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When the sizes of photonic nanoparticles are much smaller than the excitation wavelength, their optical
response can be efficiently described with a series of polarizability tensors. Here, we propose a universal
method to extract the different components of the response tensors associated with small plasmonic or dielectric
particles. We demonstrate that the optical response can be faithfully approximated, as long as the effective
dipole is not induced by retardation effects, hence do not depend on the phase of the illumination. We
show that the conventional approximation breaks down for a phase-driven dipolar response, such as optical
magnetic resonances in dielectric nanostructures. To describe such retardation induced dipole resonances in
intermediate-size dielectric nanostructures, we introduce “pseudopolarizabilities” including first-order phase
effects, which we demonstrate at the example of magnetic dipole resonances in dielectric spheres and ellipsoids.
Our method paves the way for fast simulations of large and inhomogeneous metasurfaces.

DOI: 10.1103/PhysRevB.101.235418

I. INTRODUCTION

In a multitude of topical areas in contemporary physics
and chemistry, the concept of the polarizability has proven
to be extremely useful. In particular, in the physics of gases
and surfaces, the dynamic polarizability tensor of molecules
appears explicitly in the description, for example, of the Van
der Waals dispersion energy, or in the description of the
Raman scattering process [1–6]. During the 1970s, A. D.
Buckingham wrote a founding paper on this subject in which
an exhaustive list of linear polarizabilities is proposed [7].
Although this work was restricted to atomic and molecular
systems, it represents a valuable stand of the various possible
contributions as well as their ranking, in terms of electric and
magnetic multipolar polarizabilities.

The theoretical study of the linear optical response of
small metallic or dielectric particles has also been extensively
investigated in the last decades. In particular, in the context
of plasmonics, the concept of polarizability is often applied
to the description of plasmon spectra of sub-wavelength sized
noble metal particles [8–14]. In many situations, single metal
particles can be schematized by a sphere of radius a, in
which case their optical response can be described by a
scalar, frequency-dependent polarizability α(ω0). Then, the
polarizability tensor is diagonal and all tensor elements are
identical. In cgs units, it reads [15]

αi j (ω0) = a3

(
ε2(ω0) − ε1

ε2(ω0) + 2ε1

)
, (1)

*p.wiecha@soton.ac.uk
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where ε1 (respectively ε2) is the dielectric constant of the
medium (respectively the nanosphere). From relation (1), we
can extract the extinction spectrum via the imaginary part of
α(ω0). Consequently, the extinction spectra of a sample con-
taining a large number N of such noninteracting nanoparticles
αi(ω0) is given by [15,16]

Iext(λ0) = 8π2

n1λ0

N∑
i

Im(αi(ω0)) , (2)

where λ0 represents the incident wavelength, n1 the refractive
index of the environment, and “Im” the imaginary part.

The sphere represents the highest symmetry, belonging to
the isotropic symmetry group. As stated above, in this case, all
the diagonal elements of the polarizability are identical, and
the system displays a scalar response defined by αi j = αδi j

[see Eqs. (1) and (2)]. When transforming the sphere into
an ellipsoid of symmetry group D∞h, the polarizability must
be defined with two independent components [17], and for
even lower symmetry, all components αi j of the polarizabil-
ity tensor must be calculated. This situation corresponds to
high anisotropy induced by a complex shape of particles (or
nanocavities). Note that other kinds of anisotropy can come
from the intrinsic anisotropy of the dielectric constant of the
particle but also from the surface of another object [18]. In the
latter case, the concept of effective polarizability is generally
introduced, and the final symmetry of the particle is dressed by
the symmetry of the surface (i.e., D∞h, for a perfectly planar
surface).

As illustrated by these examples, the design of nanos-
tructure polarizabilities starts with the conception of a refer-
ence geometry by intuitive considerations. Such an approach,
however, is limited to rather simple problems. In case of
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FIG. 1. Sketch used to implement the concept of generalized
electromagnetic propagator. (a) Transparent reference medium with
ε1(ω0) = n2

1 and μ1 = 1, and (b) material system of arbitrary shape,
also called the source zone, embedded in the reference medium
[permittivity εs(ω0) and permeability μs(ω0)].

complex structures or complicated phenomena, the intuitive
method often fails, as unexpected effects such as polarization
conversion occur in the polarizability tensors. In this work,
we propose a numerical method to extract the polarizability
tensors for complex shaped metallic and dielectric nanos-
tructures through a volume discretization technique, which
uses the concept of a generalized propagator. Furthermore,
in order to faithfully describe also magnetic optical effects
in dielectric nanostructures, where the conventional dipolar
polarizability approximation fails, we introduce “pseudopo-
larizabilities” that include phase-induced magnetic dipole
resonances, similar to some homogenization approaches for
metamaterials [19,20], but at the level of a single, isolated
structure. Our pseudopolarizabilities might then be used to
construct aperiodic or random meta-surface-like assemblies
without periodicity.

II. A GENERALIZED ELECTROMAGNETIC
PROPAGATOR FOR ARBITRARY SHAPED

PARTICLES OR CAVITIES

The concept of the generalized electric field propagator
previously described in Ref. [21] can be easily extended to
the general case of metasystems displaying both an electric
and a magnetic linear response. In this case, the source
zone as depicted in Fig. 1 is characterized by the following
susceptibility tensor, where I is the identity tensor:

χ(ω0) =
(

χe(ω0) I 0

0 χm(ω0)I

)
, (3)

where χe(ω0) and χm(ω0) are related to the permittivity
εs(ω0), respectively, the permeability μs(ω0) of the source
zone:

χe(ω0) = εs(ω0) − ε1(ω0)

4π
(4)

and

χm(ω0) = μs(ω0) − μ1(ω0)

4π
. (5)

Introducing two super vectors F0(r, ω0) = (E0(r, ω0),
H0(r, ω0)) and F(r, ω0) = (E(r, ω0), H(r, ω0)) (where E

and H refer to electric and magnetic fields) to describe
the incident and total electromagnetic fields, we can define
a unique (6 × 6) dyadic tensor K(r, r′, ω0) operating in
the volume V of the source zone and establishing the link
between F0(r, ω0) and F(r, ω0):

