– In Sec. 4, we illustrate how a string abstraction can benefit from the expres-
siveness of the specification language in order to provide better invariants.

– We implemented the analysis in Mopsa and we modeled over 1000 library
functions. In Sec. 5, we report on the results of analyzing some Juliet bench-
marks and Coreutils programs. More particularly, we show how our analysis
combines several symbolic domains in order to analyze C programs with an
unbounded number of command-line arguments with arbitrary lengths. To
our knowledge, Mopsa is the first static analyzer to perform such an analysis.

4 A. Ouadjaout and A. Miné

stub ::= (stmt | case)∗ form ::= expr � expr , � ∈ { ==, !=, . . . }
case ::= case { stmt ∗ } | expr ∈ set
stmt ::= effect | cond | alive(expr)
effect ::= alloc : type ident = new ident ; | form ∧ form

| assigns : expr [expr , expr]?; | form ∨ form
| free : expr ; | ¬form

| ∀ ident ∈ [expr , expr] : form
cond ::= assumes : form; | ∃ ident ∈ [expr , expr] : form

| requires : form;
| ensures : form; set ::= [expr , expr] | ident

expr ::= c, c ∈ R
ntype ::= char | short | int | long | float | &ident
stype ::= ntype | ptr | *expr
type ::= stype | expr � expr , � ∈ { +, -, . . . }

| type[n], n ∈ N | size(expr)
| struct { type ident ; . . . } | base(expr)
| union { type ident ; . . . } | offset(expr)

Fig. 2. Syntax of the modeling language.

Limitations. The following features are not supported by our analysis: recur-
sive functions, longjumps, bitfields, inline assembly, concurrency and multi-
dimensional variable length arrays.

2 Syntax and Concrete Semantics

We define the syntax and operational concrete semantics of the modeling lan-
guage. The syntax is inspired from existing specification languages, such as ACSL
[3] and JML [18], with the addition of resource management. The semantics ex-
presses a relation between program states before the function call and after.

2.1 Syntax

The syntax is presented in Fig. 2. It features two kinds of statements:

– Side-effect statements specify the part of the input state which is modified by
the function: assigns specifies that a variable (or an array slice) is modified
by the function; alloc creates a fresh resource instance of a specified class
(ident) and assigns its address to a local variable; conversely, free destroys
a previously allocated resource. Any memory portion that is not explicitly
mentioned by these statements is implicitly assumed to be unchanged. Re-
sources model dynamic objects, such as memory blocks managed by malloc,
realloc and free, or file descriptors managed by open and close. The mod-
els of these functions can be found in App. A. Assigning a class to resources
allows supporting different attributes (e.g., read-only memory blocks) and al-
location semantics (e.g., returning the lowest available integer when allocating
a descriptor, which is needed to model faithfully the dup function).

A Library Modeling Language for the Static Analysis of C Programs 5

– Condition statements express pre and post-conditions: requires defines manda-
tory conditions on the input environment for the function to behave correctly;
assumes defines assumptions, and is used for case analysis; ensures expresses
conditions on the output environment (the return value, the value of modified
variables, and the size and initial state of allocated resources).

Cases. We support a disjunctive construct case (akin to Frama-C’s behaviors)
to describe functions with several possible behaviors. Each case is independently
analyzed, after which they are all joined. Statements placed outside cases are
common to all cases, which is useful to factor specification. For the sake of clarity,
we will focus on the formalization of stubs without cases.

Formulas and expressions. Formulas are classic first-order, with conjunctions,
disjunctions, negations and quantifiers. The atoms are C expressions (without
function call nor side-effect), extended with a few built-in functions and predi-
cates: e ∈ set restricts the range of a numeric value or the class of a resource;
alive(e) checks whether a resource has not been freed; given a pointer e, base(e)
returns a pointer to the beginning of the memory block containing e, size(e) is
the block size, and offset(e) is the byte-offset of e in the block.

2.2 Environments

Concrete memories are defined classically. The memory is decomposed into

blocks: B def
= V ∪ A, which can be either variables in V or heap addresses in

A. Each block is decomposed into scalar elements in S ⊆ B × N× stype, where
*b, o, τ+ ∈ S denotes the memory region in block b starting at offset o and hav-
ing type τ . A scalar element of type τ can have values in Vτ , where Vτ is R for

numeric types and Vptr
def
= B × N is a block-offset pair for pointers.3 The set of

all scalar values is V def
= R ∪ (B × N).

Environments, in E def
= M× R, encode the state of the program using: a

memory environment in M def
= S → V, mapping scalar elements to values,

and a resource environment in R def
= A ⇀ (ident × N × B), which is a partial

map mapping allocated resources to their class, size, and liveness status (as a
Boolean).

Example 1. Given the declaration: struct s { int id; char *data; } v, the en-
vironment:(

*v, 0, int+ 7→ 5 *v, 4, ptr+ 7→ (@, 0)
*@, 0, short+ 7→ 3 *@, 2, short+ 7→ −1

,@ 7→ (malloc, 4, true)

)
encodes the state where field v.id has value 5 and v.data points to a malloc

resource containing two short elements with values 3 and −1 respectively.

3 To simplify the presentation, we assume that S is given (e.g. using block types)
and omit NULL and invalid pointers. In practice, our analysis uses the dynamic cell
decomposition from [19] to fully handle C pointers, union types, and type-punning.

6 A. Ouadjaout and A. Miné

EJ . K ∈ expr → E → P(V)

EJ size(e) K(ρ, σ)
def
= { sizeof(b) | (b,−) ∈ EJ e K(ρ, σ) ∧ b ∈ V }
∪ {n | (b,−) ∈ EJ e K(ρ, σ) ∧ b ∈ A ∧ (−, n,−) = σ(b) }

EJ base(e) K(ρ, σ)
def
= { b | (b,−) ∈ EJ e K(ρ, σ) }

EJ offset(e) K(ρ, σ)
def
= { o | (−, o) ∈ EJ e K(ρ, σ) }

EJn K(ρ, σ)
def
= {n }

EJ &v K(ρ, σ)
def
= { (v, 0) }

EJ *e K(ρ, σ)
def
= { ρ(*b, o, typeof(*e)+) | (b, o) ∈ EJ e K(ρ, σ) }

EJ e1 � e2 K(ρ, σ)
def
= { v1 � v2 | v1 ∈ EJ e1 K(ρ, σ) ∧ v2 ∈ EJ e2 K(ρ, σ) }

Fig. 3. Concrete semantics of expressions.

FJ . K ∈ form → P(E)

FJ e ∈ R K def
= { (ρ, σ) | (b,−) ∈ EJ e K(ρ, σ) ∧ b ∈ A ∧ σ(b) = (R,−,−) }

FJ e ∈ [a, b] K def
= { (ρ, σ) |

n ∈ EJ e K(ρ, σ) ∧ l ∈ EJ a K(ρ, σ) ∧ u ∈ EJ b K(ρ, σ) ∧ n ∈ [l, u] }
FJ alive(e) K def

= { (ρ, σ) | (b,−) ∈ EJ e K(ρ, σ) ∧ b ∈ A ∧ σ(b) = (−,−, true) }
FJ e1 � e2 K def

= { (ρ, σ) | n1 ∈ EJ e1 K(ρ, σ) ∧ n2 ∈ EJ e2 K(ρ, σ) ∧ n1 � n2 }
FJ¬f K def

= FJ de-morgan-negation(f) K
FJ f1 ∧ f2 K def

= FJ f1 K ∩ FJ f2 K
FJ f1 ∨ f2 K def

= FJ f1 K ∪ FJ f2 K
FJ∀v ∈ [a, b] : f K def

= { (ρ, σ) |
l ∈ EJ a K(ρ, σ) ∧ u ∈ EJ b K(ρ, σ) ∧ (ρ, σ) ∈

⋂
i∈[l,u] FJ f [v/i] K }

FJ∃v ∈ [a, b] : f K def
= { (ρ, σ) |

l ∈ EJ a K(ρ, σ) ∧ u ∈ EJ b K(ρ, σ) ∧ (ρ, σ) ∈
⋃
i∈[l,u] FJ f [v/i] K }

Fig. 4. Concrete semantics of formulas.

