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Nomenclature

(ω) ω (dimensionless) specific chemical reaction rate (ρ) ρ (dimensionless) gas density (ρ l ) ρl (dimensionless) droplet density (Θ) T (dimensionless) gas temperature (a) ā (dimensionless)droplet radius (D) D (dimensionless) diffusion coefficient (g i ) ḡi (dimensionless) drag force (K) K (dimensionless) conductivity (L v ) Lv (dimensionless) latent heat (n l ) bl (dimensionless) liquid droplet number density (Q) Q (dimensionless) heat of combustion (q) q (dimensionless) ratio between the heat transfer and mass transfer rates from the gas to each droplet Spray combustion is present in a variety of industrial technologies, such as diesel engines, gas turbines and liquid-propellant rockets [START_REF] Chiu | Advances and challenges in droplet and spray combustion. i. toward a unified theory of droplet aerothermochemistry[END_REF]. As a result, modelling it is an important subject that has attracted considerable attention in the scientific community for many decades. [START_REF] Faeth | Evaporation and combustion of sprays[END_REF][START_REF] Jenny | Modeling of turbulent dilute spray combustion[END_REF][START_REF] Kah | Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays[END_REF][START_REF] Laurent | Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods[END_REF][START_REF] Sirignano | Advances in droplet array combustion theory and modeling[END_REF]. Unlike gaseous diffusion flames, that are governed by the competition between scalar mixing and chemistry, spray flames are also influenced by evaporation and mass transport of the liquid-fuel into the reaction zone [START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF], making it a more complex problem.

Due to the importance of spray flames, several numerical and theoretical investigations have been performed to understand the main physical and chemical processes that govern spray combustion as well as their flame structure in different spatial and temporal scales [START_REF] Faeth | Evaporation and combustion of sprays[END_REF][START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF]. Regarding numerical investigations, two different approaches can be highlighted: (i) Eulerian Interface Capturing (EIC), and (ii) Particle Tracking (PT) methods. For EIC, Changxiao et al [START_REF] Changxiao | A computational framework for interface-resolved dns of simultaneous atomization, evaporation and combustion[END_REF] developed a computational framework that resolves the interface of the dispersed phase for the atomization, evaporation and combustion processes. In order to capture the interface, the authors combined level set and ghost fluid methods. Their methodology requires that the computational mesh is of the order of the droplet size, which very quickly results in large meshes that demand the use of extensive computational resources. In spite of the fact that their methodology permits to obtain very accurate results, their approach can be intractable if a supercomputer is not used. Particularly, for three-dimensional problems such as that presented in [START_REF] Changxiao | A computational framework for interface-resolved dns of simultaneous atomization, evaporation and combustion[END_REF]. For PT, Large-Eddy Simulations including a two-phase flow model were performed by Irannejad et al [START_REF] Irannejad | Large eddy simulation of turbulent spray combustion[END_REF]; the gaseous phase field was solved using a Eulerian framework and the liquid spray phase using a two-way Lagrangian stochastic method. The authors considered methanol spray combustion and obtained good agreement with experimental data. However, similar to [START_REF] Changxiao | A computational framework for interface-resolved dns of simultaneous atomization, evaporation and combustion[END_REF], the simulations performed in [START_REF] Irannejad | Large eddy simulation of turbulent spray combustion[END_REF] also required extensive computational resources.

Theoretical investigations of the spray-flame structure can give important physical insights into the behaviour of spray flames in simple configurations. Such insights can then be used as a basis to understand more complex combustion systems [START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF]. Traditionally, the flame structure of laminar gaseous diffusion flames is studied in terms of the gaseous mixture fraction Z [10], a passive scalar that is an appropriate variable to analyse the mixing of the reactants (the dominant physical process in these type of flames).

Besides enabling a more computationally efficient solution in composition space compared to the physical-space solution, the mixture fraction concept is widely used in turbulent combustion models, since it allows the turbulent flame to be described in terms of simple one-dimensional elements called flamelets [START_REF] Poinsot | Theoretical and Numerical Combustion[END_REF]. Extending this formulation to spray-flames would in principle enable the analysis tools developed for gaseous flames to be applied. However, a direct extrapolation of the classical mixture fraction to spray-flames is not possible because Z becomes non-monotonic due to the presence of vaporisation sources [START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF][START_REF] Luo | New spray flamelet equations considering evaporation effects in the mixture fraction space[END_REF][START_REF] Olguin | Influence of evaporation on spray flamelet structures[END_REF][START_REF] Sanchez | The role of separation of scales in the description of spray combustion[END_REF]; the constraint of monotonicity is required to guarantee that the solution is single-valued. In addition to Z, other composition spaces have been proposed and analysed in previous studies such as the total mixture fraction [START_REF] Smith | Simulation and modeling of the behavior of conditional scalar moments in turbulent spray combustion[END_REF][START_REF] Urzay | Flamelet structures in spray ignition[END_REF][START_REF] Vié | On the description of spray flame structure in the mixture fraction space[END_REF], and the conserved mixture fraction [START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF]. The aforementioned alternatives do not have their monotonicity guaranteed mainly due to differential diffusion and the relative velocity that exists between the liquid and gaseous phases. An effective composition variable combining the gaseous mixture fraction and the liquid-to-gas mass ratio was applied to the analysis of counterflow spray-flames in [START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF]. This variable was then employed to derive the governing equations for a spray-flamelet formulation. Although this formulation was found to reproduce the response of the flame structure to variations in the droplet diameter and strain rate, it required the use of a closure model for the scalar dissipation rate, χ [START_REF] Olguin | Closure of the scalar dissipation rate in the spray flamelet equations through a transport equation for the gradient of the mixture fraction[END_REF].