F(r, ω0) =
∫

V
K(r, r′, ω0) · F0(r′, ω0)dr′ . (6)

Actually, the (6 × 6) superpropagator K(r, r′, ω0) is com-
posed of four mixed (3 × 3) dyadic tensors:

K(r, r′, ω0) =
(

KEE (r, r′, ω0) KEH (r, r′, ω0)

KHE (r, r′, ω0) KHH (r, r′, ω0)

)
(7)

in which the first one, KEE (r, r′, ω0) that describes the
electric-electric field couplings was introduced in the early
beginning of near-field optics [21]. The three other contribu-
tions, i.e., KEH (r, r′, ω0), KHE (r, r′, ω0), and KHH (r, r′, ω0),
account for coupling with the magnetic field. All these
propagators are related to the corresponding mixed field
susceptibilities SEE , SEH , SHE , and SHH [9,22], associated
with the source zone:

KEE (r, r′, ω0) = δ(r − r′)I + χe(ω0) · SEE(r, r′, ω0),

KEH (r, r′, ω0) = χm(ω0) · SEH (r, r′, ω0),

KHE (r, r′, ω0) = χe(ω0) · SHE (r, r′, ω0),

KHH (r, r′, ω0) = δ(r − r′)I + χm(ω0) · SHH(r, r′, ω0). (8)

As explained in Refs. [21,22], these dyadic tensors can be
numerically computed by performing a volume discretization
of the source zone together with a Dyson sequence procedure
[21] or other numerical inversion techniques, to extract the
various field susceptibilities in the source zone.

III. EXTRACTION OF POLARIZABILITIES
OF SMALL NANOSTRUCTURES

The volume discretization of the source region leads to a
mesh of N identical elementary volumes 	v. Such a proce-
dure converts integrals over the source volume V into discrete
summations. In Ref. [16] we have gathered the expressions
of the discretization volume elements 	v for both cubic
and hexagonal compact discretization grids together with the
corresponding Green’s function renormalization terms. The
electric polarization at the ith cell in the source region can
be written as follows:

P (ri, ω0) = 	v2χe(ω0)

×
N∑

j=1

(KEE (ri, r j, ω0) · E0(r j, ω0)

+ KEH (ri, r j, ω0) · H0(r j, ω0)) . (9)

Concerning the magnetic polarization M (ri, ω0) induced
in the source region, it may be split into two contributions
related to χe(ω0) and χm(ω0), respectively,

M (ri, ω0) = Me(ri, ω0) + Mm(ri, ω0) (10)
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with

Me(ri, ω0) = − ik0

2
	v2χe(ω0)

×
N∑

j=1

(ri ∧ KEE (ri, r j, ω0) · E0(r j, ω0)

+ ri ∧ KEH (ri, r j, ω0) · H0(r j, ω0)) (11)

and

Mm(ri, ω0) = 	v2χm(ω0)

×
N∑

j=1

(KHE (ri, r j, ω0) · E0(r j, ω0)

+ KHH (ri, r j, ω0) · H0(r j, ω0)) , (12)

where the first contribution in Eq. (11), proportional to k0 =
ω0/c, originates from polarization vortices induced by phase
changes inside the source region. These magnetic polarization
effects have been extensively studied recently in the case of
high index dielectric nanostructures [8,23–27]. Note that the
choice of the center of the coordinate system is important, as
it has an impact on the magnetic polarization Me. Usually, it
is convenient to use the center of mass rc of the nanostructure
[28] and we will adopt this choice for the following examples
where we set rc as the center of the coordinate system.

The total electric polarization P (ω0) (respectively mag-
netic polarization M (ω0)) is obtained by adding the local
electric polarizations (9) [respectively, the magnetic polar-
izations (10)] of all the elementary cells of the volume dis-
cretization. These polarizations are related to the super vector
F0(rc, ω) at the center of mass rc of the nanostructure by the
(6 × 6) super polarizability α(ω0):

(
P (ω0)

M (ω0)

)
=

α(ω0 )︷ ︸︸ ︷(
αEE (ω0) αEH (ω0)

αHE (ω0) αHH (ω0)

)
·

F0(rc,ω0 )︷ ︸︸ ︷(
E0(rc, ω0)

H0(rc, ω0)

)
,

(13)

where the polarizabilities αEE (ω0), αEH (ω0), αHE (ω0) and
αHH (ω0) are four (3×3) dyadic tensors, defined by

αEE (ω0) = 	v2χe(ω0)
N∑
i, j

KEE (ri, r j, ω0)eik·r j , (14a)

αEH (ω0) = 	v2χe(ω0)
N∑
i, j

KEH (ri, r j, ω0)eik·r j , (14b)

αHE (ω0) = 	v2
N∑
i, j

{
χm(ω0)KHE (ri, r j, ω0)

− ik0

2
χe(ω0)ri ∧ KEE (ri, r j, ω0)

}
eik·r j , (14c)

αHH (ω0) = 	v2
N∑
i, j

{
χm(ω0)KHH (ri, r j, ω0)

− ik0

2
χe(ω0)ri ∧ KEH (ri, r j, ω0)

}
eik·r j. (14d)

To be more precise, these are pseudopolarizabilities since
they depend on the direction of illumination due to the phase
term exp(ik · r j ). Conventional polarizabilities depend only
on the geometry and the material of the nanostructure [11,12].
This phase term is the direct cause of the emergence of
polarization vortices, which are responsible for the existence
of magnetic multipole moments in dielectric nanostructures
[23,29]. In order to be able to describe the magnetic polariza-
tion due to the mixed field susceptibility, we keep the phase
term in the expression of the pseudo polarizabilities. We note
that this approximation is assuming plane wave illumination
and requires that the wave vector of the incident field is
known already during the calculation of α(ω0). However, we
will show later, that a further approximation can be used to
generalize these pseudopolarizabilities to any oblique illumi-
nation without prior knowledge of the angle of incidence.
We note that it is possible to replace the phase term by an
evanescent field, which however would lead to some loss of
generality concerning the geometric orientation with respect
to the incident field. Finally, fields like, for instance, a tightly
focused Gaussian beam, can be described as a series of plane
waves, in which case the pseudopolarizabilities can be applied
without further modification of the formalism.

