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Synonyms  
First Principles Molecular Dynamics, Ab Initio Molecular Dynam-
ics, DFT-based Molecular Dynamics, CPMD 
  
Definition 
The Car-Parrinello molecular dynamics (CPMD) is an extension of 
the Lagrangean formalism of classical molecular dynamics in which 
the model potential describing the interaction among atoms is re-
placed by the total energy functional of the system as provided by 
the Density Functional Theory (DFT). The electronic wavefunctions 
are explicitly introduced as new dynamical variables. The simulta-
neous Euler-Lagrange equations of motion for both sets of dynam-
ical variables, atomic coordinates and electronic wavefunctions, 
avoid the explicit minimization of the DFT total energy at each step 
of the dynamics. Instead, they introduce a fictitious dynamics of the 
wavefunctions representing an adiabatic updating on-the-fly of the 
electronic structure along the atomic dynamics. 

Introduction 

The main target in atomic-scale simulations is to reproduce in a re-
alistic way physical and chemical events occurring in materials. Spe-
cifically, the scope of First Principles Molecular Dynamics (FPMD) 
is to study a system of interacting nuclei and electrons by recreating 
it on a computer in a way as close as possible to nature and by simu-
lating its dynamics over a physical length of time relevant to the 
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properties of interest. The inherent complexity of the simulated sys-
tems, from solids to biological macromolecules, calls for methods 
able to go beyond the simple calculation of the electronic structure of 
a given set of coordinates RI representing the positions of atoms. 
This is exactly the idea that started the entire field of Molecular Dy-
namics (MD). 
From an historical point of view, the MD approach was introduced 
by Alder and Wainwright [1] in the late 1950's to study the interac-
tions of hard spheres. Many important insights concerning the behav-
ior of simple liquids emerged from their studies, but due to the limi-
tations of the computational facilities and the pioneering stage of the 
MD, it was only in 1964 that the first dynamical simulation could be 
done. That milestone case focused on liquid Ar with the interatomic 
interaction modeled by a truncated Lennard-Jones potential [2]. In a 
nutshell, any MD method is an iterative numerical scheme for solv-
ing some equations of motion (EOM), representing the physical evo-
lution of the system under study. Modeling the interaction of atoms 
with an analytic potential V(RI), especially when chemical bonds 
evolve in time and they are broken or formed is a hard task not yet 
solved apart from a very limited class of chemical species. On the 
other hand, the electronic structure for a general many-body system 
can be determined with a computationally reasonable workload by 
means of the density functional theory (DFT), originally proposed in 
the early 60s by Kohn, Hohenberg and Sham [3,4]. Its importance in 
the advancement of computational quantum chemistry and related 
fields was acknowledged by the Nobel Prize in Chemistry in 1998 
awarded jointly to Walter Kohn and John A. Pople. Joining the two 
fields, MD and DFT, is exactly what the Car-Parrinello method is 
about, extending the range of both concepts [5,6]. 

A Brief Overview of Density Functional Theory: The CPMD 
Potential 

The DFT is a formulation of the many-body quantum mechanics in 
terms of an electron density distribution, (x), which describes the 
ground state of a system composed of interacting electrons and 
point-like nuclei having positions {RI} [7]. All along the text, atom-
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ic units will be used for simplicity. In practice, single-particle wave-
functions i(x) are used to express the many-body mathematical 
function (x). The dramatic simplification, is the fact that not even 
the specific analytic form of the complex function i(x) matters, but 
only its square modulus, so that the electron density reads 
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This expression is clearly a single Slater determinant constructed 
from wavefunctions representing all the Nocc occupied orbitals. The 
coefficients fi are the (integer) occupation numbers, and they are 
equal to 1 in the case in which the spin is explicitly considered (spin-
unrestricted) or equal to 2 if the spin is neglected and energy levels 
are considered as doubly-occupied (spin-restricted). Furthermore, 
the wavefunctions i(x) are subject to the orthonormality constraint 
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as in any quantum mechanics approach. The Kohn-Sham (KS) DFT 
total energy of the system in its ground state is then written as 

           IIeIxcHiki
KS EEEEEE  }{}{   (3) 