The main objectives of this work are: (i) to propose an alternative monotonic variable that enables the description of spray-flames and apply it to a simple canonical problem (e.g. counter flow configuration) to highlight the methodology. This new variable, termed cumulative mixture fraction, Z C , consists of integrating the usual gaseous mixture fraction Z over physical space, x, but weighted by a normal distribution. It results in an initially increasing function that reaches a plateau, therefore remaining single-valued and guaranteeing monotonicity; (ii) to formulate the spray-flamelet equations in Z C -space. An interesting outcome of this formulations is that no extra model is necessary for the scalar dissipation rate, χ, as its dependence is directly obtained from the Z C equations; and (iii) to present simulation results, in both x-and Z C -space, for ethanol and methanol droplets. Special attention is given to the effect of the Lewis and Stokes numbers on the spray-flamelet structure. This manuscript is organised as follows: in Section 2, we present the Schvab-Zeldovich-Liñan formulation for the spray-flamelet model for both the gaseous phase and the liquid droplets. In Section 3, we derive the model's equations in terms of the strictly monotonic cumulative mixture fraction, Z C . In Section 4, we present results for the counterflow configuration with potential flow. Finally, concluding remarks are presented in Section 5.

Physical model

The governing equations are formulated in an Eulerian framework, assuming steady-state and the low-Mach number limit for the gas phase [START_REF] Maionchi | A simple spray-flamelet model: influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position[END_REF][START_REF] Maionchi | A simples application of the spray-flamelet approach to the simulation of biphasic and multi-component fuel with non-unity lewis numbers[END_REF]. For simplicity, infinitely fast chemistry is considered (Burke-Schumann limit), enabling the diffusion flame to be described in terms of the extended Shvab-Zel'dovich model [START_REF] Burke | Diffusion flames[END_REF]. In analogy to the theory for gaseous flames, the model developed here can be extended by relaxing these considerations.

A single global reaction step is used to represent the combustion processes according to

F + νO → (1 + ν)P + Q,
where Q is the heat release and the stoichiometric mass coefficient is defined as

ν = m O /m F .
2.1. Governing equations in physical space -x 2.1.1. Gaseous Phase The gaseous phase is described in x = {x 1 , x 2 , x 3 } -space by the following dimensionless conservation equations of mass, momentum, fuel/oxidant mass fractions, and energy [START_REF] Maionchi | A simple spray-flamelet model: influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position[END_REF],

∂ ∂x i (ρu i ) = α 0 S v , (1a) 
∂ ∂x i (ρu i u j ) = ∂ ∂x i P r P e µ ∂u j ∂x i - ∂p ∂x j + α 0 S v u lj -g j , (1b) 
∂ ∂x i (ρu i Le O Y O ) = ∂ ∂x i Γ γ P e ∂Y O ∂x i + ω, (1c) 
∂ ∂x i (ρu i Le F Y F ) = ∂ ∂x i Γ γ P e ∂Y F ∂x i + ω + S v , (1d) 
∂ ∂x i (ρu i Θ) = ∂ ∂x i Γ γ P e ∂Θ ∂x i -Q ω + S v (α 0 T l -q), (1e) 
where u l is the liquid velocity and g the drag force; the remaining symbols are listed in the nomenclature. The heat transfer from gas to liquid is accounted by the last two terms in the right-hand side of Eq. (1e). The non-dimensional mass fractions and temperature are defined as

Y O ≡ ȲO ȲO∞ , Y F ≡ Le O ν ȲF Le F Y O∞ , Θ ≡ Le O T Y O∞ T∞ . (2) 
The subscripts -∞ and ∞ represent the fuel and oxidant ambient conditions, respectively. Thus, ȲO∞ and ȲF -∞ are the oxidant and fuel mass fractions in the incoming streams. The dimensionless variables and characteristic quantities are given by:

ρ = ρ ρ∞ , x i = xi lc , u i = ūi ūc , p = p ρ∞ ū2 c , g j = lc ρ∞ ū2 c ḡj , α O = ȲO∞ Le O ν , (3a) 
ω = l c ρ ∞ u c α O ω, Q = Q νc p T∞ , q = q νc p T∞ , S v = l c ρ ∞ ūc α O Sv . ( 3b 
)
The Peclet and Prandtl numbers are P e = lc ūc ρ∞ c p / K∞ and P r = c p μ∞ / K∞ , respectively, whereas the Lewis number is Le j = K∞ /(ρ ∞ c p Dj ) for j = F, O (fuel and oxidant, respectively). The source of mass, S v , is zero on the oxidant side because the droplets are injected only along the incoming fuel stream. The heat and mass diffusion transport properties are considered to be temperaturedependent, such that K/ K∞ = ρ D/ ρ∞ D∞ = Γ γ , with Γ = Θ/Θ ∞ and γ = 0.

Defining the mixture fraction and the excess of enthalpy as

Z ≡ 1 + Y F -Y O 1 + φ , H = Θ + (Q -1)Y F + Y O 1 + φ , (4) 
and equating species and energy, Eqs. (1c)-(1e), yields the Schvab-Zel'dovich-Liñan formulation [START_REF] Liñan | The asymptotic structure of counterflow diffusion flames for large activation energies[END_REF][START_REF] Liñan | Fundamental Aspects of Combustion[END_REF][START_REF] Liñan | Diffusion-controlled combustion, Mechanics for a New Millenium[END_REF][START_REF] Maionchi | A simples application of the spray-flamelet approach to the simulation of biphasic and multi-component fuel with non-unity lewis numbers[END_REF],

∂ ∂x i ρu i Z 0 L(Z)dZ = ∂ ∂x i Γ γ P e ∂Z ∂x i + S v 1 + φ , (5a) 
∂ ∂x i (ρu i H N ) = ∂ ∂x i Γ γ P e ∂H ∂x i + S h 1 + φ , H N = H + Z 0 N (Z)dZ, ( 5b 
)
where S h = (Q + α 0 T l -q -1) S v is the modified heat source, and φ = νLe O ȲF-∞ /Le F ȲO∞ is the mixture strength.