For the calculation of the polarizabilities, we used our own
python implementation “pyGDM” of the volume discretiza-
tion procedure described above [30].

IV. RESULTS

A. Electric-electric polarizability for
structures of arbitrary shape

In a first step, we compare the spectral variation of the
imaginary part of the dipolar polarizability Im[αEE (ω0)] at
the example of an isolated spherical gold particle (radius
r = 5 nm). Figure 2(a) shows a comparison of the first di-
agonal term αxx, calculated analytically [Eq. (1), blue line]
or numerically [using Eq. (14a), red line]. For the sphere
suspended in vacuum, the diagonal terms of αEE are identical,
and off-diagonal terms vanish. Our numerical discretization
approach reproduces the well-known plasmon resonance for
gold nano-particles around λ0 = 520 nm [31]. The slight
quantitative difference between the two representations is due
to the inaccuracy of the analytical formula on nonatomic size
scales. If we add a silica substrate in the calculation [see
inset in Fig. 2(b)], the symmetry is reduced from spherical
to a cylindrical. In consequence, the polarizability tensor is
no longer diagonal and αEE

xx = αEE
yy �= αEE

zz , which is depicted
in Fig. 2(b). Here we use Green’s tensor based on the mirror
charges technique to take into account the substrate, which
is a quasistatic approximation. However, in our method a
fully retarded Green’s dyad can also be used to improve the
accuracy for larger particles on higher index or plasmonic
substrates [32]. We show a comparison of quasistatic and fully
retarded calculation of the polarizability in Appendix C. In
Appendix D, we show furthermore a comparison of a larger
gold nanosphere to Mie theory.

The volume discretization allows us to treat nanostructures
of arbitrary shape [30,33]. Therefore, in a next step we study
the evolution of the different terms of the electric-electric
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FIG. 2. Spectral variation of the imaginary part of the dipo-
lar polarizability of a spherical gold particle of radius 5nm.
(a) Nanosphere suspended in vacuum (n1 = 1). Comparison of the
analytical Clausius-Mossotti polarizability (blue) with the numerical
calculation (red). (b) Numerically calculated in-plane (red) and out-
of-plane (green) polarizability tensor elements for a nanosphere de-
posited on a silica substrate (n2 = 1.48). Insets show sketches of the
particle environment. For the numerical calculations, we discretized
the spheres using 6337 identical mesh cells on a hexagonal compact
grid.

pseudopolarizability tensor αEE (ω0), while gradually increas-
ing the structure complexity, as illustrated in Figs. 3(a)–3(d).
Note that the polarizability tensor is symmetric [see Eqs. (14a)
and (8)], so in Figs. 3(e)–3(l), we plot only the upper tri-
angular elements. First, we calculate the spectral variation
of the polarizability matrix of a gold pad of size (50 nm ×
50 nm × 25 nm), discretized with cubic cells of side length
d = 2.5 nm [cf. Fig. 3(a)]. The real and imaginary parts of
each tensor component are shown in Fig. 3(e), respectively,
Fig. 3(i). Due to the symmetry of the structure the off di-
agonal terms of αEE are zero (cyan lines). Moreover, we
observe that αEE

xx = αEE
yy (blue lines) which is a result of the

rectangular footprint of the structure. Because the height is
only half of the structure’s width, αEE

zz is significantly smaller
(green line). Despite the small dimensions of the pad, local-
ized plasmon resonances arise slightly redshifted at around

550–600 nm. Now if we increase the size of the pad along
Ox by a factor of two, the αEE

xx and αEE
yy terms are not equal

anymore, due to the aspect ratio of the elongated pad. In
this case, the resonance for excitation along the long edge
is even more red-shifted to around 650 nm, which reflects
the effective wavelength scaling of the localized plasmon
resonance [34]. Next, we calculate the polarizability tensor for
a symmetric L-shaped gold structure [illustrated in Fig. 3(c)].
In this structure, coupling between the horizontal and the
vertical arm leads to a nonzero off-diagonal term αEE

xy , as can
be seen in Figs. 3(g) and 3(k) (magenta lines). Due to this
off-diagonal term, two additional resonances emerge around
690 and 1170 nm at which polarization conversion between
the Y and the X arms of the antenna occurs [35,36]. The two
peaks at 690 and 1170 nm correspond to the anti-bonding,
respectively bonding modes between the two arms [37,38].
We note that the opposite phase of the bonding and the anti-
bonding mode is correctly reflected also in the spectrum of the
polarizability off-diagonal element. Polarization conversion is
only occurring between X and Y , hence the other off-diagonal
elements remain zero (cyan lines). Moreover, both arms are
of the same length which leads to αEE

xx = αEE
yy (blue lines).

Finally, we construct a three-dimensional structure which
introduces interactions between each Cartesian direction, as
depicted in Fig. 3(d). In this case, each matrix element shows a
unique spectral behavior, representing the complex interaction
mechanisms between the antenna arms in different directions
[Figs. 3(h) and 3(l)].

While the effective polarizability approximation is mainly
interesting for the description of far-field characteristics where
the dipolar response usually dominates, it can also be used to
a certain extent to calculate the electromagnetic field in the
vicinity of a nanostructure. However, as shown in Appendix F,
the accuracy in the near-field decreases dramatically if the
field is to be evaluated too close to the nanostructure or
when the local optical response cannot be described by a
single dipolar point-source. In case of static polarizabilities
[neglecting the phase term in Eq. (14)] it is possible to re-
introduce optical interactions between several polarizabilities
via a coupling scheme as used in the Green’s dyadic method
(GDM) [21,30]. We demonstrate this in Appendix G, where
we also discuss the limitations of the coupled effective polar-
izability model in terms of minimum inter-particle distances
and near-field accuracy.

We note at this point, that the approach is also capable to
deal with nanocavities carved into a bulk medium, by using a
nonunitary permittivity for the environment and χe = χm = 0
in the hollow source region.

