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Contact forces pre-integration for the whole body estimation of legged robots

Mederic Fourmy†, Thomas Flayols†, Nicolas Mansard† and Joan Solà†∗

Abstract— State estimation, in particular estimation of the
base position, orientation and velocity, plays a big role in
the efficiency of legged robot stabilization. The estimation of
the base state is particularly important because of its strong
correlation with the underactuated dynamics, i.e. the evolution
of center of mass and angular momentum. Yet this estimation
is typically done in two phases, first estimating the base state,
then reconstructing the center of mass from the robot model.
The underactuated dynamics is indeed not properly observed,
and any bias in the model would not be corrected from
the sensors. While it has already been observed that force
measurements make such a bias observable, these are often
only used for a binary estimation of the contact state. In this
paper, we propose to simultaneously estimate the base and the
underactuation state by using all measurements simultaneously.
To this end, we propose several contributions to implement a
complete state estimator using factor graphs. Contact forces
altering the underactuated dynamics are pre-integrated using
a novel adaptation of the IMU pre-integration method, which
constitutes the principal contribution. IMU pre-integration is
also used to measure the positional motion of the base. Encoder
measurements are then participating to the estimation in two
ways: by providing leg odometry displacements, contributing to
the observability of IMU biases; and by relating the positional
and centroidal states, thus connecting the whole graph and
producing a tightly-coupled whole-body estimator. The validity
of the approach is demonstrated on real data captured by the
Solo12 quadruped robot.

I. INTRODUCTION

Legged robot estimation has from the start been focused on
the integration of odometry derived from the kinematic chain
[1], later fused with Inertial Measurement Units (IMU) to
capture higher movement dynamics [2]. This approach lead
to the use of Bayesian filters introduced for quadruped robots
in [3] and adapted for humanoid robots in [4]. Focusing
on proprioceptive odometry, they naturally produced drifting
estimation of the robot position and yaw and have been com-
plemented by loosely coupled corrections from exteroceptive
sensors [5].

Another line of research is the estimation of centroidal
quantities such as the center of mass, centroidal momentum
and their derivative which is especially important for the
balance and predictive control of humanoid robots. They
all have in common a two-step approach where a first
estimator outputs the base state and this is used by a second
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Fig. 1: LAAS-Gepetto robot Solo12 from the Open Dynamic Robot
Initiative

estimator to obtain the centroidal quantities. While [6] uses
simplified models such as the LIPM, [7] applies the full
dynamical model to develop Kalman Filters using kinematic
measurements fused with sensor wrenches while permitting
the estimation of an external force or kinematic model
bias. [8], [9] propose a fusion based on a careful spectral
analysis of the measurement sources from which a cascade
of complementary filters is derived.

Coming from the drone community in the context of
Visual Inertial Odometry [10], more recent works start to
introduce nonlinear optimization to solve real time estima-
tion problems using the factor graph paradigm [11]. The
seminal work [12] showed that IMU measurements could
be efficiently integrated in such a framework using the so
called pre-integration, which was improved later with proper
estimation on the SO(3) manifold [13]. Ref. [14] was the first
work applying this framework to a biped robot (Cassie). It
derived factors to tightly fuse IMU measurements with pre-
integrated leg odometry and off-the-shelf visual odometry.
Shortly after in [15], another team proposed similar methods
on a quadruped robot (ANYmal) replacing leg odometry by
velocity measurements coming from a lower level IMU kine-
matic filter. They then built on these results by introducing
a new pre-integrated factor taking explicitly into account the
bias from low level filter velocity, made observable by vision
[16]. The leg odometry factors used in these works rely
implicitly on gyroscope measurement integration for point
feet robots.

However, none of these factor graph based works included
the robot dynamics into the estimation yet. The most closely
related work is that proposed by [17] in the context of
aerial vehicles. They incorporated the linear dynamics of
the rotors as a pre-integrated factor within a visual inertial
framework which permits them to observe an external force
being applied to the drone.