The functions L(Z) and N (Z) are given by

L = Le O , for Z < Z f , Le F , for Z > Z f , (6a) 
N = 1 -Le O , for Z < Z f , (1 -Le F )(1 -Q), for Z > Z f , (6b) 
in which quantities at the flame location are denoted by the subscript f. Since the flame is assumed to be infinitely thin, we have that at the stoichiometric plane, Y O = Y F = 0, leading to

Z f = (1 + φ) -1 and H f = Θ f (1 + φ) -1 .

Liquid Phase

The set of droplets present in the spray are assumed to be monodisperse, mono-temperature and monokinetic. While the spray is considered dilute, and interactions between droplets and secondary break-up have been neglected, droplet-gas relative motion due to the droplets inertia is accounted for.

The conservation equations for the liquid phase include the total mass of the droplets, momentum and energy, which are respectively given by

∂ ∂x i (f l ρ l u li ) = -α O S v , (7a) 
∂ ∂x i (f l ρ l u li u lj ) = -α O S v u lj + g i , (7b) 
∂ ∂x i (f l ρ l u li T l ) = -α O S v [T l -cν(q + L v )] , (7c) 
where c = c p /c l and f l = n l V l is the liquid volume fraction.

The dimensionless variables and characteristic quantities are

V l = Vl ā3 0 = 4π 3 ā ā0 3 = 4π 3 a 3 , ρ l = ρl ρ∞ , n l = ā3 0 nl , (8a) 
T l = Tl T∞ , t c = ā2 0 ᾱ∞ = lc ūc , L v = Lv νc p T∞ , u l = ūl ( lc / tc ) . (8b) 
Equations ( 7a) and (7b) can be combined to obtain

f l ρ l u li ∂ ∂x i u lj = g j . (9) 
The drag force, which accounts for the momentum exchange between gas and liquid phases, is given by g j = f l ρ l (u j -u lj )/(a 2 St) [START_REF] Jackson | Locally averaged equations of motion of a mixture of identical spherical particles and a newtonian fluid[END_REF], where St = t 0 s /t c is the Stokes number; t 0 s = ρl ā2 0 /(72μ ∞ ) is the Stokes time for droplets with initial radius ā0 , or alternatively, the characteristic time for the liquid phase to adjust to changes in the surrounding flow field [START_REF] Kleinstreuer | Two-phase flow: Theory and applications[END_REF]. Equation ( 9) can then be rewritten to yield

u li ∂u lj ∂x i = u j -u lj a 2 St . ( 10 
)
In the limit of small Stokes number, i.e., St ≪ 1, it can be shown that the liquid phase velocity can be asymptotically described as a function of the gas velocity [START_REF] Maxey | The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields[END_REF]. In this case, an algebraic relation for u l can be derived which avoids the computation of the momentum equation, Eq. (7b), for the liquid phase

u lj = u j -a 2 St u i ∂u j ∂x i , (11) 
where terms of O(St) and higher are neglected. Note that the effective Stokes number, a 2 St, depends on the square of the droplet radius, a 2 . However, since from the governing equations normalization a < 1, the effective Stokes number a 2 St is always guaranteed to be small. The model for the droplets motion assumes Stokes flow. Put differently, the particle-based Reynolds number, Re l , must be smaller than 1, i.e., Re l = 2 ρl ūc ā0 /μ ∞ = Re(2ā 0 / lc ) < 1. It can be shown that the aforementioned condition is met for Stokes numbers

S t < ρl / ρ 18Re . (12) 
Using representative gas-phase Reynolds numbers, Re ∼ 500, and mass densities ratios, ρl / ρ ∼ 1000, from counterflow experiments [START_REF] Niemann | Accuracies of laminar counterflow flame experiments[END_REF] our droplets motion model is expected to be valid for St 0.1.

General spray-flamelet structure

The spray-flamelet equations follow the formulation derived in [START_REF] Peters | Laminar diffusion flamelet models in non-premixed turbulent combustion[END_REF] for counterflow gaseous flames, but accounting for a vaporisation source term due to the presence of droplets. We perform a coordinate transformation (x 1 , x 2 , x 3 ) -→ (ξ(x 1 , x 2 , x 3 ), ξ 2 , ξ 3 ). This new coordinate system is attached to the flame element, with ξ being the coordinate normal to the flame, and ξ 2 , ξ 3 mutually orthonormal tangential components. In this coordinate system, the derivatives along the ξ-direction are much larger than in the ξ 2 -and ξ 3 -directions, which yields for mass, momentum, mixture fraction and energy conservation:

χ 2D d dξ (ρu i ) = α 0 S v , (13a) 
χ 2D d dξ (ρu i u j ) = µ P r P e χ 2D d 2 u j dξ 2 + Σ * ξ du j dξ -J j dp dξ + α 0 S v u lj -g j , (13b) 
χ 2D d dξ ρu i L(Z)dZ = ρχ 2 d 2 Z dξ 2 + Σ † ξ dZ dξ + S v 1 + φ , (13c) 
χ 2D d dξ (ρu i H N ) = ρχ 2 d 2 H dξ 2 + Σ † ξ dH dξ + S h 1 + φ , (13d) 
where

Σ * ξ = 1 2 P r P e µ d dξ χ 2D + χ 2D d dξ P r P e µ , Σ † ξ = 1 2 Γ γ P e d dξ χ 2D + χ 2D d dξ Γ γ P e , (14) 
are generalised fluxes, and

χ = 2D ∂ξ ∂x i ∂ξ ∂x i , (15) 
is the generalised scalar dissipation rate [START_REF] Peters | Laminar diffusion flamelet models in non-premixed turbulent combustion[END_REF] and J j = ∂ξ/∂x j [START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF].