B. Magnetic-electric polarizability of a dielectric sphere

We now want to assess the role of the magnetic terms
in the super polarizability. Since in nature no material with
a significant direct magnetic optical response is known, we
will assume χm = 0, hence the magnetic field of light cannot
directly interact with the nanostructure. In consequence, the
polarizability tensors (14) drastically simplify. The mixed
terms involving KEH and KHE all disappear, since they in-
clude the product χeχm [see also Eq. (8)]. In fact, only the
two terms that depend on KEE remain. Hence, for media with
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FIG. 3. Spectral variation of the real (e)–(h) and imaginary part (i)–(l) of the terms of the dipolar polarizability matrix for various structures
represented in (a)–(d). Geometries consist in (a) a single isotropic pad of size (50 nm × 50 nm × 25 nm), (b) an anisotropic pad of size
(50 nm × 100 nm × 25 nm), (c) an “L” shape structure included in the xOy plane, (d) a “3D” shape structure with ramifications in the three
directions of space. For the first three structures computations were performed with a discretization step d = 2.5 nm while we used a step
d = 2 nm in the last case for a good convergence of the calculation. The color diagrams show the degenerate components of the polarizability
tensor.

χm = 0, the electric polarization is fully described by αEE and
the magnetic polarization is entirely governed by αHE .

As an example we show in Fig. 4(a) the extinction cross
section of a dielectric nano-sphere (n = 4) of radius r =
100 nm in vacuum, calculated from the discretized electric
polarization density (blue line) [33]. We show additionally the
decomposition of the extinction into an effective electric and
magnetic dipole moment at the sphere’s center of mass (or-
ange, respectively green lines) [28,39]. The dielectric sphere
has an electric dipole (ED) resonance at 600 nm and a mag-
netic dipole (MD) resonance at 790 nm, which are indicated
by black vertical dashed lines. The real part of the electric
field inside the nanosphere at these resonances is qualitatively
shown in 3D vector plots above Fig. 4(a). In Figs. 4(b)
and 4(c), we show the extinction cross section obtained
from the effective polarizabilities αEE , respectively αHE . We
compare the “static” effective polarizabilities without phase
term (dashed colored lines) and the above introduced pseu-
dopolarizabilities including the phase term exp(i k · r j ) [solid
colored lines, see Eqs. (14)]. The dotted black lines show
the ED and MD response from the full internal fields. While
the ED resonance in Fig. 4(b) is very well reproduced by
both, the static and the phase-sensitive electric-electric pseu-
dopolarizability, the MD resonance cannot be reproduced if
the phase term in Eq. (14c) is omitted [dashed green line in

Fig. 4(c)]. Only if the phase term is taken into account, the
extinction calculated from the pseudopolarizability matches
the magnetic dipole resonance in the dielectric sphere [solid
green line in Fig. 4(c)]. This is because the magnetic dipole
is induced by the vortex formed by the electric displacement
current [see illustration of the MD above Fig. 4(a), right],
which is a direct consequence of the phase difference of the
incident field across the relatively large nanosphere.

To test our model for energy conservation, we show in
Appendix H a comparison of extinction and scattering cross
sections at the example of a r = 100 nm and n = 4 lossless,
dielectric nanosphere.

C. Approximation of αHE for arbitrary angles of incidence

In contrast to “classical” static polarizabilities [9,11], the
here introduced pseudopolarizabilities depend on the illumi-
nation wave vector k0 as a result of the above discussed
phase term. In consequence, to solve the general problem,
the pseudo polarizability needs to be separately calculated
for every incident field which limits the usefulness of the ap-
proximation. However, we can approximate arbitrary incident
angles through a first order expansion of the phase term. While
we keep the phase term in the definition of the polarizabilities,
we assume that the first order term of its Taylor expansion
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magnetic dipoleelectric dipole

FIG. 4. Dielectric nanosphere (n = 4) of radius r = 100 nm in
vacuum, illuminated by a plane wave of linear polarization. (a) Ex-
tinction spectrum (blue line) and electric (ED) as well as magnetic
dipole (MD) contributions to the extinction (orange, respectively
green line), calculated as described in Ref. [28]. (b) Electric dipole
extinction via the polarizability tensor αEE with (solid orange line)
and without the phase term (dashed orange line). The ED extinction
from (a) is shown as dashed black line for comparison. (c) Magnetic
dipole extinction via the polarizability tensor αHE with (solid green
line) and without the phase term (dashed green line). The MD
extinction from (a) is shown as dashed black line for comparison.
At the top, the internal electric field distribution (real parts) is shown
at the ED (left) and MD resonance (right).

is sufficient to describe the magnetic dipolar response. Thus,
while allowing retardation effects to a certain extent, we still
stick with the assumption that the wavelength is large with
respect to the nanostructure (i.e., λ0 � |r|). Since the optical
interaction is still modelled as a point response, the wave
vector of the illumination is assumed to be constant across
the nanostructure. Furthermore, the approximation requires
that the location of the effective dipole is independent of the
wave vector. We assume here that the effective electric and
magnetic dipole moments P (ω0), respectively M (ω0) lie at
the particle’s center of mass rc for any angle of incidence and

polarization of the illumination. Without loss of generality we
now consider an incident wave vector in the XZ plane, were
we get

P ≈
((

kx

|k0|
)2

αEE
kx

+
(

kz

|k0|
)2

αEE
kz

)
· E0 (15a)

and

M ≈
(

kx

|k0|α
HE
kx

+ kz

|k0|α
HE
kz

)
· E0 . (15b)

For a derivation of these approximations based on a first
order expansion of the phase term exp(ik · r j ) in Eqs. (14),
see Appendices A and B. The dependence on ω0 and rc

has been omitted for the sake of readability. ki is the wave
vector component and αXX

ki
the pseudopolarizability for the

Cartesian direction i ∈ {x, z}. Both are evaluated at the po-
sition rc of the effective dipole (here the center of mass).
Using this superposition scheme, the response of the nanos-
tructure to any oblique plane wave illumination is described
by three “pseudo-super-polarizability tensors” αki (one for
every Cartesian coordinate axis i). Once the approximations
Eqs. (15) for the effective dipole moments are calculated,
the extinction cross sections due to the induced electric and
magnetic polarizations can be calculated as [28]

Iext,P (ω0) = 8π2

n1λ0
Im(E0(rc, ω0)∗ · P (ω0)), (16a)

Iext,M (ω0) = 8π2

n1λ0
Im(H0(rc, ω0)∗ · M (ω0)) , (16b)

where the superscript asterisk (∗) indicates complex
conjugation.