In this paper we describe a method to perform whole-



body state estimation of legged robots. The estimated state
contains positional states of the base (position, velocity
and orientation), and centroidal states (CoM position and
velocity, and angular momentum). The method fuses in-
formation from IMU, joint encoders and contact forces. A
unique factor graph is employed to represent the estimation
problem, yielding a tightly coupled fusion which is solved by
nonlinear least squares optimization. One key contribution
is the pre-integration of the force measurements into a
unique measurement, in what constitutes an adaptation of the
IMU pre-integration technique widely used in visual-inertial
odometry and SLAM. We present results on a real dataset
from Solo12 quadruped with 12 DoF, see Fig. 1.

II. PROBLEM STATEMENT

A. Centroidal dynamics

The robot dynamics is described by the well-known:

M(q)v̇q + h(q, vq) = τq +
∑
k

J>k fk (1)

where q, vq, v̇q, τq are the position, velocity, acceleration
and torques of the robot in configuration space, fk are the
contact forces (written as 3D forces in this paper), M is the
generalized inertia matrix, h the sum of gravity, Coriolis and
centrifugal forces, and Jk the jacobians of the contact points.
Because of the underactuated nature of legged robots, the
configuration is often separated into q = (pb,Rb, qa) where
p is the position in world frame of the robot basis (typically,
the torso), Rb the rotation of the basis body with respect to
the world and qa are the joint configuration of the actuated
joints.

While (1) represents the whole dynamics, a subpart of it
is of particular importance for legged robots. The centroidal
dynamics is written by the two equations:

mc̈ = mg +
∑
k

fk , L̇ =
∑
k

(pk − c)× fk (2)

where c,L are the position of the center of mass (CoM) and
angular momentum (AM) around the CoM (both expressed
in world frame), m is the robot total mass, and the pk are the
positions of the contact points in world frame. The centroidal
dynamics is an exact part of (1), but more deeply reveals
the underactuation: the robot can move only if applying the
proper forces to the environment, as the joint torques alone
cannot lead to any modification of the Center of Mass (CoM)
or angular momentum (AM).

The classical approach in estimation of legged-robot state
is to first estimate the basis state, and then reconstruct
the centroidal state (c, ċ,L) using the joint position and
velocity measurements, and the robot model. This assumes
that there is no direct measurement of the centroidal state.
Consequently, we would not be able to recover the exact
centroidal state if there is any bias in the robot model.

Yet, we can see from the centroidal dynamics that the
force measurements are connected to the variation of the
centroidal state. As observed in [18], a proper fusion of
the force measurements with an estimation of the state

of the basis makes the centroidal state observable. As the
basis state is also observable from inertial and kinematic
measurements [3], a direct consequence is that the fusion of
force, inertial and kinematic measurements makes the basis
and centroidal states observable.

In the following, we propose a practical method to imple-
ment a basis and centroidal estimator based on IMU, joint
coders and force sensors. Based on factor graph, this method
can also be added into a SLAM estimator to also estimate
the absolute positions of the basis and the CoM.

B. Estimation problem MAP formulation

Our 12 degrees of freedom (DoF) quadruped robot Solo12
is equipped with an IMU, joint encoders monitoring the joint
angles qa ∈ R12 and angle velocities q̇a ∈ R12. We will
often drop the dependency of certain measurements on qa
and q̇a for readability once stated. Joint torques can also be
estimated from motor current. These quantities are available
at 1kHz. The goal is to reconstruct the full state of the robot,
namely the base position p ∈ R3, base velocity v ∈ R3

and base orientation R ∈ SO(3), as well as the robot’s
CoM position c ∈ R3, the CoM velocity ċ ∈ R3 and the
centroidal AM L ∈ R3 at this same frequency. All quantities
are expressed with respect to the world frame w:

x = [p,v,R, c, ċ,L] , [wpb,
wvb,

wRb,
wpc,

wvc,
wL]

Some measurements are affected by time varying biases
b = [ba,bω,bp] that can be estimated, where ba/bω refer
respectively to the accelerometer/gyro biases and bp is the
bias on the CoM centroidal measurement.