In Eq. (3) the first three terms on the right-hand side (Ek, EH, Exc) 
describe all the electron-electron interactions, the fourth term (EeI) 
refers to the electron-nucleus interaction and the fifth one (EII) corre-
sponds to the nucleus-nucleus interaction. More explicitly, Ek is the 
Schrödinger-like kinetic energy expressed in terms of the single-
particle wavefunctions i(x) as 
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It must be remarked that this expression for the kinetic energy does 
not depend on the density (x) but directly on the wavefunctions. 
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The second term, EH, is the Hartree energy, i.e. the Coulomb electro-
static interaction between two charge distributions 
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The exchange interaction and the electron correlations due to many-
body effects are represented by the term Exc[], whose exact analyti-
cal expression is unknown. There are good approximations derived 
from the homogeneous electron gas limit for the exchange interac-
tion [7], the so-called local density approximation (LDA), whose 
name comes from the fact that an homogeneous distribution of inter-
acting electrons is assumed, in which (x) depends just on the local 
point x. Similarly, in the LDA version of the correlation energy [7], 
the explicit analytic form of the functional comes from a parameteri-
zation of the results of quantum Monte Carlo calculations. Due to the 
insufficiency of a simple LDA approximation for many real systems, 
non-local approximations including the gradient of the density, are 
often adopted and the exchange-correlation functional becomes 
Exc[ ]. In practical applications, however, the gradient enters 
only with its modulus, thus adding only a modest computational cost. 
The electrostatic interaction between electrons and nuclei, is then 
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where ZI is the charge of the Ith nucleus. However, in practice, this 
expression “as is” is computationally expensive. In fact, two differ-
ent length scales come into play: a small one for the core electrons, 
characterized by rapidly varying wavefunctions, especially in the re-
gion very close to the nucleus, and a longer one for the valence elec-
trons that form chemical bonds and vary more smoothly. Clearly, the 
first one would dominate and add a computational workload that 
would make impractical simulations of large systems. To overcome 
this problem, one can observe that core electrons are generally inert 
and do not participate to chemical bonds. This crucial observation 
led to the use of pseudopotentials [6]. Namely, core electrons are 
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eliminated and a potential describing the core-valence interaction is 
built by fitting to the all-electron solutions of the Schrödinger or Di-
rac equation for the single atom of the chemical species considered. 
In a pseudopotential (PP) approach, the electron-nucleus interaction 
is rewritten as 

      )(3 xRx  IpseI VxdE  (8) 

Finally, the fifth and last term in right-hand side of Eq. (3) is simply 
the Coulomb interaction between two classical nuclei I and J and is 
written as 
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where ZI and ZJ are the net valence charge in a PP approach. The to-
tal energy Etot of the ground state of such a system of interacting 
electrons and nuclei is obtained by minimizing the KS functional 
with respect to the single-particle orbitals i(x), which, in practice, 
means solving the KS Schrödinger-like equations 
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The Basis Set Issue 

A somehow arbitrary issue is the proper definition of i(x). The an-
swer is the selection of a proper basis set on which orbitals can be 
expanded. One possible choice is a localized basis set expressing the 
one-electron wavefunctions as  
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and the number of analytic functions used, M, is also an indicator of 
the computational cost of the quantum calculation, in the obvious 
sense that the larger the basis set, the higher the computational 
workload. One of the most popular basis sets is represented by 
Gaussian-type orbitals (GTO) 
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where r = x – RI. When such a basis set is used, the constants Nk, 
and k are kept fixed during the electronic structure calculation, 
whereas the coefficients ck

i are allowed to vary until they are fully 
optimized [8]. It must be remarked that orbitals expanded in a local-
ized basis set depend on the atomic positions RI. As a consequence, 
in any calculation in which the forces acting on the ions are required, 
the explicit derivatives of these wavefunctions with respect to RI 
must be computed, leading to non-Hellmann-Feynman force compo-
nents known in the literature as Pulay forces [6,8]. An alternative ba-
sis set rather popular in physics is represented by plane waves (PW) 
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where the sum is truncated at a suitable cut-off Gmax. In this case, no 
dependence on the atomic coordinates and no arbitrariness in the in-
crease in the number of basis functions exist. 
  