In Fig. 5, we show spectra of the extinction cross section of
a dielectric spheroid (refractive index n = 4) in vacuum, with
a diameter of D1 = 250 nm along the OX -oriented long axis
and two identical short axes with diameters (D2 = 120 nm),
as illustrated at the left of Fig. 5. The extinction is shown for
different incident angles for s (top row) and p (bottom row)
polarizations. Clearly, the pseudopolarizability superposition
approximation (solid lines; αEE : orange, αHE : green) yields
excellent agreement with the ED and MD decomposition of
the extinction from full-field simulations (dashed orange and
green lines, respectively). Once again, the static polarizability
approximation breaks down in case of the magnetic dipole
resonance αHE

static (green dotted lines). In case of the electric
dipole response, the static polarizability αEE

static gives a rea-
sonable approximation. However, if the incidence direction is
along the long axis of the ellipsoid, phase effects start to play
a non-negligible role, and significant deviations occur in the
static polarizability approximation.

Despite the size of the nanostructure seemingly outside the
range of validity of the first order expansion of the exponential
in Eqs. (14), we observe an excellent agreement with the full
simulation. We recall that the pseudopolarizability approxi-
mation is assuming an effective, punctual optical response
at the center of mass of the nanostructure. At this specific
position we then superpose the effective dipoles for different
angles of incidence. As long as the effective position of the
electric dipole moment stays at the center of mass and the field
vortex spins around the center of mass position, the region
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FIG. 5. Dielectric nanospheroid (n = 4) of long axis diameter D1 = 250 nm (along Ox) and short axis diameter D2 = 120 nm (along Oy
and Oz) placed in vacuum, illuminated by a plane wave of linear polarization (top: s polarization, bottom: p polarization) for varying incident
angles ϑinc. The total extinction cross section (blue solid line) is compared to the extinction induced by the effective electric and magnetic
dipole moments, obtained through full-field simulations (dashed orange and green lines), to the pseudopolarizability (solid orange and green
lines) as well as to the “static” polarizabilities (dotted orange and green lines). The pseudopolarizability superposition approximation is used
in the three cases of oblique incidence (22.5◦, 45◦, and 67.5◦).

where we apply our superposition scheme for different angles
of incidence is confined to a volume where kD � 1 (with D
dimension of the nanostructure). We observe that in cases of
more irregularly shaped nanostructures than the above ellipse,
the effective positions of the electric and magnetic dipole
moment are not necessarily at or even close to the center of
mass, and can furthermore vary significantly with the angle
of incidence. We therefore show in Appendix E simulations
of two less symmetric dielectric nanostructures under oblique
incidence, which still show very good agreement to full field
simulations, but in which inaccuracies in the superposition
approximation start to occur. In various tests, we observed
that before the superposition approximation would lead to
significant errors, the dipolar approximation breaks down as
a result of the occurrence of higher order modes.

V. CONCLUSION AND PERSPECTIVES

In conclusion, we introduced a mathematical scheme for
a generalized description of light-matter interaction in nanos-
tructures through both, optical electric and magnetic fields.
We showed how the optical response of nanostructures can be
approximated through a universal “superpolarizability” ten-
sor, which combines the optical response through electric and
magnetic dipole moments. Using a volume discretization, the
super polarizability can be numerically calculated for nanos-
tructures of arbitrary shape and material. We demonstrated
that our pseudo polarizability, which includes phase effects, is
capable to faithfully describe also magnetic dipole resonances
in dielectric nanostructures of important size, where a conven-
tional, static point-response model is breaking down. In con-
trast to similar, computationally more complex multidipole
methods [14], our approach of effective electric and magnetic
polarizabilities is capable to capture the optical response of
complex nanostructures in a single quantity, which strongly
facilitates the further evaluation of the optical behavior, for
instance, under changing illumination conditions. We foresee
that our framework can be used to calculate large assem-
blies of different and/or randomly positioned nanostructures.
Our work will therefore be very useful in the simulation of
highly heterogeneous, nonperiodic assemblies of plasmonic

nanostructures and will be helpful also for the description
of weakly coupled assemblies of dielectric nanostructures
in the Born approximation. It might pave the way to the
development of design methods for complex, nonperiodic,
hybrid metasurfaces.

All data supporting this study are openly available from the
University of Southampton repository [40].
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APPENDIX A: INTERPOLATION OF
MAGNETIC-ELECTRIC POLARIZABILITIES

For a nonmagnetic nanostructure the electric-magnetic po-
larizability writes (see also main paper):

αHE (ω0) =
N∑
i, j

− ik0

2
χe	v2{ri ∧ KEE (ri, r j )}eik·r j

=
N∑
i, j

AHE
i, j eik·r j ,

(A1)

where we neglected the dependence on ω0 for the sake of read-
ability. Due to the phase term exp(ik · r), the polarizability
αHE is dependent on the incident angle and writes for a wave
vector k of arbitrary angle ϑ :

αHE
ϑ =

N∑
i, j

AHE
i, j eik·r j =

N∑
i, j

AHE
i, j ei(kxx j+kyy j+kzz j ) . (A2)
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Now we consider three αHE
ri

corresponding to plane wave
incidence along each of the three Cartesian directions:

αHE
x =

N∑
i, j

AHE
i, j eikx j , αHE

y =
N∑
i, j

AHE
i, j eiky j ,

αHE
z =

N∑
i, j

AHE
i, j eikz j , (A3)

where k = 2πn
λ0

and n is the medium index.
We now develop the sum of the polarizabilities for plane

wave incidence along the Cartesian coordinate axis. We de-
fine also three parameters allowing to describe an arbitrary
illumination direction:

βx = kx

k
, βy = ky

k
, βz = kz

k
, (A4)

In addition, we assumed that k2
x + k2

y + k2
z = k2. We can now

write

βxα
HE
x + βyα

HE
y + βzα

HE
z

=
N∑
i, j

AHE
i, j [βxeikx j + βyeiky j + βze

ikz j ] . (A5)

Assuming that λ0 � |r|, we can approximate the exponentials
by their first order Taylor series:

βxα
HE
x + βyα

HE
y + βzα

HE
z

≈
N∑
i, j

AHE
i, j [βx(1 + ikx j ) + βy(1 + iky j ) + βz(1 + ikz j )]

=
N∑
i, j

AHE
i, j [βx + βy + βz + i(βxkx j + βyky j + βzkz j )] .