Finally, the coordinate transformation to ξ-space for the liquid phase leads to

χ 2D d dξ (f l ρ l u li ) = -α O S v , (16a) 
u lj = u j -a 2 St χ 2D u i du j dξ , (16b) 
χ 2D d dξ (f l ρ l u li T l ) = -α O S v [T l -cν(q + L v )] . (16c) 
The set of Eqs ( 13)-( 16) define the generalised spray-flamelet equations in ξ-space, with constant but non-unity Lewis numbers and accounting for temperature and velocity differences for the liquid phase.

In the next Section we will show the choice of the function ξ that naturally leads to a monotonic description of the spray-flamelet equations for a counterflow configuration.

Strictly monotonic Cumulative Mixture Fraction Function Z C

The proposed approach is to define a new coordinate Z C as the integral of the mixture fraction Z along η, which is an integration variable parallel to ξ. Since Z C is integrated along the parallel direction of ξ, we thereby guarantee that it is also parallel to the flame surface. This allows us to choose Z C as the generic variable ξ and to write dη = (∂η/∂x i )dx i . A schematic of the coordinate systems considered in this work is shown in Fig. 1. Note that although ξ and η are parallel, they are not the same variable. The following coordinate transformation can thus be written:

ξ(η) = Z C (η) = 1 Z T C η -∞ e -s 2 /2 √ 2π Z(s)ds, Z T C = ∞ -∞ e -s 2 /2 √ 2π Z(s)ds. (17) 
In particular, we have that

dZ C dη = e -η 2 /2 √ 2π Z(η) Z T C , (18) 
which enables the calculation of Z T C and the conversion back to η-space

Z T C = ∞ -∞ e -η 2 /2 dη/ √ 2π 1 0 dZ C /Z(Z C ) , η = Z T C ZC 0 √ 2πe η 2 /2 dZ ′ C Z(Z ′ C ) . (19) 
Notably, this choice enables us to find a closure relation for the dissipation rate as

χ 2D = dZ C dx i 2 = χ η 2D ∂η ∂x i 2 , χ η 2D = e -η 2 2π Z(η) Z T C 2 (20) 
Note that this definition differs from [START_REF] Peters | Laminar diffusion flamelet models in non-premixed turbulent combustion[END_REF] in which ξ = Z is used as independent variable: χ Z = 2D(dZ/dx i ) 2 . Moreover, it is possible to obtain an expression for χ defined in Eq. [START_REF] Maionchi | A simples application of the spray-flamelet approach to the simulation of biphasic and multi-component fuel with non-unity lewis numbers[END_REF],

χ 2D = dZ C dη dη dZ dZ dx i 2 = 1 Z T C e -η 2 /2 √ 2π Z(η) 2 dη dx i 2 , (21) 
its dependence on the spatial transformation dη/dx i is readily seen. Using [START_REF] Maionchi | A simples application of the spray-flamelet approach to the simulation of biphasic and multi-component fuel with non-unity lewis numbers[END_REF] in Eqs. ( 13) yields:

χ η 2D ∂η ∂x i d dZ C (ρu i ) = α 0 S v , (22a) 
χ η 2D ∂η ∂x i d dZ C (ρu i u j ) = µ P r P e χ η 2D ∂η ∂x i d 2 u j dZ 2 C + Σ * ξ du j dZ C -J j dp dZ C + α 0 S v u lj -g j , (22b) 
χ η 2D ∂η ∂x i d dZ C ρu i L(Z)dZ = ρD χ η 2D ∂η ∂x i 2 d 2 Z dZ 2 C + Σ † ξ dZ dZ C + S v 1 + φ , (22c) 
χ η 2D ∂η ∂x i d dZ C (ρu i H N ) = ρD χ η 2D ∂η ∂x i 2 d 2 H dZ 2 C + Σ † ξ dH dZ C + S h 1 + φ , (22d) 
where

Σ * ξ = 1 2 P r P e µ d dZ C χ η 2D ∂η ∂x i 2 + χ η 2D ∂η ∂x i 2 d dZ C P r P e µ , Σ † ξ = 1 2 Γ γ P e d dZ C χ η 2D ∂η ∂x i 2 + χ η 2D ∂η ∂x i 2 d dZ C Γ γ P e . (23) 
Similarly, Eqs. ( 16) become

χ η 2D ∂η ∂x i d dZ C (f l ρ l u li ) = -α O S v , (24a) 
u lj = u j -a 2 St χ η 2D ∂η ∂x i u i du j dZ C , (24b) 
χ η 2D ∂η ∂x i d dZ C (f l ρ l u li T l ) = -α O S v [T l -cν(q + L v )] . (24c) 
Essentially, this formulation depends on the relation between the locally normal flame coordinate η and the physical coordinate x i through the derivatives dη/dx i . It is worth emphasizing that using the spray-flamelet formulation just derived in multidimensional numerical simulations of turbulent diffusion flames would then entail the implementation of the dη/dx i relation in each flamelet.

In the next Section, we highlight the main features of this new mathematical framework by considering a planar counterflow configuration.