We pose the estimation as an optimization problem where
variables χ are composed of a trajectory of states xi at times
ti, also called Key Frames (KF), to which the biases bi are
associated. This problem can be represented as a factor graph
(Fig. 2) which is a bipartite graph where nodes correspond
to the variables and factors to nonlinear constraints com-
ing from the noisy sensor measurements. Then, under the
assumption that χ has a multivariate Gaussian distribution
and that measurement noises are Gaussian and independent,
the maximum a-posteriori (MAP) problem is equivalent to
solving the weighted least squares problem,

χ∗ = arg min
χ

∑
k

‖rk(χ)‖2Σk
(3)

Each factor k corresponds to a residual function r() of any
number of variables from χ and a covariance matrix Σ
associated to sensor noises. In the remaining of the paper,
we will refer to measurement quantities with a tilde, e.g. ã,
and Gaussian noises affecting them as na. The following
section describes how these residuals are obtained from
measurements.

III. FACTOR GRAPH FOR BASE-CENTROIDAL ESTIMATION

In the context of graph optimization estimation, factors
can apply to a single KF (unary factors) or distant KFs.
KFs are created at relatively low rate to avoid saturating the
estimation problem with too many variables. We incorporate
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Fig. 2: Factor graph including factors of IMU (green), leg odometry
(red), centroidal kinematics (purple) and pre-integrated force-torque
(blue). Columns are keyframes. State block nodes are p: position;
R: orientation; v: velocity; ba: acc. bias; bw: gyro bias; c: CoM
position; ċ: CoM velocity; L: angular momentum; bp: CoM mea-
surement bias. Single-ended factors are priors.

several kinds of factor to (3): state prior (0), leg odometry
(LO), pre-integrated IMU deltas (I), pre-integrated force
measurements (F ), centroidal kinematics (CK), and bias
drifts (B), yielding the optimization problem (Fig. 2),

χ∗ = arg min
χ

∥∥r0
i

∥∥2

ΣI
i

+
∑
i,j

∥∥rIi,j∥∥2

ΣI
i,j

+
∑
i,j

∥∥rLOi,j ∥∥2

ΣLO
i

+
∑
i,j

∥∥rFi,j∥∥2

ΣF
i,j

+
∑
i

∥∥rCKi ∥∥2

ΣCK
i

+
∑
i,j

∥∥rBi,j∥∥2

ΣB
i,j

(4)

These factors are described in the following paragraphs.

A. State priors r0

In the posed problem, the base position and yaw angle
are unobservable since we do not have access to absolute
measurements (coming from GPS for instance). In order to
ground the estimates to a reference and not have a floating
problem, we impose a prior on the initial position and
orientation of the base.

r0(x0) =

[
p0 − p̃0

Log(R0> R0)

]
(5)

where Log denotes the logarithm application mapping ele-
ments of SO(3) to the R3 representation of its Lie algebra
so(3).

B. Leg odometry factor rLO

Assuming that we have access to an accurate contact
detection, for each foot in contact between KFi and KFj,
we can write that wpiwl = wpkwl + nLO where nLO denotes
a Gaussian noise accounting for potential slip of the foot
and kinematic inaccuracies. This pseudo measurement can
be used to derive a 3D factor for each foot l in contact:

rLOl (pi,Ri, pk,Rk) = pi+ Ri bpibl− (pk+ Rk bpkbl) (6)

Where bpibl and bpkbl are the contact position in base frame
at times i and j acquired from qa via forward kinematics.

Assuming good contact detection, leg odometry fused with
the IMU is enough to properly observe 6DoF motion with as
few as 2 contact feet at a time. Note that contrary to previous
works [14], [16], this leg odometry factor does not require
gyroscope integration

C. Generalized pre-integration theory

Pre-integration refers to the integration of high rate pro-
prioceptive sensory data in an efficient way in the context
of factor graphs. It was initially developed to deal with IMU
measurements [12], [13]. In fact, if a standard integration is
conducted naively to derive a factor measurement between
two KFs, then the IMU data needs to be reintegrated at each
solver iteration because the integral depends on the states we
are to estimate. The IMU pre-integration theory solves this
issue and can be generalized to any proprioceptive sensor as
shown in [19]–[21]. Delta quantities ∆ik are defined between
KFs i and k so that xk = xi�∆ik. A suitable composition
� is chosen so that ∆ik does not depend on the initial states
xi. Dependence on other, small-varying parameters b such as
sensor bias is linearized as ∆ik(b) = ∆ik(b)⊕J∆

b (b−b).
Then we can pre-integrate ∆ik , ∆ik(b) once during
data gathering, and use it to define residuals that are later
evaluated many times by the optimizer.