First Principles Molecular Dynamics 

Until the early 1980s, few applications of DFT went beyond the stat-
ic calculations of the electronic structure. Nonetheless, finite temper-
ature and entropy effects are two of the dominant features in matter 
and their role is often far from negligible. In this respect, the FPMD 
has represented a huge step forward. In this particular combination of 
DFT and MD, the interactions among atoms, instead of being de-
scribed by an analytical function V({RI}) of the atomic coordinates 
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RI, is directly computed from the DFT total energy EDFT, which is 
simultaneously a function of the electron wavefunctions and the 
atomic coordinates. The Born-Oppenheimer (BO) approximation [9] 
allows to disentangle the motions of the electrons and the nuclei, and 
each time the nuclei RI(t) are displaced from given positions at time t 
to new positions RI(t+t) at a subsequent time t+t, an optimization 
of the electronic structure has to be performed. Then the forces act-
ing on the nuclei are estimated from the gradient of EDFT with respect 
to the ionic position and the variables RI(t) are updated to RI(t+t) 
by solving via finite differences the Newton-like EOM 
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This iterative procedure assumes that the electronic structure is 
recomputed and the full diagonalization of the Hamiltonian is per-
formed at each time step t along the discrete trajectory {RI (t)}. 

Car-Parrinello Molecular Dynamics 

An alternative to this scheme, which has represented a real break-
through in first principles dynamical simulations was proposed in 
1985 by R. Car and M. Parrinello [5]. The scope (and driving force) 
was to overcome the two major efforts arising in FPMD: On one 
hand one has to integrate the equations of motion for the nuclear po-
sitions as in Eq. (14), which represent the long time scale part to the 
problem. On the other hand, one has to propagate dynamically the 
smooth time-evolving (ground state) electronic subsystem. The Car-
Parrinello molecular dynamics (CPMD) is able to satisfy this second 
requirement in a numerically stable way and makes an acceptable 
compromise for the time step length of the nuclear motion. The for-
mulation is an extension of a classical molecular dynamics La-
grangean in which the electronic degrees of freedom (wavefunctions) 
are added to the system, along with any other dynamical variable 
q(t), i.e. thermostats, barostats, reaction coordinates, etc. 
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The first term on the right-hand side of Eq. (15) is the kinetic energy 
of the nuclei, the second one the fictitious kinetic energy of the elec-
trons representing the update of the wavefunctions during the dy-
namics, the third one the kinetic term of any further dynamical varia-
ble used in the sense specified above, the fourth one is the DFT total 
energy, and the last addendum is the orthonormality constraint for 
the wavefunctions. The kinetic energy for the electronic degrees of 
freedom is the main novelty of the CPMD approach: A strategy to 
update on-the-fly the wavefunctions when ions undergo a dynamical 
displacement, avoiding expensive iterative diagonalization required 
by the BO approach at each time step. The Euler-Lagrange EOM are 

 
j

jij*
i

KS

i
E )()( xx 



   (16) 

 KS
II EM

IRR   (17) 

 


 



q

Eq
KS

  (18) 

The fictitious mass  assigned to the orbitals i(x) is the parameter 
that controls the speed of the updating of the wavefunctions with re-
spect to the nuclear positions. For this reason, it determines the de-
gree of adiabaticity of the two subsystems, electrons and nuclei. 
It is straightforward to give a Hamiltonian, instead of a Lagrangean, 
formulation of the CPMD method, via a simple Legendre transform 
after defining the momenta 
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so that the Hamiltonian reads 
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and the CPMD equations of motion (Fig. 1) will be given by the cor-
responding Hamilton EOMs. 
  

   
Fig. 1. Atomic structure (sticks; red = O, white = H) of a water molecule and electronic wave-
function of an O-H  s-bond in terms of density map (blue: |i(x)|2=0, red: |i(x)|2=maximum). 
The two sets of dynamical variable evolve in time according to the equations of motions indicat-
ed, coupled via EKS. 
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A rigorous mathematical proof of this scheme has been given by 
Bornemann and Schütte [10], showing that the CPMD trajectory 
{RCP(t)} stays close to the BO one {RBO(t)} and the upper bound is 
proportional to the square root of the fictitious mass  

  Ctt BOCP )()( RR  (23) 

where C is a positive constant (Fig. 2). 
  