Results and Discussion

A schematic of the case setup is included in Fig. 2, whose main assumption is a constant density (ρ = 1), monodisperse fuel spray. If we additionally consider t c = A -1 as the characteristic time scale with A being the strain rate, the flow field is described in its dimensionless form as a potential flow u = (-x 1 , x 2 ), in physical x i -space i.e., (x 1 , x 2 ).

For this particular configuration, where the flow is aligned with the x 1 -axis, dη/dx 1 = 1. Furthermore, note that the choice of a potential flow implies that the droplets do not disturb the gaseous flow field (this is analogous to assuming that the liquid volume fraction is negligible, i.e., n l V l = f l ≪ 1) which in turn implies that the drag force g ∼ n l V l in Eq. ( 22b) can be neglected. Upon applying the simplifications mentioned above, the system of equations for the gaseous phase becomes

√ 2πe x 2 /2 x Γ γ P e dZ dZ C - d dZ C x L(Z)dZ - d dZ C Γ γ P e Z Z T C dZ dZ C = 2πe x 2 S v 1 + φ Z T C Z , (25a) √ 2πe x 2 /2 x Γ γ P e dH dZ C - d dZ C (xH N ) - d dZ C Γ γ P e Z Z T C dH dZ C = 2πe x 2 S h 1 + φ Z T C Z . (25b) 
where x = x 1 only, because the variations along x 2 are small. The boundary conditions for Eqs. ( 25) are given by Using Eq. ( 11) the velocity of the droplets is

Z = 1, H = [Θ -∞ + (Q -1)φ]/(1 + φ), for Z C → 0, Z = 0, H = (Θ ∞ + 1)/(1 + φ), for Z C → 1. (26) 
u l = -x(1 + a 2 St), (27) 
Additionally, the droplets are injected at its boiling temperature T B , which eliminates the energy equation for the droplets in the governing equations, i.e. Eq. (16c).

The model for the vaporisation of droplets is modified from [START_REF] Maionchi | A simple spray-flamelet model: influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position[END_REF] to account for the gas-liquid relative motion. The source term can then be written as

S v = M λ ef , M = 3Le O ν Y O∞ f l ρ l a 3 (1 + a 2 St). ( 28 
)
where λ ef = λ(x)/(1 + a 2 St). More details are included in Appendix 7.

Two liquid fuels are considered, ethanol (C 2 H 6 O) and methanol (CH 4 O) for the spray in the simulations, whose chemical heat release, latent heat, boiling temperature and mass density (at its boiling temperature) are presented in Table 1. The remaining parameters are: γ = 0, ȲO∞ = 0.21, φ = Le O /Le F , cp = 1.0 kJ/kg K, T-∞ = 300 K, T∞ = 400 K , ρ∞ = ρair = 0.88 kg/m 3 and f l = 5 × 10 -4 ; Eq. ( 28), yields M = 10 and 14 for CH 4 O and C 2 H 6 O, respectively. The following global stoichiometric reactions are used

CH 4 O + 1.5O 2 → CO 2 + 2H 2 O, C 2 H 6 O + 3O 2 → 2CO 2 + 3H 2 O,
The system of integro-differential equations (25) were discretized using finite volumes. Adaptive mesh refinement, based on the temperature gradient, was used to ensure adequate resolution of the spray-flame structure. For the discretization of the diffusive and convective terms a second order central difference scheme and a first order upwind interpolation (to avoid spurious oscillations near the flame) were implemented, respectively. All simulations were performed using a pseudo-transient approach to better control the numerical stability of the solution [START_REF] Wang | Application of pseudo-transient continuation method in dynamic stability analysis[END_REF].

To solve Eqs. [START_REF] Jackson | Locally averaged equations of motion of a mixture of identical spherical particles and a newtonian fluid[END_REF] an iterative algorithm was developed using the following methodology. First, with an initial condition for Z, a first guess for Z T C was calculated by Eq. ( 17) using an adaptive trapezoidal integration rule based on the computational mesh in x-space (with an initial size of 10 4 nodes). Second, with Z T C , a first prediction to the solution of the system (25) was determined. Third, a new guess to Z T C can be computed with the predicted values of H and Z, again, with Eq. ( 17). This procedure was repeated until predicted and corrected values for Z T C , Z and H converged to an L 1 -norm within 10 -10 .

The profiles of Z and Z C are shown in Fig. 3. The solution in physical space is shown by solid black lines and the corresponding reference solution obtained using the Z C -space formulation mapped to x-space is shown by red dashed lines. The relative deviation between both profiles is less than 10 -6 over the entire domain. Figure 3(a) shows that the mixture fraction Z, a monotonic variable in purely gaseous flows, is no longer monotonic in a model that includes evaporating droplets in liquid phase. Z C , on the other hand, remains singlevalued as seen in Fig. 3(b).

Results for Le = 1, and St = 0 are presented in subsection 4.1 to highlight the main strengths of the proposed formulation. Subsections 4.2 and 4.3 show the effects of non-unity Lewis numbers, and variation of the Stokes number (i.e. St < 0.1) on the spray-flame structure. 

Unity Le and zero St

All results, from here on, were obtained in Z C -space and subsequently mapped to x-space for clarity, unless specified otherwise. Fig. 4 shows profiles of Y F , Y O , Θ, Z and H. The flame position is characterised by Y O = Y F = 0 which expectedly coincides with the location where the temperature is highest. The peak observed in the mass fractions is due to the vaporisation of the droplets since it is a source of mass. A few things are worth mentioning from these plots: (i) C 2 H 6 O has a lower latent heat of vaporisation than CH 4 O, as a result its mass fraction reaches higher values; (ii) Additionally, C 2 H 6 O has a higher heat of combustion than CH 4 O which leads to a higher flame temperature than for CH 4 O; (iii) The flame achieves stoichiometric conditions further into the oxidant side for C 2 H 6 O than for CH 4 O, this is due to the higher fuel content for the former.