(A6)

By adding “1 − 1”, we can write

βxα
HE
x + βyα

HE
y + βzα

HE
z

≈
N∑
i, j

AHE
i, j [βx + βy + βz − 1 + 1 + i(kxx j + kyy j + kzz j )︸ ︷︷ ︸

≈ei(kx x j +kyy j +kzz j )

]

≈
N∑
i, j

AHE
i, j [βx + βy + βz − 1 + ei(kxx j+kyy j+kzz j )] . (A7)

The constant terms in Eq. (A7) are proportional to the static
magnetic-electric polarizability, which, as we have shown
in the main paper, is negligible compared to usual dipolar
polarizabilities, since the vortices that generate the magnetic
dipolar response in nonmagnetic nanostructures cannot be
described without the phase term exp(ik · r):

N∑
i, j

(
const. × AHE

i, j

) ≈ 0 . (A8)

Hence we find

αHE
ϑ ≈ βxα

HE
x + βyα

HE
y + βzα

HE
z . (A9)

APPENDIX B: INTERPOLATION OF
ELECTRIC-ELECTRIC POLARIZABILITIES

The electric-electric polarizability writes (see also main
paper):

αEE (ω0) = 	v2χe(ω0)
N∑
i, j

KEE (ri, r j, ω0)eik·r j

=
N∑
i, j

AEE
i, j eik·r j , (B1)

where we neglected the dependence on ω0 for the sake of
readability.

Due to the phase term exp(ik · r), the polarizability αEE is
dependent on the incident angle and writes for a wave vector
k of arbitrary angle ϑ :

αEE
ϑ =

N∑
i, j

AEE
i, j eik·r j =

N∑
i, j

AEE
i, j ei(kxx j+kyy j+kzz j ) . (B2)

Now we consider three αEE
ri

corresponding to plane wave
incidence along each of the three Cartesian directions:

αEE
x =

N∑
i, j

AEE
i, j eikx j , αEE

y =
N∑
i, j

AEE
i, j eiky j ,

αEE
z =

N∑
i, j

AEE
i, j eikz j . (B3)

We use the same definition of βx, βy, and βz as in Eq. (A4).
We can now write

β2
x αEE

x + β2
y αEE

y + β2
z αEE

z

=
N∑
i, j

AEE
i, j

[
β2

x eikx j + β2
y eiky j + β2

z eikz j
]
. (B4)

Assuming that λ0 � |r|, we can approximate the exponentials
by their first order Taylor series:

β2
x αEE

x + β2
y αEE

y + β2
z αEE

z

≈
N∑
i, j

AEE
i, j

[
β2

x (1 + ikx j ) + β2
y (1 + iky j ) + β2

z (1 + ikz j )
]

=
N∑
i, j

AEE
i, j

[
β2

x + β2
y + β2

z︸ ︷︷ ︸
=1

+i
(
β2

x kx j + β2
y ky j + β2

z kz j
)]

=
N∑
i, j

AEE
i, j

[
1 + i

(
β2

x kx j + β2
y ky j + β2

z kz j
)]

. (B5)

Now we subtract the first-order Taylor expansion of Eq. (B2)

αEE
ϑ ≈

N∑
i, j

AEE
i, j [1 + i(βxkx j + βyky j + βzkz j )] (B6)
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from both sides of Eq. (B5), which yields

β2
x αEE

x + β2
y αEE

y + β2
z αEE

z − αEE
ϑ

≈
N∑
i, j

iAEE
i, j (βx(βx −1)kx j +βy(βy−1)ky j +βz(βz−1)kz j )

= iβx(βx − 1)k
N∑
i, j

AEE
i, j x j + iβy(βy − 1)k

N∑
i, j

AEE
i, j y j

+ iβz(βz − 1)k
N∑
i, j

AEE
i, j z j . (B7)

To demonstrate that the expression on the right hand side in
Eq. (B7) is negligible, we use Eq. (A8), which states that

N∑
i, j

(
AHE

i, j

)

= −	v2 ik0

2
χe(ω0)

N∑
i, j

{ri ∧ KEE (ri, r j, ω0)} ≈ 0. (B8)

Properly speaking, with “approximately zero” we mean that
the term is negligible within the small particle approximation.
Using now the symmetry of KEE (ri, r j, ω0) and the antisym-
metry of the cross product “ri ∧”, we can anticommute those
two terms:

N∑
i, j

(
AHE

i, j

) = 	v2 ik0

2
χe(ω0)

N∑
i, j

KEE (ri, r j, ω0) · {ri ∧}

= ik0

2

N∑
i, j

AEE
i, j · {ri ∧} ≈ 0, (B9)

where

{ri ∧} =
⎛
⎝ 0 −zi yi

zi 0 −xi

−yi xi 0

⎞
⎠ . (B10)

Using the symmetry of KEE (AEE
i, j = AEE

j,i ), we get

ik0

2

N∑
i, j

AEE
i, j x j ≈ 0,

ik0

2

N∑
i, j

AEE
i, j y j ≈ 0,

ik0

2

N∑
i, j

AEE
i, j z j ≈ 0. (B11)

Comparing Eqs. (B7) and (B11), we find(
β2

x αEE
x + β2

y αEE
y + β2

z αEE
z

) − αEE
θ ≈ 0 , (B12)

hence

αEE
ϑ ≈ β2

x αEE
x + β2

y αEE
y + β2

z αEE
z . (B13)