1) Delta pre-integration: We perform pre-integration in-
crementally as follows. First, ∆ii is initialized to the null
motion. Its covariance Σ∆

ik and the Jacobian Jδk

bi
are set to

zero. At each reception of sensor data z̃k at tk, we integrate
during δt to obtain the delta corresponding to a single data
sample,

δk = f(z̃k,bi, δt) , (7)

using the bias bi available in KF i. This single delta is
integrated onto the delta pre-integrated so far using the delta
composition law,

∆ik = ∆ij ◦ δk . (8)

The Jacobian of the pre-integrated delta with respect to
biases, as well as the delta covariance, are also pre-integrated,

J∆ik

bi
= J∆ik

∆ij
J

∆ij

bi
+ J∆ik

δk
Jδk

bi
(9)

Σ∆
ik = J∆ik

∆ij
Σ∆
ijJ

∆ik

∆ij

>
+ J∆ik

δk
Jδk

zk
ΣzJ

δk
zk

>
J∆ik

δk

>
(10)

where Jδk

bi
, Jδk

zk
, J∆ik

∆ij
and J∆ik

δk
are the Jacobians Jyx =

∂y/∂x of (7,8), computed according to Lie theory [22].
2) Residual definition: The pre-integrated ∆ik is used at

the end of the pre-integration to define the residual,

rik = (∆ik ⊕ J∆ik

bi
(bi − bi))	 ∆̂ik (11)

where bi is the current bias value, ∆̂ik = xk � xi is
the expected delta between keyframes, and {⊕,	} are the
composite plus and minus operators described in [22]. That
is, {⊕,	} are {+,−} for vectors, and for rotations we have
R ⊕ θ , R Exp(θ) and R2 	 R1 , Log(R>1 R2). The
residual clearly depends on the keyframe states xi,xk and
the bias bi. It has an associated covariance Σ∆

ik.



D. IMU pre-integration factor rI

The states involved in this integration are the base states
xb = [p,v,R] with deltas ∆ = [∆p,∆v,∆R]. The IMU
produces biased and noisy measurements z̃ = [ã, ω̃] of the
base proper acceleration and angular velocity, with bias b =
[ba,bω] and noise n = [na,nω]. The pre-integration method
in [13] can be put in the formalism above by realizing that
defining δ = f(z̃,b, δt) in (7) as

δk =

δpδv
δR


k

=

 1
2 (ã− ba − na)δt2

(ã− ba − na)δt
Exp((ω̃ − bω − nω)δt)


k

(12)

and the composition law ∆ik = ∆ij ◦ δk in (8) as

∆pik = ∆pij + ∆vijδt+ ∆Rijδpk

∆vik = ∆vij + ∆Rijδvk

∆Rik = ∆RijδRk

(13)

then xk = xi �∆ik is [13, eq. 32] and ∆ik = xk � xi is
[13, eq. 33]. Full details can be found in [19, Section 3.4].

E. Force pre-integration factor rF

The Newton-Euler equations (2) relate the evolution of a
system’s CoM and AM due to gravity, external forces and
torques in a chosen inertial frame. In the case of a legged
robot with punctual contact feet, only forces f̃ l are applied
at each limb contact l, with no torque. We assume that
at each limb contact we have access to noisy local force
measurements f̃ l = lf l + nf . To transform them to the body
frame b, we compute bRl(qa) ∈ SO(3) and bpbl(qa) ∈ R3

from the articulations configuration qa ∈ R12. The lever
arm (pl−c) in (2) uses a measurement of the CoM position
in base frame bpbc(qa) ∈ R3. This measure is biased due
to inaccuracies in the robot model and therefore we add
a bias variable to estimate, bbc ∈ R3 so that bp̃bc =
bpbc+bbc+nbc. Assuming constant forces during the interval
δt the integral of (2) yields the discrete dynamic model for
the centroidal states:

ck = ck−1+ċk−1δt+
1

2
gδt2+

1

2m
Rk−1

∑
l

bRk
l ( f̃

k
l − nk

f )δt
2

ċk = ċk−1 + gδt+
1

m
Rk

∑
l

BRk
L( f̃

k
l − nk

f )δt

Lk = Lk−1+Rk
∑
l

(bpk
bl−bp̃k

bc+bk
bc+nk

bc)×bRk
l ( f̃

k
l −nk

f )δt

(14)