2.3 Evaluation

Expressions. The evaluation of expressions, given as EJ . K ∈ expr → E → P(V),
returns the set of possible values to handle possible non-determinism (such as
reading random values). It is defined by induction on the syntax, as depicted
in Fig. 3. The stub builtin size reduces to the C builtin sizeof for variables
and returns the size stored in the resource map for dynamically allocated blocks.
Calls to base and offset evaluate their pointer argument and extract the first
(respectively second) component. To simplify the presentation, we do not give the
explicit definition of the C operators, which is complex but standard. Likewise,
we omit a precise treatment of invalid and NULL pointers (see [19] for a more
complete definition). Finally, we omit here reporting of C run-time errors.

Formulas. The semantics of formulas FJ . K ∈ form → P(E), shown in Fig. 4,
returns the set of environments that satisfy it. It is standard, except for built-in
predicates: to verify the predicate e ∈ R (resp. alive(e)), we resolve the instance
pointed by e and look up the resource map to check that its class equals R (resp.
its liveness flag is true).

A Library Modeling Language for the Static Analysis of C Programs 7

ẼJ . K ∈ ˜expr → E × E → P(V)

ẼJ *e K 〈ε, ε′〉 def
= EJ *e Kε

ẼJ (*e)′ K 〈ε, ε′〉 def
= EJ *e Kε′

ẼJ size(e) K 〈ε, ε′〉 def
= EJ size(e) Kε

ẼJ size(e′) K 〈ε, ε′〉 def
= EJ size(e) Kε′

ẼJn K 〈ε, ε′〉 def
= {n }

ẼJ &v K 〈ε, ε′〉 def
= { (v, 0) }

ẼJ e1 � e2 K 〈ε, ε′〉 def
= { v1 � v2 | v1 ∈ ẼJ e1 K 〈ε, ε′〉 ∧ v2 ∈ ẼJ e2 K 〈ε, ε′〉 }

ẼJ base(e) K 〈ε, ε′〉 def
= { b | (b,−) ∈ ẼJ e K 〈ε, ε′〉 }

ẼJ offset(e) K 〈ε, ε′〉 def
= { o | (−, o) ∈ ẼJ e K 〈ε, ε′〉 }

Fig. 5. Concrete semantics of relational expressions.

2.4 Relational semantics

Statements express some information on pre and post-conditions, that is, on the
relation between input and output environments.

Expressions and formulas. To allow expressions to mention both the input and
output state, we use the classic prime notation: e′ denotes the value of expression
e in the post-state. Denoting ˜expr the set of expressions with primes, their se-
mantic on an input-output environment pair is given by ẼJ . K ∈ ˜expr → E×E →
P(V). Fig. 5 presents the most interesting cases: evaluating a primed derefer-
ence ẼJ (*e)′ K 〈ε, ε′〉 reduces to the non-relational evaluation EJ *e K on ε′, while a
non-primed dereference reduces to EJ *e K on ε. The case of size(e′) and size(e)
is similar. Other cases are analog to non-relational evaluation.

We denote by ˜form formulas with primes, and define their evaluation function
F̃J . K ∈ ˜form → P(E ×E) as returning a relation. As shown in Fig. 6, to evaluate
predicates e ∈ R and alive(e), only input environments are inspected, as the
resource class is an immutable property and the liveness flag can be changed
only by free statements in previous calls. The remaining definitions are similar
to the non-relational case.

Example 2. Consider again variable v shown in Example 1 and the following
relational formula: v.data′ == v.data + 1 ∧ *(v.data + 1)′ == 10. When applied
on the previous environment we obtain the relation:

〈(*v, 0, int+ 7→ 5 *v, 4, ptr+ 7→ (@, 0)
*@, 0, short+ 7→ 3 *@, 2, short+ 7→ −1

,@ 7→ (malloc, 4, true)

)
,(

*v, 0, int+ 7→ 5 *v, 4, ptr+ 7→ (@,2)
*@, 0, short+ 7→ 3 *@, 2, short+ 7→ 10

,@ 7→ (malloc, 4, true)

)
〉

Side-effect statements. We model side-effect statements as relation transformers,
SeffectJ . K ∈ effect → P(E × E) → P(E × E) shown in Fig. 7. Given an input-
output relation as argument, it returns a new relation where the output part is

8 A. Ouadjaout and A. Miné

F̃J . K ∈ ˜form→ P(E × E)

F̃J e ∈ R K def
= { 〈ε, ε′〉 | ε ∈ FJ e ∈ R K }

F̃J e ∈ [a, b] K def
= { 〈ε, ε′〉 |

n ∈ ẼJ e K 〈ε, ε′〉 ∧ l ∈ ẼJ a K 〈ε, ε′〉 ∧ u ∈ ẼJ b K 〈ε, ε′〉 ∧ n ∈ [l, u] }
F̃J alive(e) K def

= { 〈ε, ε′〉 | ε ∈ FJ alive(e) K }
F̃J e1 � e2 K def

= { 〈ε, ε′〉 | v1 ∈ ẼJ e1 K 〈ε, ε′〉 ∧ v2 ∈ ẼJ e2 K 〈ε, ε′〉 ∧ v1 � v2 }
F̃J¬f K def

= F̃J de-morgan-negation(f) K
F̃J f1 ∧ f2 K def

= F̃J f1 K ∩ F̃J f2 K
F̃J f1 ∨ f2 K def

= F̃J f1 K ∪ F̃J f2 K
F̃J∀v ∈ [a, b] : f K def

= { 〈ε, ε′〉 |
l ∈ ẼJ a K 〈ε, ε′〉 ∧ u ∈ ẼJ b K 〈ε, ε′〉 ∧ 〈ε, ε′〉 ∈

⋂
i∈[l,u] F̃J f [v/i] K }

F̃J∃v ∈ [a, b] : f K def
= { 〈ε, ε′〉 |

l ∈ ẼJ a K 〈ε, ε′〉 ∧ u ∈ ẼJ b K 〈ε, ε′〉 ∧ 〈ε, ε′〉 ∈
⋃
i∈[l,u] F̃J f [v/i] K }

Fig. 6. Concrete semantics of relational formulas.

updated to take into account the effect of the statement. Thus, starting from
the identity relation, by composing these statements, we can construct a relation
mapping each input environment to a corresponding environment with resources
allocated or freed, and variables modified. The statement alloc : τ* v = new R
allocates a new instance of resource class R and assigns its address to variable
v. The function scalars ∈ type→ P(N× stype) returns the set of scalar types
and their offsets within a given type. We have no information on the block size
(except that it is a non-null multiple of the size of τ) nor the block contents; both
information can be provided later using an ensures statement. The statement
assigns : e[a, b] modifies the memory block pointed by e and fills the elements
located between indices a and b with unspecified values. Finally, free : e frees
the resource pointed by e by updating its liveness flag. These statements only
use non-primed variables, hence, all expressions are evaluated in the input part
of the relation, which is left intact by these transformers.