The droplet radius and evaporation rate spatial distributions are presented in Fig. 5, as in [START_REF] Maionchi | A simple spray-flamelet model: influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position[END_REF]. The droplet radius is initially constant, and decreases as it approaches the flame until the droplet is fully vaporised (see Fig. 5 (a)). The vaporisation extends further for CH 4 O than for C 2 H 6 O (i.e. a = 0 at x = -0.38 and x = -0.47, respectively.) Fig. 5 (b), is in line with the result obtained for the droplet radius, since the evaporation rate, λ, is non-zero only in the region where the droplets are present.

To highlight the value of the cumulative mixture fraction, Z C , proposed in this work, Fig. 6 shows a comparison of the profiles of mass fractions and temperature in Z and Z C -space. The profiles in Z-space for each fuel have the same linear dependence as that given from its definition at stoichiometric conditions Z = (1 + Y F -Y O )/2, valid for unity Lewis numbers. The maximum value of Z attained for each fuel differs (see red dashed line and solid black line), as these values are a function of the vaporisation rate.

Close inspection of Fig. 6, shows that for Z > 1, the mass fractions and temperature profiles are multivalued. Note that in contrast with pure gas flow whose maximum value is bounded at Z = 1, here Z extends beyond unity. The non-monotonicity for the Y F variable occurs along the same straight line and thus, it is not visible at this scale in Fig. 6. The numbered annotations in Fig. 6 correspond to the path taken by the fuel stream in the Z-space, from injection until it reaches the flame. At position 1 (Z = 1) the fuel droplets are injected in the gaseous fuel stream. The vaporisation of droplets increases the value of Y F to a maximum, different for each fuel (see position 2). From point 2 to 3, consumption of fuel by the flame decreases the value of Y F , from its maximum at point 2 to zero at point 3. From the description above, it is evident that Z is not an adequate function that guarantees that both Y F and Θ be uniquely defined, as the trajectories taken by the fuel mass fraction and temperature profiles (path 1 -2 -3) are non-monotonous in Z-space. For clarity, path 1 -2 -3 is also shown in Fig. 4 in physical space, x. Finally, it is worth reiterating that remapping the solution to physical space, x, would not be possible due to the multivalued nature of the formulation in Z-space. Figure 6 also shows the profiles of mass fractions and temperature as a function of Z C ; profiles of Z and H are also shown for completeness. In this space, Z C = 0 corresponds to the fuel stream whereas Z C = 1 represents the oxidant stream. The flame position (Y O = Y F = 0) can be identified by searching for the value of Z C where the normalised temperature, Θ/Θ ∞ , reaches its maximum value. These results show clearly that the variables are single-valued in the Z C -space and that Z C is a useful space for the spray-flamelet description.

It must be emphasised that the profiles do not show over-or under-estimated values of temperature, regardless of the droplet radius or strain rate, which is accounted for through M . This is an advantage over [START_REF] Franzelli | On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames[END_REF] where the temperature is overestimated for the highest values of the strain rate due to the assumed closure relation for χ. In the present work, this is not the case because χ can be directly evaluated from the formulation, as seen in Eq. [START_REF] Burke | Diffusion flames[END_REF].

Finally, the comparison of the scalar dissipation rate, χ = (dZ C /dx) 2 , and that obtained using Z as the generic variable, χ Z = (dZ/dx) 2 [START_REF] Peters | Laminar diffusion flamelet models in non-premixed turbulent combustion[END_REF], are shown in Fig. 7. Since in the present case the flow is aligned with the physical axis, such that dη/dx = 1, the closed-form expression for the scalar dissipation rate χ in space Z C is obtained from Eq. ( 21) as

χ = 2D 1 Z T C e -η 2 /2 √ 2π Z(η) 2 . (29) 
In agreement with Eq. ( 29), Fig. 7 shows that χ increases smoothly, reaches a maximum value and then decreases almost symmetrically. In contrast, χ Z exhibits a more complex behavior (see Fig. 7 (b) ), these shapes can be understood by inspecting Eq. ( 29) and recalling the results presented in Fig. 3: the maximum value of Z explains why there is a region where χ Z goes to zero; the profile of Z C as a function of x has an inflection point responsible for the maximum value observed in profiles shown for χ. In this section we briefly assess the effect of non-unity Le numbers in the spray-flamelet structure. The Le numbers used in the simulations are presented in Table 2. These were determined using Cantera [START_REF] Goodwin | Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[END_REF], and CaltechMech [START_REF] Narayanaswamy | A consistent chemical mechanism for oxidation of substituted aromatic species[END_REF].

Profiles of Y F , Y O , Θ, and Z in Z C -space, are shown in Fig. 8 for both fuels C 2 H 6 O and CH 4 O. The profiles show quantitative differences when compared with the unity Le number results (solid lines); these differences are more evident for C 2 H 6 O, which has a higher Le F than CH 4 O. While the differences in Θ and more significant variation. Also, the flame position sensitivity increases with increasing Le. .

A Le number increase results in enhanced heat transfer with respect to mass diffusion. Consequently, higher values of Le result in improved heat removal from the flame towards the cold reactants sides. The decrease on the flame temperature leads to a decrease on the vaporisation rate, and thus to smaller values of the gaseous fuel content, Y F , on the fuel side. The lower gaseous fuel content yields a flame that attains stoichiometric conditions further into the fuel side, as seen in Fig. 8. Note that this behaviour is the same for both fuels, since both have Lewis number greater than unity. Additionally, χ Z and χ profiles in x-space are shown in Fig. 9. Both scalar dissipation rates, χ Z and χ, represent the inverse of the characteristic mass diffusion time [START_REF] Peters | Laminar diffusion flamelet models in non-premixed turbulent combustion[END_REF], consequently an increase in the Lewis number directly translates into higher χ Z and χ values (see Fig. 9). 