Analogously to the IMU case, it is possible to pre-integrate
force measurements to derive a factor on the states xc =
[c, ċ,L,R] using deltas ∆c = [∆c,∆ċ,∆L,∆R]. The
rotation measured by the gyroscope has to be included too
for the pre-integration to work. Then the bias vector is
b = [bbc,bω]. We define measurements zk to be:

zk =
[
bp̃kbc, ω̃ωω

k,
[
f̃kl ,

bp̃kbl,
b
R̃k
l

]
l=1...4

]
(15)

The following operators are enough to particularize the
method in Section III-C to the contact forces case. Integrating

zk during δt yields δk in (7) as,

δk(zk,bi, δt)=


1

2m

∑
l

b
R̃k

l f̃kl δt
2

1
m

∑
l

b
R̃k

l f̃kl δt

(
∑

l
bp̃k

bl−(bp̃k
bc−bbc)×(

b
R̃k

l f̃kl ))δt
Exp((ω̃ωωk − bω)δt)


(16)

and the delta composition law in (8) as

∆ ◦ δ =


∆c + ∆ċδt+ ∆Rδc

∆ċ + ∆Rδċ
∆L+ ∆RδL

∆RδR

 . (17)

The expected delta ∆ik = xk � xi between KFs i, k reads

∆ik =


∆cik
∆ċik
∆Lik
∆ Rik

 =


Ri>(ck − ci − ċi∆tik)

Ri>(ċk − ċi − g∆tik)

Ri>(Lk − Li)
Ri> Rk

 . (18)

Finally, the propagation of the state xi to xk using ∆ik,
which can be used to retrieve a state at any time k between
keyframes in the trajectory, is

xk = xi �∆ik =


ci+ċi∆tik+Ri∆cik+ 1

2g∆t2ik
ċi + Ri∆ċik + g∆tik
Li + Ri∆Lik

Ri∆Rik

 (19)

F. Centroidal kinematics factor rCK

We need to relate base states to centroidal quantities to
ground their estimate. For that, we can rely on the inertial-
kinematic model for the computation of the CoM position
wrt. base frame bpbc(qa) ∈ R3, the CoM velocity wrt.
base frame bvbc(qa, q̇a) ∈ R3, the inertial matrix I(qa) ∈
R3×3, and the kinematic momentum due to gesticulation of
the robot limbs only La(qa, q̇a) ∈ R3. In particular, the
computed CoM position is here considered an independent
measurement, affected by Gaussian noise and a slowly vary-
ing bias bp̃bc = bpbc+bbc+nbc. The angular velocity from
the IMU is used and its bias has to be incorporated in the
factor bω̃ωωb = bωωωb + bω + nω . In the end the equations used
to derive the factor are:

c = R(bp̃bc − bpc − npc) + p

ċ = v + R((bω̃ωωb − bω − nω)× (bp̃bc − bbc − nbc)

+ (bṽbc − nvc))

L = R(I(bω̃ωωb − bω − nω) + La)

(20)

Then, the residual rCK ∈ R9 is simply expressed as:

rCK =

 bp̃bc − (RT (c− p) + bp)

(bω̃ωωb − bω)× (bp̃bc − bp) +
bṽbc − RT (ċ− v)

I(bω̃ωωb − bω) + La − RTL


(21)

G. Bias prior and drift factors

Bias prior and drift factors have trivial residuals rprior =
b−bref and rdrift = bk −bi respectively, each with its own
associated covariance Σ.