Condition statements. A condition statement adds a constraint to the initial
input-output relation built by the side-effect statements. We define their seman-
tics as a function ScondJ . K ∈ cond → P(E ×E). Another role of these statements
is to detect specification violation (unsatisfied requires). Thus, we enrich the
set of output environments with an error state Ω, so that 〈ε,Ω〉 denotes an in-
put environment ε that does not satisfy a pre-condition. The semantics is given
in Fig. 7. Both assumes and requires statements use the simple filter FJ . K as
they operate on input environments. In contrast, ensures statements express
relations between the input and the output and use therefore the relational
filter F̃J . K. Combining two conditions is a little more subtle than intersecting
their relations, due to the error state. We define a combination operator # that
preserves errors detected by conditions. Due to errors, conditions are not com-
mutative. Indeed assumes : x > 0; requires : x 6= 0; is not equivalent to
requires : x 6= 0; assumes : x > 0, as the later will report errors when x 6= 0.

A Library Modeling Language for the Static Analysis of C Programs 9

SeffectJ . K ∈ effect → P(E × E)→ P(E × E)

SeffectJ alloc : τ* x = new R; KX def
=

{ 〈ε, (ρ′[x 7→ (@, 0), c1,1 7→ v1,1, . . . , cn,m 7→ vn,m], σ′[@ 7→ (R,n.sizeof(τ), true)])〉 |
〈ε, (ρ′, σ′)〉 ∈ X ∧@ 6∈ dom(σ′) ∧ n ∈ N? ∧ { (o1, τ1), . . . , (om, τm) } = scalars(τ)
∧ ∀i ∈ [1, n], j ∈ [1,m] : ci,j = *@, oj + (i− 1)sizeof(τ), τj + ∧vi,j ∈ Vτi,j }

SeffectJ assigns : e[a, b]; KX def
=

{ 〈ε, (ρ′[c1 7→ v1, . . . , cu−l+1 7→ vu−l+1], σ′)〉 | 〈ε, (ρ′, σ′)〉 ∈ X
∧ (b, o) ∈ EJ e K(ρ, σ) ∧ l ∈ EJ a K(ρ, σ) ∧ u ∈ EJ b K(ρ, σ) ∧ τ = typeof(*e)
∧ ∀k ∈ [1, l − u+ 1] : ck = *b, o+ (k − 1)sizeof(τ), τ + ∧vk ∈ Vτ }

SeffectJ free : e; KX def
=

{ 〈ε, (ρ′, σ′[@ 7→ (R,n, false)])〉 | 〈ε, (ρ′, σ′)〉 ∈ X ∧ (@,−) ∈ EJ e Kε }
SeffectJ s1; s2; KX def

= SeffectJ s2 K ◦ SeffectJ s1 KX

ScondJ . K ∈ cond→ P(E × E)

ScondJ assumes : f ; K def
= { 〈ε, ε′〉 | ε ∈ FJ f K }

ScondJ requires : f ; K def
= { 〈ε, ε′〉 | ε ∈ FJ f K } ∪ { 〈ε,Ω〉 | ε ∈ FJ¬f K }

ScondJ ensures : f ; K def
= F̃J f K

ScondJ s1; s2; K def
= ScondJ s1 K #ScondJ s1 K

R1 #R2
def
= R1 ∩R2 ∪ { 〈ε,Ω〉 | 〈ε,Ω〉 ∈ R1 } ∪ { 〈ε,Ω〉 | 〈ε,Ω〉 ∈ R2 ∧ 〈ε,−〉 ∈ R1 }

Fig. 7. Concrete semantics of statements.

SJ . K ∈ stub→ P(E)→ P(E)× P(E)

SJ body KI def
= let R0 = { 〈ε, ε〉 | ε ∈ I } in

let R1 = SeffectJ effects(body) KR0 in
let R2 = R1 # ScondJ conditions(body) K in
let O = { ε′ | 〈−, ε′〉 ∈ R2 ∧ ε′ 6= Ω } in
let X = { ε | 〈ε,Ω〉 ∈ R2 } in
(O,X)

Fig. 8. Concrete semantics of the stub.

Iterator. Fig. 8 shows the semantic function SJ . K ∈ stub→ P(E)→ P(E)×P(E)
of a complete stub. It first executes its side-effect statements only effects(body),
then condition statements conditions(body), and finally applies the resulting
relation R2 to the initial states at function entry I. It returns two sets of environ-
ments: the environments O at function exit when pre-conditions are met, and the
environments X at function entry that result in a violation of a pre-condition.

3 Generic Abstract Semantics

We show how an existing abstract domain for C can be extended to abstract the
concrete semantics of our stubs in a generic way. The next section will focus on
specific abstractions exploiting more finely the structure of stub statements.

10 A. Ouadjaout and A. Miné

3.1 Abstract Domain

C domain. We assume we are given an abstract domainM] of memories P(M)
with the standard operators: least element ⊥M, join tM, and widening OM,
as well as a sound abstraction S]MJ . K ∈ stmtM → M] → M] for classic mem-
ory statement stmtM, including: x ← y, to model assignments of C expres-
sions; forget(b, x, y), to assign random values to a byte slice [x, y] of a memory
block b; add(b), to add a memory block with random values; remove(b) to re-
move a memory block; and the array sumarization operators expand(b1, b2) and
fold(b1, b2) from [14]. expand(b1, b2) creates a weak copy b2 of block b1, i.e. both
b1 and b2 have the same constraints without being equal. For example, executing
expand(x, z) when x ≥ y∧x ∈ [1, 10] yields x ≥ y∧x ∈ [1, 10]∧z ≥ y∧z ∈ [1, 10].
The converse operation, fold(b1, b2), creates a summary in b1 by keeping only the
constraints also implied by b2, and then removes b2. We exploit them to abstract
unbounded memory allocation and perform weak updates.

Heap abstraction. We also assume that we are given an abstraction of heap
addresses P(A) into a finite set A] of abstract addresses, with least element
⊥A and join tA. Classic examples include call-site abstraction, and the recency
abstraction [2] we use in our implementation. An abstract address may represent
a single concrete address or a (possibly unbounded) collection of addresses, which
is indicated by a cardinality operator ‖.‖A ∈ A] → { single,many }. Finally, we
assume the domain provides an allocation function A]J . K ∈ P(A]) × M] →
A] ×M]. As an abstract allocation may cause memory blocks to be expanded
or folded, and the pointers to point to different abstract addresses, the function
also returns an updated memory environment.

Environments. For each abstract block in A], we maintain its byte size in a
numeric variable size] ∈ A] → B in the memory environment, and track its
possible resource classes in P(C), and possible liveness status in the boolean
lattice P({true, false}). The abstraction E] of environment sets P(E) is thus:

E] def
= M] ×A] → (P(C)× P({true, false})) (1)

The ⊥E , tE , and OE operators are derived naturally from those in M] and A],
and we lift C statements to S]CJ s K(ρ], σ]) def

= (S]MJ s Kρ], σ]).

3.2 Evaluations

Our abstraction leverages the modular architecture and the communication
mechanisms introduced in the Mopsa framework [16]. We will employ notably
symbolic and disjunctive evaluations, which we recall briefly.