APPENDIX C: PARTICLES ON A SUBSTRATE:
QUASISTATIC APPROXIMATION VERSUS RETARDATION

Using an appropriate Green’s tensor, our approach permits
to include a substrate for the extraction of the polarizability.
The dipole moment of the polarizability, excited with an

FIG. 6. Polarizability of a gold sphere (radius r = 50 nm) cal-
culated using a nonretarded (blue line) and a retarded (green and red
lines) Green’s tensor for the description of the substrate. The blue and
green curves correspond to the αxx component of the electric-electric
polarizability of the nanosphere lying on a dielectric substrate (n2 =
1.45, illustrated in the top left inset). In the case of the red dashed
curve an additional 50 nm thick gold layer is inserted between silica
substrate and gold sphere (see sketch in top right inset). In both cases,
the top medium is air (n1 = 1).

arbitrary illumination, then includes implicitly the optical
interaction with the substrate. For the calculation shown in the
main text Fig. 2(b), we used a Green’s dyad based on a qua-
sistatic mirror-charge approximation to describe the substrate
[32]. To assess whether this is an appropriate approximation in
the case of larger nanostructures, we compare the nonretarded
approach with a fully retarded Green’s tensor [41,42]. At the
example of a larger gold sphere (radius r = 50 nm) lying
on a silica substrate, Fig. 6 shows the αEE

xx polarizability
tensor element, calculated without (blue line) and with (green
line) retardation. While there is a quantitative deviation in the
order of ≈5%, the qualitative trend is unchanged, whether
retardation is included or not. For comparison, we show a
spectrum of αEE

xx of an identical sphere but lying on a 50-nm-
thick gold film, which is deposited on silica (red dashed line).
In the latter, retardation is again included in the simulation.
The simulation reveals a strong impact of the plasmonic film
on the polarizability of the sphere.

APPENDIX D: COMPARISON TO MIE THEORY

We now compare the GDM extracted polarizability of the
r = 50 nm gold sphere to Mie theory and to the full GDM
simulation. To this end we place the nanosphere in vacuum
and illuminate it with a plane wave of linear polarization. As
can be seen in Fig. 7 the agreement of the extinction efficiency
spectra (scattering cross section divided by geometric cross
section) is very good with a small quantitative deviation
along the slope at the long wavelength side of the plasmon
resonance. We note that the agreement of Mie theory and
GDM extracted polarizability and also with the full GDM sim-
ulation is better than comparing with the Clausius-Mossotti
polarizability, shown in main text Fig. 2(a).
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FIG. 7. Extinction efficiency spectra computed for a gold sphere
of diameter D = 100 nm using Mie theory (blue curve), the full
GDM simulation (orange curve) and the effective polarizability
approximation (green curve). The sphere is placed in vacuum and
illuminated by a linear polarized plane wave.

APPENDIX E: CASE OF NONSYMMETRIC
DIELECTRIC STRUCTURES

Interestingly, our model performs excellent even for quite
large structures where kD � 1 (see, e.g., Fig. 5). We assume
that in cases of low symmetry nanostructures, the effective

FIG. 8. An s-polarized (E0 ‖ Y ) plane wave is incident from
below at and oblique angle of 45◦ in the XZ plane. The mesoscale
structures are made from a constant index dielectric with n = 4,
placed in vacuum. The figure shows the extinction spectrum calcu-
lated via full GDM simulation (solid lines) and obtained from the
pseudopolarizability model (dashed lines) for (a) a “full” nanocuboid
and (b) the same cuboid but with on of the top corners removed.

FIG. 9. Near-field intensity distribution, calculated 100 nm
above the top-surface of a plasmonic nanostructure for (a)–(d) a
small gold sphere and (e)–(h) an “L”-shaped gold nanoparticle.
(b) and (f) show the near-field calculated using the dipolar effective
polarizability approximation. (c) and (g) are calculated based on the
full GDM simulation. (d) and (h) show the relative error of the dipole
approximation with respect to the full simulation. (b), (c), (f), and
(g) show the normalized near-field intensity |E|2/|E0|2. The incident
plane wave (normal incidence) is polarized along X at a wavelength
of λ0 = 520 nm for the sphere and λ0 = 690 nm for the “L” shaped
structure. All colorplots show an area of 800 × 800 nm2.

positions of the electric and magnetic dipoles start to move
away from the center of mass and can depend on the angle
of incidence. This may leads to inaccuracies in the superpo-
sition approximation which we use for oblique incidence. We
therefore want to assess here how the approach performs on
dielectric particles of less symmetric geometries.

In Fig. 8, we compare a cuboid of side lengths 240 ×
105 × 195 nm3 [Fig. 8(a)] and a cuboid of same dimensions
but with a missing edge [Fig. 8(b)]. In case of the “bulk”
cuboid in Fig. 8(a), the agreement between dipolar model
and full simulation is excellent. Note that the sharp resonance
between 550 and 600 nm is mainly due to a quadrupolar mode
(concerning both geometries), and hence is not described by
the dipolar polarizability model. The increasing asymmetry in
case of Fig. 8(b) induces small deviations between polariz-
ability model and full simulation [cf. solid and dashed green
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FIG. 10. Coupling of five gold nanorods of dimensions 100 × 50 × 50 nm3 (X × Y × Z), aligned along the OY axis. As illustrated in (a),
the rods are separated by a variable distance D (center-to-center) and are illuminated by a plane wave of linear polarization along Y . [(b)–(e)]
For different distances D between the nanorods, comparison of top: scattering spectra and bottom: near-field intensity |E|2/|E0|2 in a plane
parallel to XY at a height Z = 50 nm above the rod’s top surface. We compare the full GDM simulation (blue lines, leftmost color maps)
with the effective polarizability model, in which case we either include optical interactions between the dipoles via a self-consistent coupling
scheme (orange lines, center color maps) or we assume that the dipoles are optically isolated, and only interference effects occur (no coupling,
corresponding to the Born approximation, red lines). The shown area in the near-field intensity maps is 3D/2 × 3D, the wavelength of the
illumination is 550 nm. Note that in (b) the near-field maps are not on the same color scale.

and orange lines in Fig. 8(b)], which is probably a results of
a nonconstant effective position of the effective dipoles under
X and Z incidence. The global agreement however remains
very good. We attribute this to the dipole-dominated optical
response, even in cases where the nanostructure size is close
to the wavelength. The microscopic optical response can be
quite complex in such geometries, in particular leading to the
formation of optical vortices. Since these vortices effectively
act as magnetic dipoles, the αHE approximation is capable to
correctly describe the global response.