Fig. 3: Force estimation on X-Y-Z axis (r-g-b) of one Solo12 leg
expressed in world frame using proprioceptive sensors during the
sinXYZ trajectory

IV. CONTACT FORCES RECONSTRUCTION

We tested our solution on the open source robot Solo12
[23] built recently at LAAS. Solo12 is not equipped with
contact nor force sensors. Yet, it is possible to invert the
robot dynamic equation (1) in order to reconstruct the con-
tact forces knowing the robot configuration and derivatives
v̇q, vq, q and joint torques given by the motor current. Some
of these quantities are hard to obtain directly since they
depend on the state being estimated (base orientation) or
on numerical differentiation (q̈a). For these reasons, we pre-
calculated these forces by benefiting from an internal filter
of the IMU for the base orientation, and centered window
differentiation for the articulation acceleration q̈a. Fig. 3
shows an example of the force reconstruction of one leg.

V. RESULTS

In this section we present results of the application of
the estimator on datasets taken at LAAS-Toulouse on our
platform Solo12: sinXYZ corresponds to a trajectory where
the robot moves by following a sine wave reference with the
feet fixed in place. We use the state estimation framework
WOLF, developed at IRI-Barcelona, which relies on Google
Ceres as the graph solver. For all runs, Key Frames were
created at 4Hz for fair comparison.

A. Base estimation through inertial kinematic fusion

First, to validate the use of our kinematic factor, we
include uniquely the IMU and LO factors to obtain an Inertial
Kinematics (IK) estimator which conceptually includes the
same information as estimators such as [3]. In Fig. 4, we
compare our state estimation at 1kHz with Motion Capture
(Mo-Cap) up-sampled from 200Hz to 1kHz. Velocity in base
frame is also shown in Fig. 5.

Artificially removing contact factors (considering only 1,
2 or 3 feet in contact) can help us gain confidence in the use
of this kinematic factor in situations where we rarely have all
feet in contact, like for example with trotting gaits. In Fig. 6,
we can see that only considering 1 foot in contact during the
whole trajectory results in a drifting position, but as soon as 2
or more feet are in contact, the system is constrained enough
for the drift to remain below around 5mm on all axes.

Fig. 4: sinXYZ trajectory base position from the IMU+kinematics
estimator (blue) vs Mo-Cap (red)

Fig. 5: sinXYZ trajectory base velocity in base frame from the
IMU+kinematics estimator (blue) vs Mo-Cap (red)

B. Centroidal estimation

Now, on the same trajectory, we deploy the full estimator
with all factors described in Section III to jointly estimate
the base and centroidal quantities. A ground truth on the
centroidal quantities is difficult to obtain since no direct
sensor can provide us with this information contrary to
the base state. We can however validate our method by
comparing it a two step procedure: first, estimate the base
state with a state Kalman Filter as implemented in [24],
then compute the centroidal quantities directly from the robot
kinematic model. The full estimator should be able to infer
a bias on the bp̃bc measure so we artificially add a constant
disturbance in the robot dynamic model on the lever of the
base link of [0.03, 0.06, 0.04] cm, which then corresponds
to a CoM bias of [-0.0197, -0.0394, 0.0263]. Fig. 8 shows
that the bias estimated with our method closely matches the
introduced bias. Fig. 9 shows a comparison between the base
and CoM reconstruction with our method and with the two-
step base KF with geometric CoM Note that the base-CoM
difference on the z axis reflects the fact that limbs of the
robot lower naturally its CoM. The estimated CoM velocity
follows closely the velocity of the base as shown in Fig. 7.
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Fig. 6: sinXYZ trajectory base position error with different numbers
of feet used for the leg odometry factors: 1 (blue), 2 (orange), 3
(green), 4 (red) from the IMU+kinematics estimator

Fig. 7: Base (blue) vs CoM (red) velocities from the full estimator

VI. CONCLUSION

In this paper, we introduced the first realization of the
tightly coupled estimation of base and centroidal quantities
of a legged robot using factor graph optimization. This
was enabled by the introduction of a new pre-integrated
factor on the contact forces of the robot, making the CoM
geometric measurement bias observable. We also designed
a simple factor for point leg sensors that does not rely on
gyro measurement. We demonstrated the viability of the
approach on a dataset taken on the quadruped robot Solo 12.
Within this framework, we plan to integrate exteroceptive
measurement in a SLAM context to obtain a drift free
estimation of base and centroidal states useful for planning
and feedback control.
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