Expressions. In the concrete semantics, expressions are evaluated into values.
Abstracting expression evaluation as functions returning abstract values, such as
intervals, would limit the analysis to non-relational properties. Instead, domains

A Library Modeling Language for the Static Analysis of C Programs 11

in Mopsa can evaluate expressions into other expressions: based on the current
abstract state, expression parts are simplified into more abstract ones that other
domains can process. A common example is relying on abstract variables. For
instance, the memory domain will replace a size(e) expression into the variable
size](b) after determining that e points to block b, producing a purely numeric
expression. Communicating expressions ensures a low coupling between domains,
while preserving relational information (e.g., size(e) < i reduces to comparing
two numeric variables, size](b) and i). A domain can also perform a case analysis
and transform one expression into a disjunction of several expressions, associated
to a partition of the abstract state (e.g., if e can point to several blocks). Formally,
a domain D] implements expression evaluation as a function: φ ∈ expr → D] →
P(expr × D]). To express concisely that the rest of the abstract computation
should be performed in parallel on each expression and then joined, we define
here (and use in our implementation) a monadic bind operator:

let]t (f, Y]) ∈ φ[e]X] in body
def
=⊔

(g,Z])∈φ[e]X] body[f/g, Y]/Z]]
(2)

We illustrate formally abstract expression evaluation E]J . K on the size(e) ex-
pression. First, the pointer domain handles the pointer expression e: E]J e Kε]
returns a set of triples (b, o, ε′) where b is an abstract block, o a numeric off-
set expression, and ε′ the part of ε where e points into block b. Thanks to this
disjunction, the abstract semantics of size(e) follows closely the concrete one:

E]J size(e) Kε] def
= let]t ((b,−), ε]1) ∈ E]J e K ε] in

if b ∈ V then { (sizeof(b), ε]1) }
else { (size](b), ε]1) }

(3)

Formulas. Evaluation of formulas is defined by the function F]J . K ∈ formula →
E] → E], shown in Fig. 9. We focus on the most interesting cases which are
the quantified formulas. Existential quantification reduces to assigning to v the
interval [a, b] and keeping only environments that satisfy f . Universal quantifi-
cation are handled very similarly to a loop for(v=a; v<=b; v++) assume(f). We
perform an iteration with widening for v from a to b and we over-approximate
the sequence of states statisfying f . The overall formula is satisfied for states
reaching the end of the sequence. These generic transfer functions can be impre-
cise in practice. We will show later that specific domains can implement natively
more precise transfer functions for selected quantified formulas.

Relations. The concrete semantics requires evaluating expressions and formulas
not only on states, by also on relations. To represent relations in the abstract,
we simply introduce a family of primed variables: primed] ∈ B → B returns the
primed version of a block (i.e., the block in the post-state). This classic technique
allows lifting any state domain to a relation domain. Combined with relational
domains, we can express complex relationships between values in the pre- and
the post-state, if needed. The relation abstractions Ẽ]J . K and F̃]J . K of ẼJ . K and

12 A. Ouadjaout and A. Miné

F]J . K ∈ form → E] → E]

F]J alive(e) K(ρ], σ]) def
=

let]tE ((b,−), (ρ], σ])) ∈ E]J e K (ρ], σ]) in

if b 6∈ A] then ⊥ else

let (C, f) = σ](b) in
if f = { false } then ⊥ else
let f ′ = if ‖b‖A = single then { true } else f in

(ρ], σ][b 7→ (C, f ′)])

F]J e ∈ R K(ρ], σ]) def
=

let]tE ((b,−), (ρ], σ])) ∈ E]J e K (ρ], σ]) in

if b 6∈ A] then ⊥ else

let (C, f) = σ](b) in
if R 6∈ C then ⊥ else
let C′ = if ‖b‖A‖ = single then {R } else C in

(ρ], σ][b 7→ (C′, f)])

F]J∃v ∈ [a, b] : f Kε] def
= S]CJ remove(v) K ◦ F]J f K ◦ S]CJ v ← [a, b] K ◦ S]CJ add(v) K ε]

F]J∀v ∈ [a, b] : f Kε] def
=

let ε]0 = F]J v ≤ b K ◦ S]CJ v ← a K ◦ S]CJ add(v) K ε] in

let ε]1 = lfpλX.XOE(ε
]
0 tE S

]
CJ v ← v + 1 K ◦ F]J f K ◦ F]J v ≤ b KX) in

S]CJ remove(v) K ◦ F]J v > b K ε]1

Fig. 9. Abstract semantics of formulas.

F̃J . K can be easily expressed in terms of the state abstractions E]J . K and F]J . K
we already defined. As an example, the evaluation of a primed dereference (*e)′

simply evaluates e into a set of memory blocks b and offset expressions o, and
outputs a dereference of the primed block primed](b) at the (non-primed) offset
expression o, which can be handled by the (relation-unaware) memory domain:

Ẽ]J (*e)′ Kε] def
= let]t ((b, o), ε]1) ∈ Ẽ]J e K ε] in

{ (*(typeof(e))((char*)&primed](b) + o), ε]1) }
(4)

3.3 Transfer Functions

Side-effect statements. The effect of a statement is approximated by S]effectJ . K ∈
effect → E] → E] defined in Fig. 10. Resource allocation alloc : v = new R first
asks the underlying heap abstraction for a new abstract address with A]J . K,
which is bound to a new variable v; a new size variable size] is created and the
resource map is updated with the class and liveness information. The block is
also initialized with random values using forget . Assignments assigns : e[x, y]
reduces to forget on the primed version of the block b e points to (recall that the
output value is specified by a later ensures). Finally, free : e resets the liveness
flag of the primed block.

Condition statements. The abstract semantics of condition statements is given
by S]condJ . K ∈ cond → E] → E] × E], defined in Fig. 10. The function returns
a pair of abstract environments: the first one over-approximates the output en-
vironments satisfying the condition, while the second one over-approximates

A Library Modeling Language for the Static Analysis of C Programs 13

S]effectJ . K ∈ effect → E] → E] S]condJ . K ∈ cond → E] → E] × E]

S]effectJ alloc : v = new R K(ρ], σ]) def
= S]condJ assumes : f ; Kε] def

=

let (@, ρ]1) = A]J dom(σ]) K ρ] in (F]J f Kε],⊥E)
let σ]2 = σ]1[@ 7→ ({R }, { true })] in S]condJ requires : f ; Kε] def

=

let ε]2 = S]CJ v ← @ K ◦ S]CJ add(v) K (ρ]1, σ
]
2) in (F]J f Kε],F]J¬f Kε])

let ε]3 = S]CJ size](@) ≥ 0 K ◦ S]CJ add(size](@)) K ε]2 in S]condJ ensures : f ; Kε] def
=

S]CJ forget(@, 0, size](@)− 1) K ε]3 (F̃]J f Kε],⊥E)
S]effectJ assigns : e[x, y] Kε] def

= S]condJ s1; s2; Kε] def
=

let]tE (b, o), ε]1 ∈ E]J e K ε] in let (ε]1, ω
]
1) = S]condJ s1 K ε] in

let n = sizeof(*e) in let (ε]2, ω
]
2) = S]condJ s2 K ε]1 in

S]CJ forget(primed](b), o+ x× n), o+ y × n K ε]1 (ε]2, ω
]
1 tE ω

]
2)

S]effectJ free : e Kε] def
=

let]tE (b,−), (ρ]1, σ
]
1) ∈ E]J e K ε] in

if b 6∈ A] then ⊥E else

let C, f = σ]1(b) in

if ‖b‖A = single then (ρ]1, σ
]
1[primed](b) 7→ (C, { false })])

else (ρ]1, σ
]
1[primed](b) 7→ (C, f ∪ { false })])

Fig. 10. Abstract semantics of statements.

the input environments violating mandatory conditions specified with requires

statements.