The effect of varying St

The results presented in this section were obtained using the same set of parameters as in the previous subsection but for Stokes number varying from 0 ≤ St ≤ 0.1, its limit value according to Eq. ( 12).

In Figs. 10 and11, the influence of the Stokes number St on the flame position, x f , flame temperature, Θ f , droplet radius, a, and the scalar dissipation rate, χ, are shown. a and χ are presented in physical space as it provides a more intuitive picture with x < 0 being the fuel region, and x > 0 being the oxidant region. An increase on the Stokes number St is equivalent to having a larger initial droplet size. Since we assume complete combustion, this leads to more fuel reaching the flame, whose end result is that the flame is pushed towards the oxidant side and its temperature increases. These effects are clearly seen in Figs 10 (a) and (b), respectively. .

Note that the droplets vaporize completely prior to reaching the flame (compare Figs. 10(a) and 11(a)) because of the assumption of complete combustion; if it were to be relaxed, unvaporized droplets may reach the flame, leading to heat removal from the reaction zone and a subsequent decrease in flame temperature [START_REF] Gutheil | Counterflow spray combustion modelling with detailed transport and detailed chemistry[END_REF]. Furthermore, if the droplets cross over the stagnation plane towards the incoming oxidant stream, they are subsequently brought back towards the fuel side. This flow behavior may lead to oscillations in the flame front, destabilising the flamelet, as discussed in [START_REF] Greenberg | Droplet dize distribution effects in an edge flame with a fuel spray[END_REF]. Finally, if two-way coupling were to be considered, i.e., that the droplets also affect the gaseous flow field, an increase in St would push the flame even further towards the oxidant side due to droplets inertia [START_REF] Watanabe | Characteristics of flamelets in spray flames formed in a laminar counterflow[END_REF].

We emphasise that a more realistic evaluation of the influence of the Stokes number in the problem at hand, would unavoidably require accounting for twoway coupling. This is nonetheless left for a future investigation. In the present case, where potential flow was assumed (i.e., the liquid phase does not influence the gaseous phase), changes in St are only brought about through the droplet radius, see Eq. ( 34) in the Appendix. This effect is small, as seen in Fig. 11 (a), where the spatial distribution of the droplet radius, a, for three values of St 

Conclusions

The cumulative mixture fraction variable, Z C , was proposed for the description of the spray-flamelet structure in a counterflow configuration accounting for variable Le and St numbers. The flamelet formulation was derived and the feasibility of directly integrating the resulting spray-flamelet equations in Z Cspace was demonstrated. Our results show that in contrast to the traditionally used variable for flamelet description, Z(x i ), the cumulative mixture fraction, Z C (x i ), is a monotonic function, allowing temperature, Θ(Z C ), and mass fractions, Y O (Z C ) and Y F (Z C ), to be uniquely defined in this space. Similarly, the scalar dissipation rate, χ, defined in terms of Z C was also shown to be a smooth function in physical space x. Notably, a closure relation is not required to describe its behaviour because it can be directly obtained from the proposed Z C -space formulation. The influence of fuel effects, through their Le numbers, and droplet size, through variations in St numbers, were analyzed. The sprayflamelet structure was found to be sensitive to increasing Le, with the flame stabilizing earlier towards the fuel side. In contrast, increasing St favored stabilization towards the oxidant side. These observations are in line with the expected physical behavior. Future work will include testing our formulation as a subgrid model in multi-phase and multi-component turbulent flows. 
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Appendix -Vaporisation model

The model for the vaporisation of isolated droplets was developed in a previous work for St = 0 [START_REF] Maionchi | A simple spray-flamelet model: influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position[END_REF], and here we extend it to account for St = 0. For the liquid phase with constant liquid density ρl we only need to solve for the total mass of liquid [START_REF] Fachini | An analytical solution for the quasi-steady droplet combustion[END_REF] ∂ ∂x i (n l ρ l V l u li ) = -α O S v .

If we consider that the spatial variation of the droplets volume is much larger than the variation in its velocity, i.e., n l ρ l u li ∂V l /∂x i ≫ V l ∂(n l ρ l u li )/∂x i , Eq. ( 30) becomes

n l ρ l u li ∂ ∂x i V l = -α O S v . (31) 
For the 1-D potential flow with spherical droplets

u l = -x(1 + a 2 St), V l = 4π 3 a 3 , (32) 
such that the droplets mass conservation is given by x da 3 dx = -3λ ef , λ ef = λ(x) 1 + a 2 St = α 0 S v 4πn l ρ l (1 + a 2 St) [START_REF] Greenberg | Droplet dize distribution effects in an edge flame with a fuel spray[END_REF] in which λ is the vaporisation rate. Defining the vaporisation function β = λ/a and integrating Eq. ( 30), the droplet radius is given by the nonlinear relation

a 2 1 + a 2 2 St = 1 + St 2 + 2 x -∞ β(s) s ds H(T -T B ), (34) 
in which H is Heaviside function. The vaporisation function β(x) depends on the ambient temperature and on the temperature of the droplet (in our case, the liquid fuel boiling temperature, T B ) [START_REF] Fachini | An analytical solution for the quasi-steady droplet combustion[END_REF] β(x) =