APPENDIX F: BREAKDOWN OF THE DIPOLAR
POLARIZABILITY APPROXIMATION

IN THE NEAR-FIELD

To a certain extent, the model can be also used to approx-
imate the electromagnetic fields in the vicinity of nanostruc-
tures. In such case, it is crucial to keep in mind that the polariz-
abilities describe only a dipolar response, the very proximate
near-field can hence not be captured. To demonstrate the
breakdown of the model, we compare in Fig. 9 the case of
a small gold nano-sphere [Figs. 9(a)–9(d), diameter of 10 nm]
with the gold “L”-shaped structure [Figs. 9(e)–9(h)], which
was already shown in Fig. 3(c). We calculate the electric
field intensity in a plane 100 nm above the nanostructure top
surfaces and compare the full simulation to the field as given
by the dipolar model.

As can be seen, the small sphere [Figs. 9(a)–9(d)] behaves
almost like a perfect dipole, illustrated by identical near-field
maps in Figs. 9(b) and 9(c), which differ only by a relative
error in the order of the machine precision of the 32 bit
floating-point numbers we used in the numerical implemen-
tation. The larger “L”-shaped nanostructure [Figs. 9(e)–9(h)]
on the other hand does not exactly behave as a dipole in the
near-field region. So while the qualitative agreement of the
near-field intensity maps in Figs. 9(f) and 9(g) is still good
at a height of 100 nm, the peak relative error just above the

structure is already as high as around 20 % [dark blue region in
Fig. 9(h)]. At even shorter distances, the error will drastically
increase and the approximation breaks down completely.

APPENDIX G: NEAR-FIELD COUPLING BETWEEN
SEVERAL NANOSTRUCTURES

Since the wave-vector distribution in the near-field of
an assembly of several nanostructures is heterogeneous, the
pseudopolarizability approach would fail to describe such
a system of multiple, near-field coupled entities. However,
in the case of “static” effective polarizabilities [without the
phase term in Eq. (14)], it is possible to take into account
optical interactions between several of such polarizabilities,
brought in close vicinity to each other. This can be done in a
self-consistent way using the GDM formalism [21,30].

Since the model describes scattering of a nanostructure
as a dipolar point scatterer, a certain distance between the
individual scatterers is necessary, so that the dipole field
is a good approximation for the optical near-field (see also
Appendix F). To assess the minimum distance required be-
tween several small metallic structures, we show in Fig. 10
simulations of a chain of five gold nanorods [see illustration in
Fig. 10(a)], where the distance between the rods is increased
successively. In Figs. 10(b)–10(e), scattering spectra and near-
field intensity maps are compared between the full GDM sim-
ulations, the coupled static polarizabilities and finally to the
Born approximation, in which scattering of each polarizability
is calculated separately, hence only interference effects are
taken into account while near-field coupling or multiscattering
events are not considered. The Born approximation works
well only for large spacing values [e.g., 1 µm, shown in
Fig. 10(e)]. Re-coupling the static polarizabilities provides
a better approximation at shorter distances [e.g., 200 nm, as
shown in Fig. 10(e)]. A very small interparticle spacing leads
then to the breakdown of either approximative model, as can
be seen in Figs. 10(b) and 10(c).
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FIG. 11. Extinction (solid lines) and scattering (dashed lines)
cross sections of a dielectric sphere (constant and real refractive
index n = 4) with radius r = 100 nm, placed in vacuum and illumi-
nated by a linear polarized plane wave. The sharp resonance around
525 nm can be attributed to a quadrupole mode.

Note that the dipole model seems to slightly overestimate
the optical cross-sections, which is a systematic observation
in agreement with the other plasmonic structures simulations
shown throughout this paper.

APPENDIX H: EXTINCTION VERSUS SCATTERING

In order to assess how well the polarizability model is in
agreement with energy conservation, we calculate for a loss-
less dielectric sphere (ref. index n = 4, radius r = 100 nm)

the extinction from the optical theorem [15] and compare it to
the scattering cross section. For a lossless nanostructure, the
extinction of the incident light is entirely a result of scattering,
hence the cross sections are identical.

The scattering cross section Cscat can be calculated by
repropagating the effective dipole via Green’s tensor to the
far-field, where we integrate the scattered intensity on a sphere
of radius rff = 10 µm centered around the nanostructure
at r0:

Cscat = |E0(r0, ω0)|−2
∫ 2π

0
dϕ

∫ π

0
r2

ff sin(ϑ ) dϑ

× |S(r0, r(ϕ, ϑ, rff ), ω0) · α(ω0) · E0(r0, ω0)|2 .

(H1)

Here, S is the appropriate Green’s tensor, depending on the
nature of the polarizability α (electric or magnetic). r is
a position on the integration sphere surface and E0 is the
complex incident electric field. The same approach can be
used to obtain the scattering section in case of the full GDM
simulation by integrating the scattered fields from every mesh-
cell before calculating the field intensity.

In Fig. 11, the full simulation is compared to the su-
perposition of the electric and the magnetic polarizability
approximation. In case of the full GDM simulation the ex-
tinction section through the optical theorem (solid blue line)
is in perfect agreement with scattering (dashed blue line).
For both, the electric and the magnetic polarizability, small
deviations between extinction and scattering can be observed,
meaning that there is some small loss of energy and hence
the approximate dipole solution is not perfectly physical. The
discrepancy is however very small, in particular if one recalls
the large size of the sphere (kD > 1 over the full spectrum,
with here D = 2r = 200 nm). In conclusion, as long as the
optical response is dominated by electric and magnetic dipole
resonances, our effective pseudopolarizability approximation
offers an excellent performance.
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