Iterator. The abstract semantic of a whole stub is defined in Fig. 11. First, the
expand function is used to construct an identity relation over the input abstract
state ε]0. To improve efficiency, this is limited to the blocks that are effectively
modified by the stub; this set is over-approximated using the assigned function,
which resolves the pointer expressions occurring in assigns statement. Then,
side-effect statements are evaluated. Note that, for an assigns : a[x, y] state-
ment, while whole blocks pointed by a are duplicated in the output state, only
the parts in the [x, y] range are assigned random values. Condition statements
are then executed, collecting contract violation and refining the output state.
Finally, we remove the unprimed version of primed (i.e., modified) blocks and
the primed block into its unprimed version, thus reverting to a state abstraction
that models the output state. In case of a primed block b modeling several con-
crete blocks (i.e., ‖b‖A = many), the primed block is folded into the unprimed
version, so as to preserve the values before the call, resulting in a weak update.

4 Specific Abstract Semantics: the Case of C Strings

We now show how we can design a formula-aware abstract domain, with an ap-
plication to C string analysis. The domain handles precisely selective quantified
formula, while reverting in the other cases (as all other domains) to the generic
operators.

14 A. Ouadjaout and A. Miné

S]J . K ∈ stub → E] → E] × E]

S]J body Kε]0
def
=

let (a1, . . . , an) = assigned(body) in

let]tE ((b1,−), ε]1) ∈ E]J a1 K ε]0 in
. . .

let]tE ((bn,−), ε]n) ∈ E]J an K ε]n−1 in

let ε̃]0 = S]CJ prime(bn) K ◦ · · · ◦ S]CJ prime(b1) Kε]n in

let ε̃]1 = S]effectJ effects(body) K ε̃]0 in

let ε̃]2, ω
] = S]condJ conditions(body) K ε̃]1 in

let ε] = S]CJ unprime(bn) K ◦ · · · ◦ S]CJ unprime(b1) Kε̃]2 in

(ε], ω])
where:

prime(b)
def
= expand(b, primed](b))

unprime(b)
def
=

if b ∈ A] ∧ ‖b‖A = many then fold(primed](b), b) else rename(primed](b), b)

Fig. 11. Abstract semantics of the stub.

String length domain. Strings in C are arrays of char elements containing a
delimiting null byte ’\0’ indicating the end of the string. Many functions in the
standard C library take strings as arguments and assume they contain a null byte
delimiter. We want to express and check this assumption in the function stubs.
We exploit a classic abstraction already present in Mopsa: the StringLength
domain [17] that maintains a numeric abstract variable length] ∈ B → B for
arrays to store the offset of the first null byte. It thus infers, for each array a, an
invariant of the form:

∀i ∈ [0, length](a)− 1] : a[i] 6= 0 ∧ a[length](a)] = 0 (5)

Example 3. Consider the following example, where n ranges in [0, 99]:

1 for (int i = 0; i < n; i++) a[i] = ’x’;

2 a[n] = ’\0’;

An analysis with the Intervals domain will infer that length](a) ∈ [0, 99].
Adding the Polyhedra domain, we will moreover infer that length](a) = n.

Stub transfer functions. Within a stub, a pre-condition stating the validity of a
string pointed to by an argument named s is naturally expressed as:

requires : ∃i ∈ [0, size(s)− offset(s)− 1] : s[i] == 0; (6)

Proving this requirement requires checking the emptiness of its negation, which
involves a universal quantifier. Using the generic abstraction from last section,
it is equivalent to proving emptiness after the loop for (i = 0; i < size(s)-

offset(s); i++) s[i] != 0. This, in turn, requires an iteration with widening
and, unless s has constant length, a relational domain with sufficient precision,
which is costly.

A Library Modeling Language for the Static Analysis of C Programs 15

Formula Case Condition State transformer

∃i ∈ [lo, hi] : s[i] == 0
#1 length](s) > hi λε].⊥
#2 length](s) ≤ hi λε]. ε]

∀i ∈ [lo, hi] : s[i] != 0
#1 length](s) 6∈ [lo, hi] λε]. ε]

#2 length](s) ∈ [lo, hi] λε].⊥
Table 1. Transfer functions of formulas in the string length domain.

To solve these problems, we propose a direct interpretation of both formulas
in the string domain, i.e., we add transfer functions for F]J∃i ∈ [lo, hi] : s[i] == 0 K
and F]J∀i ∈ [lo, hi] : s[i] != 0 K,4 as shown in Table. 1. They perform a case anal-
ysis: the abstract state ε] is split into two cases according to a condition, and
we keep all environments in one case (λε]. ε) and none in the other (λε].⊥). For
instance, assuming that (5) holds, then Case #1 of F]J∃i ∈ [lo, hi] : s[i] == 0 K
states that the quantification range [lo, hi] covers only elements before the null
byte, so that the formula does not hold. Case #2 states that there is a value in
[lo, hi] greater than or equal to the string length, in which case s[i] may be null
and the formula may be valid. Similarly, Case #1 of F]J∀i ∈ [lo, hi] : s[i] != 0 K
arises when the null byte is outside the quantification range, so that the for-
mula may be valid. In Case #2, the null byte is in the range, and the formula
is definitely invalid. We stress on the fact that all the conditions are interpreted
symbolically in the numeric domain; hence, lo and hi are not limited to con-
stants, but can be arbitrary expressions.

Example 4. Let us illustrate how the predicate (6) can be verified on the follow-
ing abstract environment:

ε] =

 *s, 0, ptr+ 7→ { (@, 0) }
size](@) ≥ 1

length](@) ∈ [0, size](@)− 1]

,@ 7→ ({ malloc }, true)

 (7)

which represents the case of a variable s pointing to a resource instance @ al-
located by malloc with at least one byte. The string domain indicates that the
position of the null byte is between 0 and size](@)− 1. When checking the for-
mula ∃i ∈ [0, size(s)−offset(s)−1] : s[i] == 0, the condition for Case #1 never
holds since:

(size(s)− offset(s)− 1 = size](@)− 1) ∧ (length](@) ≤ size](@)− 1)

When checking its negation, ∀i ∈ [0, size(s) − offset(s) − 1] : s[i] != 0, Case
#1 is also unsatisfiable, for the same reason. As the transformer for Case #2
returns ⊥, the overall result is ⊥, proving that Requirement (6) holds: the stub
does not raise any alarm.

4 We actually support the comparison of s[i] with arbitrary expressions. We limit the
description to the case of comparisons with 0 for the sake of clarity.

16 A. Ouadjaout and A. Miné

Genericity of formulas. An important motivation for using a logic language is to
exploit its expressiveness within abstract domains to analyze several stubs with
the same transfer functions. We show that this is indeed the case: the transfer
function that was used to validate strings in the previous section can be used,
without modification, to compute string lengths.

Example 5. Let us go back to the example of the strlen function defined as:

1 /*$

2 * requires: s != NULL ∧ offset(s) ∈ [0, size(s));

3 * requires: ∃i ∈ [0, size(s)-offset(s)): s[i] == 0;

4 * ensures : return ∈ [0, size(s)-offset(s));

5 * ensures : s[return] == 0;

6 * ensures : ∀i ∈ [0, return): s[i] != 0;

7 */

8 size_t strlen(const char s);

and consider again the environment (7). As shown before, the requires state-
ments at line 3 validating the string do not raise any alarm. At line 5, the classic
transfer functions of the StringLength domain [17] infer that:

0 ≤ length](@) ≤ return

since s[return] = 0 and length](@) is the position of the first null byte. Finally,
at line 6, both cases of the second transfer function in Table 1 are valid. Since
we keep a non-⊥ post-state only for Case #1, we obtain:

0 ≤ length](@) ≤ return ∧ length](@) 6∈ [0, return− 1]

⇔ 0 ≤ length](@) ≤ return ∧ length](@) > return− 1

⇔ 0 ≤ length](@) = return

hence the domain precisely infers that strlen returns the length of string @.