T l∞ TB dT T -T B + L v = ln 1 + T l∞ -T B L v , (35) 
The ambient temperature for the droplet, T l∞ , corresponds to the local temperature in the spray problem. These expressions are obtained from the classical model for vaporisation of isolated droplets [START_REF] Fachini | An analytical solution for the quasi-steady droplet combustion[END_REF][START_REF] Maionchi | A simple spray-flamelet model: influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position[END_REF]. From Eq. (33) and using n l = f l /(4πa 3 /3), the source term can be written as

S v = M λ ef , M = 3Le O ν Y O∞ f l ρ l a 3 (1 + a 2 St) (36) 
It is worth noting that the spray combustion parameter M combines properties of chemical reaction, flow field and spray [START_REF] Maionchi | A simples application of the spray-flamelet approach to the simulation of biphasic and multi-component fuel with non-unity lewis numbers[END_REF]. This non-dimensional parameter permits the analysis of the influence of the initial droplet radius on the sprayflamelet structure by just varying M . Conveniently, the combustion process can be studied by analysing only this parameter and not the individual influence of each of its constituent parts. Note that the vaporisation source term, S v , does not depend on St (a consequence of considering a potential flow) and is zero for the following situations: i) M = 0 if the gas temperature not reached the boiling temperature yet, and ii) λ = 0 if the droplets are totally vaporised.

(

  S v ) Sv (dimensionless) source of mass due to the presence of droplets in the flow field (T l ) Tl (dimensionless) droplet temperature (u) ū (dimensionless) gas velocity (u l ) ūl (dimensionless) droplet velocity (V l ) Vl (dimensionless) liquid volume (x i ) xi (dimensionless) physical space coordinates (Y O ) ȲO (dimensionless) oxidant mass fraction (Y F ) ȲF (dimensionless) fuel mass fraction

Figure 1 :

 1 Figure 1: Schematic of the coordinate systems considered: x i are the laboratory coordinates; ξ i are the flame-attached coordinates, with η parallel to the normal coordinate along the flame, ξ.

Figure 2 :

 2 Figure 2: Spray-flamelet model with fuel injected from the left and air from the right side. Left: Schematic of canonical problem considered. Right: Close up to flame region. Reproduced from [19].

Figure 3 :

 3 Figure 3: (a) The mixture fraction Z and (b) the cumulative mixture fraction Z C of ethanol in terms of physical space x. The generic variable Z C is a monotonic function of x, which is not the case for Z usually adopted in gaseous flows. The solution in physical space is shown by lines and the corresponding reference solution from the Z C -space formulation converted back to the x-space is shown by open circles.

Figure 4 :Figure 5 :

 45 Figure 4: Mass fractions (Y F , Y O ), temperature (Θ/Θ∞), mixture fraction (Z) and excess of enthalpy (H) profiles in the physical space x . The peak observed in the profiles of Y F , Y O , Z and H is due to the vaporisation source. The flame position around x f = 0.8 separates the fuel region at left (Y O = 0) from the oxidiser side at right (Y F = 0).

Figure 6 :

 6 Figure 6: mass fractions (Y F , Y O ) and temperature profiles (Θ/Θ∞) as a function of the mixture fraction Z (Top). For Z > 1, which corresponds to the peak of the vaporisation zone in Fig. 4, Y F nor Θ are uniquely defined, showing the non-monotonic behaviour in the Z-space description of the problem. Annotations: 1: beginning of vaporisation in the fuel side (Z = 1), 2: maximum in vaporisation rate (maxima in Y F and Z), 3: flame position (Y F = Y O = 0), 4: incoming flow oxidant side (Z = 0); Mass fractions (Y F , Y O ) and temperature profiles (Θ/Θ∞) (Middle), mixture fraction (Z) and excess of enthalpy (H) (Bottom) in the Z Cspace for Le F = Le O = 1. Note that the temperature and the mass fraction are uniquely defined in this space, as opposed to when they are defined in the Z-space.

Figure 7 :

 7 Figure 7: The scalar dissipation rate for sprays (a) χ = (dZ C /dx) 2 and (b) χ Z = (dZ/dx) 2 using Z C and Z respectively as the generic variable. χ Z is the definition typically considered for purely gaseous flow.
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Figure 8 :

 8 Figure 8: Comparison between the results with unitary and correct values of the Lewis numbers for (a) C 2 H 6 O (ethanol) and (b) CH 4 O (methanol)

  1.0, Le F = 1.0 Le O = 1.06, Le F = 1.73 1.0, Le F = 1.0 Le O = 1.06, Le F = 1.25

Figure 9 :

 9 Figure 9: Comparison of χ and χ Z between unity Le and constant but non-unity Le results for (a) C 2 H 6 O (ethanol) and (b) CH 4 O (methanol).

Figure 10 :

 10 Figure 10: (a) Flame position x f and (b) flame temperature Θ f as function of the Stokes number for ethanol (Le = 1.73) and methanol (Le = 1.25) with Le O = 1.06

Figure 11 :

 11 Figure 11: Profiles of the (a) droplet radius a and (b) dissipation rate χ for different values of the Stokes number for ethanol (Le = 1.73) with Le O = 1.06. The droplets vaporise completely prior to reaching the flame.
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Table 1 :

 1 Fuel properties.

	Fuel	ν	Q (kJ/g) l (kJ/g)	TB (K) ρl (kg/m 3 ) M
	CH 4 O	1.5	22.3	1.18	338	792	10
	C 2 H 6 O 2.087	29.7	0.846	351	789	14

Table 2 :

 2 4.2. Non-unity Le F and Le O Lewis numbers.

	O 2	CH 4 O C 2 H 6 O
	1.06	1.25	1.73