5 Experiments

We implemented our analysis in the Mopsa framework [16]. It consists of 29503
lines of OCaml code (excluding parsers). Among them, 16449 lines (56%) are
common with analyses of other languages, such as Python. C domains consist
of 11342 lines (38%) and the stub abstraction consists of 1712 lines (6%).

We wrote 14191 lines of stub, modeling 1108 functions from 50 headers from
the Glibc implementation of the standard C library, version 8.28 [13]. All stubs
thoroughly check their arguments (pointers, strings, integers, floats), soundly
model their side effects, dynamic memory allocation, open files and descriptors.
We refrained form implicit assumptions, such as non-aliasing arguments. At an
average of 8 meaningful lines per stub, the language proved to be concise enough.
Some examples can be found in App. A.

To assess the efficiency and the precision of our implementation, we target two
families of programs. We run our analysis on part of NIST Juliet Tests Suite [5],
a large collection of small programs with artificially injected errors. These tests

A Library Modeling Language for the Static Analysis of C Programs 17

Code Title Tests Lines Time (h:m:s) Í o

CWE121 Stack-based Buffer Overflow 2508 234k 00:59:12 26% 74%
CWE122 Heap-based Buffer Overflow 1556 174k 00:37:12 28% 72%
CWE124 Buffer Underwrite 758 93k 00:18:28 86% 14%
CWE126 Buffer Over-read 600 75k 00:14:45 40% 60%
CWE127 Buffer Under-read 758 89k 00:18:26 87% 13%
CWE190 Integer Overflow 3420 440k 01:24:47 52% 48%
CWE191 Integer Underflow 2622 340k 01:02:27 55% 45%
CWE369 Divide By Zero 497 109k 00:13:17 55% 45%
CWE415 Double Free 190 17k 00:04:21 100% 0%
CWE416 Use After Free 118 14k 00:02:40 99% 1%
CWE469 Illegal Pointer Subtraction 18 1k 00:00:24 100% 0%
CWE476 NULL Pointer Dereference 216 21k 00:04:53 100% 0%

Table 2. Analysis results on Juliet. Í: precise analysis, o: analysis with false alarms.

are precious to reveal soundness bugs in analyzers, but do not reflect real-world
code bases. Hence, we also target more realistic programs from the Coreutils
package [12], which are widely used command-line utilities. These programs,
while not very large, depend heavily on the C standard library. We run all our
tests on an Intel Xeon 3.40GHz processor running Linux.

5.1 Juliet

The Juliet Tests Suite [5] is organized using the Common Weakness Enumeration
taxonomy [1]. It consists of a large number of tests for each CWE. Each test
contains bad and good functions. Bad functions contain one instance of the CWE,
while good functions are safe.

We selected 12 categories from NIST Juliet 1.3 matching the safety violations
detected by Mopsa. For each test, we have analyzed the good and the bad func-
tions and measured the analysis time and the number of reported alarms. Three
outcomes are possible. The analysis is precise if it reports (i) exactly one alarm
in the bad function that corresponds to the tested CWE, and (ii) no alarm in
the good function. The analysis is unsound if no alarm is reported in the bad
function. Otherwise, the analysis is imprecise.

The obtained results are summarized in Table 2. From each category, we have
excluded tests that contain unsupported features or that do not correspond to
runtime errors. As expected, all analyses are sound: Mopsa detects the target
CWE in every bad test. However, half of the tests were imprecise. Much of this
imprecision comes from the gap between Mopsa’s error reporting and the CWE
taxonomy. For instance, an invalid string passed to a library function may be
reported as a stub violation while Juliet expects a buffer overflow. By considering
precise an analysis reporting no alarm in the good function and exactly one
alarm in the bad function (without considering its nature), the overall precision
increases to 71% (e.g. 89% of CWE121 tests become precise). Other factors also
contribute to the imprecisions, such as the lack of disjunctive domains. Finally,
many tests use the socket API to introduce non-determinism, and the current

18 A. Ouadjaout and A. Miné

file management abstraction was not precise enough to prove the validity of some
file descriptors.

5.2 Coreutils

Our second benchmark includes 19 out of 106 programs from Coreutils version
8.30 [12]. Each program consists in a principal C file containing the main func-
tion, and library functions that are shared among all Coreutils programs. Due to
these complex dependencies, it was difficult to extract the number of lines cor-
responding to individual programs. Instead, we computed the number of atomic
statements, consisting of assignments and tests (e.g. in for, while and switch

statements), in the functions reached by the analysis. This gives an indication of
the size of the program, but the scale is not comparable with line count metrics.

Scenarios. Three scenarios were considered. The first one consists in analyzing
the function main without any argument. In the second scenario, we call main

with one symbolic argument with arbitrary size. The last scenario is the most
general: main is called with a symbolic number of symbolic arguments.

Abstractions. For each scenario, four abstractions were compared. In the first
abstraction A1, we employed the Cells memory domain [19] over the Inter-
vals domain. The second abstraction A2 enriches A1 with the StringLength
domain [17] improved as discussed in Sect. 4. The third abstraction A3 enriches
A2 with the Polyhedra domain [8,15] with a static packing strategy [4]. Fi-
nally, A4 enriches A3 with a PointerSentinel domain that tracks the position
of the first NULL pointer in an array of pointers; it is similar to the string length
domain and useful to represent a symbolic argv and handle functions such as
getopt (see App. A.4).

Limitations. The analysis of recursive calls is not yet implemented in Mopsa.
We have found only one recursive function in the analyzed programs, which we
replaced with a stub model. The second limitation concerns the getopt family of
functions. We have not considered the case where these functions modify the argv

array by rearranging its elements in some specific order, since such modifications
make the analysis too imprecise. However, we believe that this kind of operation
can be handled by an enhanced PointerSentinel domain. This is left as future
work.

Precision. Table 12a shows the number of alarms for every analysis. The most
advanced abstraction A4 reduces significantly the number of alarms, specially
for the fully symbolic scenario. This gain is not due to one specific abstraction,
but it comes from the cooperation of several domains, most notably between
Polyhedra and StringLength. This also emphasizes the effectiveness of do-
main communication mechanisms within Mopsa [16], notably symbolic expres-
sion evaluation.

A Library Modeling Language for the Static Analysis of C Programs 19

Program Statements
No arg. One symbolic arg. Fully symbolic args.

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

cksum 292 53 29 28 36 135 106 106 53 136 107 106 53
dircolors 507 104 54 47 47 185 158 154 100 186 159 154 99
dirname 183 59 14 13 13 120 90 90 22 120 90 90 21
echo 241 16 3 3 3 216 179 175 33 216 179 175 34
false 131 0 0 0 0 89 61 61 13 89 61 61 13
hostid 193 25 9 8 8 91 63 63 16 92 64 63 16
id 193 25 9 8 8 91 63 63 16 92 64 63 16

logname 196 25 8 7 7 93 62 62 15 94 63 62 15
nice 323 16 3 3 3 145 105 104 18 151 111 105 20
nproc 356 81 36 35 35 136 99 99 33 137 100 99 32

printenv 179 70 29 28 28 159 131 130 59 161 133 130 59
pwd 342 81 23 20 20 116 70 68 23 116 70 68 22
sleep 289 25 8 7 7 125 97 97 29 128 99 97 29
stdbuf 546 97 53 52 52 327 269 267 125 329 271 268 127
true 131 0 0 0 0 89 61 61 13 89 61 61 13
uname 251 67 25 24 24 105 72 72 27 106 73 73 33

unexpand 478 149 93 92 92 226 179 179 95 226 179 179 94
unlink 204 25 8 7 7 98 68 68 15 103 71 68 15
whoami 202 27 9 8 8 95 63 63 16 96 64 63 16

(a) Number of reported alarms.

Program
No arg. One symbolic arg. Fully symbolic args.

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

cksum 12.62 15.76 46.86 46.32 33.69 39.67 175.92 174.45 34.21 39.3 174.5 193.64
dircolors 70.27 88.49 292.38 228.75 174.46 192.94 514.1 646.22 160.91 198.07 533.13 595.14
dirname 22.56 29.04 97.96 85.65 22.95 30.38 90.99 140.88 24.97 28.89 96.04 119.86
echo 8.73 9.12 13.38 12.48 10.74 13.52 26.03 25.44 11.44 13.24 24.75 156.15
false 8.72 9.17 13.38 13.45 9.33 11.35 19.63 18.9 10.05 11.26 19.54 19.18
hostid 9.87 10.18 21.7 20.63 14.74 16.72 41.13 53.68 14.17 16.61 42.08 53.41
id 9.51 11.53 22.68 20.65 13.66 16.5 43.39 55.37 13.75 18.96 40.51 54.57

logname 9.31 10.75 20.13 19.42 15.97 16.51 39.37 45.06 13.47 17.05 40.69 48.72
nice 9.26 9.08 13.64 12.57 25.42 30.04 113.35 177.38 23.98 30.73 148.1 238.55
nproc 23.1 30.35 103.64 90.52 25.72 32.96 110.4 150.21 25.7 34.17 112.39 128.86

printenv 21.43 27.63 93.83 94.08 22.82 28.34 111.41 206.16 22.52 28.06 131.27 200.63
pwd 23.81 29.34 95.41 84.18 24.1 29.05 88.72 127.68 22.41 29.59 98.15 113.56
sleep 11.48 13.11 26.93 24.77 17.54 19.86 59.62 65.49 16.64 21.42 62.27 71.32
stdbuf 37.23 56.73 214.48 190.39 42.37 63.34 229.52 291.24 42.32 65.75 215.85 255.32
true 8.73 9.13 12.57 12.08 10.89 11.27 18.64 19.4 10.04 11.62 18.95 21.63
uname 21.85 28.46 86.38 81.68 24.19 28.9 85.85 102.31 23.95 30.97 95.13 129.77

unexpand 68.75 137.73 400.55 366.1 65.14 138.18 361.77 525.35 61.9 149.1 378.31 364.11
unlink 11.35 12.88 26.24 27.23 14.74 16.05 40.34 49.04 16.82 18.63 49.03 58.85
whoami 10.51 11.17 21.28 22.17 14.98 16.13 41.89 59.91 14.27 16.69 48.57 61.3

(b) Analysis time in seconds.

 0

 20

 40

 60

 80

 100

cksum
dircolors

dirname

echo
false

hostid
id logname

nice
nproc

printenv

pwd
sleep

stdbuf
true

uname

unlink
whoami

C
o
ve

ra
g
e
 (

%
)

No arg. One symbolic arg. Fully symbolic args.

(c) Coverage of abstraction A4.

Fig. 12. Analysis results on Coreutils programs.

20 A. Ouadjaout and A. Miné

Efficiency. As shown in Table 12b, the gain in precision comes at the cost of
degraded performances. The most significant decrease corresponds to the intro-
duction of the Polyhedra domain. Note that our current packing strategy is
naive (assigning for each function one pack holding all its local variables); a more
advanced strategy could improve scalability.

Coverage. We have also measured the ratio of statements reached by the analysis
in the three scenarios. While not a formal guarantee of correctness, a high level
of coverage provides some reassurance that large parts of the programs are not
ignored due to soundness errors in our implementation or our stubs. We discuss
only the case of abstraction A4, as other cases provide similar results. Figure 12c
presents the results. In most cases, using one symbolic argument helps covering a
significantly larger part of the program compared to analyzing main without any
argument. Coverage with one or several symbolic arguments is roughly the same,
possibly due to the control flow over-approximations caused by even a single
symbolic argument. Nevertheless, only the last scenario, covering an unbounded
number of arguments, provides a soundness guarantee that all the executions of
the program are covered. As far as we know, this is not supported in the static
value analyses by Frama-C [10] nor Astrée [4].

6 Conclusion

We presented a static analysis by abstract interpretation of C library functions
modeled with a specification language. We defined an operational concrete se-
mantics of the language and proposed a generic abstraction that can be sup-
ported by any abstract domain. We also showed how a C string domain could
be enriched with specialized transfer functions for specific formulas appearing
in stubs, greatly improving the analysis precision. We integrated the proposed
solution into the Mopsa static analyzer and experimented it on Juliet bench-
marks and Coreutils programs. In the future, we plan to extend our coverage
of the standard C library, provide models for other well-known libraries, such
as OpenSSL, and experiment on larger program analyses. In addition, we en-
visage to upgrade our specification language to support more expressive logic.
Finally, we want to improve the quality of our results by adding more precise
abstractions, such as trace partitioning, or more efficient modular iterators.

References

1. Common weakness enumeration: A community-developed list of software weakness
types. https://cwe.mitre.org/, accessed: 2020-05-24

2. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Static Analysis: 13th International Symposium, SAS 2006, Seoul, Korea, August
29-31, 2006. Proceedings. pp. 221–239. Springer (2006)

3. Baudin, P., Cuoq, P., Fillâtre, J., Marché, C., Monate, B., Moy, Y., Prevosto, V.:
ACSL:ANSI/ISO C Specification Language, http://frama-c.com/acsl.html

https://cwe.mitre.org/
http://frama-c.com/acsl.html

A Library Modeling Language for the Static Analysis of C Programs 21

4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis and verification of aerospace software by abstract interpretation.
In: AIAA Infotech@Aerospace. pp. 1–38. No. 2010-3385, AIAA (Apr 2010)

5. Black, P.E.: Juliet 1.3 test suite: Changes from 1.2. Tech. Rep. NIST TN – 1995,
NIST (Jun 2018)

6. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast with
software verification. In: NFM. pp. 3–11. Springer (2015)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
POPL’77. pp. 238–252. ACM (Jan 1977)

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conf. Rec. of the 5th Annual ACM SIGPLAN/SIGACT Symp.
on Principles of Programming Languages (POPL’78). pp. 84–97. ACM (1978)

9. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C: A software analysis perspective. Formal Aspects of Computing 27, 573–
609 (2012)

10. D. Bühler, P.C., Yakobowski, B.: Eva: The evolved value analysis plug-in
11. Fahndrich, M.: Static verification for code contracts. In: Proc. of SAS’10. LNCS,

vol. 6337, pp. 2–5 (2010)
12. GNU: Coreutils: GNU core utilities, https://www.gnu.org/software/coreutils/
13. GNU: The GNU C library, https://www.gnu.org/software/libc/
14. Gopan, D., DiMaio, F., Dor, N., Reps, T., Sagiv, M.: Numeric domains with

summarized dimensions. In: Proc. of TACAS’04. LNCS, vol. 2988, pp. 512–529.
Springer (Mar 2004)

15. Jeannet, B., Miné, A.: Apron: A library of numerical abstract domains for static
analysis. In: Proceedings of the 21st International Conference on Computer Aided
Verification. pp. 661–667. CAV ’09, Springer-Verlag (2009)

16. Journault, M., Miné, A., Monat, M., Ouadjaout, A.: Combinations of reusable
abstract domains for a multilingual static analyzer. In: Proc. of VSTTE’19. pp.
1–17 (2019)

17. Journault, M., Ouadjaout, A., Miné, A.: Modular static analysis of string manip-
ulations in C programs. In: Proc. of SAS’18. LNCS (2018)

18. Leavens, G., Ruby, C., Leino, K.R.M., Poll, E., Jacobs, B.: JML: Notations and
tools supporting detailed design in Java. Proc. of OOPSLA’18 pp. 105–106 (2000)

19. Miné, A.: Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In: Proc. of LCTES’06. pp. 54–63. ACM (Jun 2006)

A Stub Examples

This appendix presents additional representative examples of the stubs we de-
veloped for the GNU C library.

A.1 Predicates

To simplify stub coding, following other logic-base specification languages, Mopsa
allows defining logic predicates, that can be then used in stubs. For instance, we
define the following useful predicates on C strings: valid string(s) states that

https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/libc/

22 A. Ouadjaout and A. Miné

s is zero-terminated, and is useful as argument precondition; in string(x,s)

states that x points within string s before its null character, which is useful to
state post-conditions.

1 /*$

2 * predicate valid_string(s):

3 * s != NULL ∧ offset(s) ∈ [0, size(s) - 1]

4 * ∧ ∃ k ∈ [0, size(s) - offset(s) - 1]: s[k] == 0;

5 */

6
7 /*$

8 * predicate in_string(x,s):

9 * ∃ k ∈ [0, size(s) - offset(s) - 1]:

10 * (x == s + k

11 * ∧ ∀ l ∈ [0, k - 1]: s[l] != 0);

12 */

A.2 Memory Management

Memory allocation functions show examples of resource allocation, and the use
of cases to simplify the specification of functions with several behaviors.

1 /*$

2 * case {

3 * alloc: void* r = new malloc;

4 * ensures: size(r) == __size;

5 * ensures: return == r;

6 * }

7 *

8 * case {

9 * assigns: _errno;

10 * ensures: return == NULL;

11 * }

12 *

13 * case {

14 * assumes: __size == 0;

15 * ensures: return == NULL;

16 * }

17 */

18 void *malloc (size_t __size);

1 /*$

2 * case {

3 * assumes: __ptr == NULL;

4 * }

5 *

6 * case {

7 * assumes: __ptr != NULL;

8 * requires: __ptr ∈ malloc;

A Library Modeling Language for the Static Analysis of C Programs 23

9 * requires: alive(__ptr);

10 * requires: offset(__ptr) == 0;

11 * free: __ptr;

12 * }

13 */

14 void free (void *__ptr);

1 /*$

2 * case {

3 * assumes: __ptr == NULL;

4 * assumes: __size == 0;

5 * ensures: return == NULL;

6 * }

7 *

8 * case {

9 * assumes: __ptr == NULL;

10 * alloc: void* r = new malloc;

11 * ensures: size(r) == __size;

12 * ensures: return == r;

13 * }

14 *

15 * case {

16 * assumes: __ptr != NULL;

17 * assumes: __size == 0;

18 * requires: __ptr ∈ malloc;

19 * free: __ptr;

20 * ensures: return == NULL;

21 * }

22 *

23 * case {

24 * assumes: __ptr != NULL;

25 * requires: __ptr ∈ malloc;

26 * local: void* r = new malloc;

27 * ensures: size(r) == __size;

28 * ensures: size(__ptr) >= __size ⇒
29 * ∀ i ∈ [0, __size):

30 * ((unsigned char*)r)[i] == ((unsigned char*)__ptr)[i];

31 * ensures: size(__ptr) <= __size ⇒
32 * ∀ i ∈ [0, size(__ptr)):

33 * ((unsigned char*)r)[i] == ((unsigned char*)__ptr)[i];

34 * free: __ptr;

35 * ensures: return == r;

36 * }

37 *

38 * case {

39 * assigns: _errno;

40 * ensures: return == NULL;

41 * }

42 */

43 void *realloc (void *__ptr, size_t __size);

24 A. Ouadjaout and A. Miné

A.3 File Descriptors

File descriptors are another example of resource allocation, but use a specific
class that the analyzer can track to allocate integer file descriptors according to
the C library policy: the least unused integer is picked. This allows modeling
precisely patterns such as close(0); int f = open("...");. read reads non-
deterministic values, after checking that the file has been opened and not closed.

1 /*$

2 * requires: valid_string(__file);

3 *

4 * case {

5 * alloc: int fd = new FileDescriptor;

6 * ensures: return == fd;

7 * }

8 *

9 * case {

10 * assigns: _errno;

11 * ensures: return == -1;

12 * }

13 */

14 int open (const char *__file, int __oflag, ...);

1 /*$

2 * requires: __fd ∈ FileDescriptor;

3 * requires: alive(__fp as FileDescriptor);

4 * requires: size(__buf) >= offset(__buf) + __nbytes;

5 *

6 * case {

7 * assigns: ((char*)__buf)[0, __nbytes);

8 * ensures: return ∈ [0, __nbytes];

9 * }

10 *

11 * case {

12 * assigns: _errno;

13 * ensures: return == -1;

14 * }

15 */

16 ssize_t read (int __fd, void *__buf, size_t __nbytes);

1 /*$

2 * requires: __fd ∈ FileDescriptor;

3 * requires: alive(__fp as FileDescriptor);

4 *

5 * case {

6 * free: __fd as FileDescriptor;

7 * ensures: return == 0;

8 * }

9 *

10 * case {

A Library Modeling Language for the Static Analysis of C Programs 25

11 * assigns: _errno;

12 * ensures: return == -1;

13 * }

14 */

15 int close (int __fd);

A.4 Command-line Arguments

We provide the simplified model of the getopt function we used in Coreutil
analyses.

1 /*$

2 * requires: ___argc > 0;

3 * requires: optind ∈ [0, ___argc];

4 * requires: valid_string(__shortopts);

5 * requires: ∀ i ∈ [0, ___argc - 1]: valid_string(___argv[i]);

6 * assigns: optind;

7 * assigns: opterr;

8 * assigns: optopt;

9 * assigns: optarg;

10 * ensures: optind′∈[1, ___argc];

11 * ensures: optarg′ != NULL ⇒ ∃ i ∈ [0, ___argc - 1]:

12 * in_string(optarg′, ___argv[i]);

13 * ensures: return ∈ [-1, 255];

14 * case {

15 * assigns: ___argv[0, ___argc - 1];

16 * ensures: ∀ i ∈ [0, ___argc - 1]: ∃ j ∈ [0, ___argc - 1]:

17 * (___argv[i])′ == ___argv[j];

18 * }

19 */

20 int getopt (int ___argc, char *const *___argv, const char *__shortopts);

	A Library Modeling Language for the Static Analysis of C Programs
	Introduction
	Syntax and Concrete Semantics
	Syntax
	Environments
	Evaluation
	Relational semantics

	Generic Abstract Semantics
	Abstract Domain
	Evaluations
	Transfer Functions

	Specific Abstract Semantics: the Case of C Strings
	Experiments
	Juliet
	Coreutils

	Conclusion
	Stub Examples
	Predicates
	Memory Management
	File Descriptors
	Command-line Arguments