  
Fig. 2. Schematic representation of a Car-Parrinello trajectory (red line) with respect to a Born-
Oppenheimer dynamics (blue line) one a given DFT-based potential energy surface. 

The fact that the CPMD was a milestone step forward in realistic 
simulations of materials at various thermodynamics conditions can 
be easily seen by the number of publications in first principles mo-
lecular dynamics (FPMD) before and after 1985. Indeed, the original 
Car-Parrinello publication has more than 7000 citations in 2014 
(source: ISI Web of Science), and, to acknowledge the importance of 
the method, the international Physics and Astronomy Classification 
Scheme (PACS) introduced in 1996 a new identification number, 
71.15.Pd, to classify Car-Parrinello related publications. Since then, 
the method has been applied to a wide variety of materials, ranging 
from solids, to liquids and to biological systems [11,12]. 

Numerical Details 

Although it is not restriction neither of DFT [13] nor of CPMD [14], 
PWs are often used as a convenient basis set for the coding of 
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CPMD, since they have several good properties: (i) Accuracy can be 
systematically improved in a fully variational way, (ii) PWs are in-
dependent from atomic positions (i.e. no Pulay forces [6]), (iii) PWs 
can be easily distributed in parallel processing. However, it must ob-
served that the fact that PWs they are not localized can lead to ineffi-
ciencies for small clusters or surfaces placed in a large simulation 
cell. The equations of motion are discretized by finite differences, via 
a Verlet, or velocity-Verlet, algorithm [15]. The ionic variables RI(t) 
are updated at a rate t, while the electronic degrees of freedom are 
updated at a rate t/1/2, i.e.  
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For most of the applications, t and  fall in the range 3-5 au and 
300-600 au, respectively. Of course, the (quantum) time scale of 
electrons is dominating in this kind of approaches and simulations 
times are of the order of few tens or, at very best, hundreds of ps. As 
far as the system size is concerned, with N electrons and Gmax PWs, 
Gmax being integer, the scaling of the various parts composing the 
CPMD algorithm is O(N Gmax) for the kinetic term, O(N Gmax log 
Gmax) for the local potential and O(N2 Gmax) for both the non-local 
term and wavefunctions orthogonalization procedure. 

Second-Generation Car-Parrinello Molecular Dynamics 

The inherent high computational cost associated to the electronic 
structure calculations has limited the affordable time scales for sev-
eral years. Only the most advanced high performing computer plat-
forms recently available have allowed to increase the system size to 
about a thousand of atoms and simulation times towards hundreds of 
picosecond. Yet, many phenomena still call for a substantial boost. 
These are, for instance, diffusion in solids or, in the case of glasses 
generation from the melt, a less rapid cooling rate suitable to avoid 
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numerically induced structural problems. While linear scaling meth-
ods can be a viable way to access larger system sizes, they still have 
to face the problem of the simulation time scale. Moreover, the 
crossover point at which linear scaling methods become advanta-
geous has remained fairly large, especially if high accuracy is need-
ed. An interesting attempt at overcoming these limitations has been 
proposed in 2007 [16]. The basic idea is to join the advantages of 
both the BO approach and the CPMD; in a “nutshell” 

  
 CPMD BO 

Conservation of constants of 
motion 

Good Convergence dependent 

Electronic optimization Not needed Needed 
Hamiltonian diagonalization Not needed Needed 

Integration step t Small Large 
Minimum of the BO surface Approximate Exact 

  
These two approaches have nearly complementary features as 
sketched above. Following the CPMD formulation, it can be re-
marked that the Lagrangean formulation for the propagation of the 
wavefunctions is stable by construction, thus providing a reliable in-
tegration. This stability feature must then be preserved. Concerning 
the efficiency, large integration steps t are desirable and possibly a 
small, or better zero, deviation from the BO surface should be kept 
all along the dynamics to get a high accuracy. The mathematical re-
sult of this list of requirement resumes into a modified ionic EOM  

























 
j

jij
i

NSC

I

i
ji

j,i I
ij

I

NSC
II

EEM 





RRR
R 2

 (25) 

While the first term in the right hand of the equation is clear, the rest 
seems a bit puzzling at a first glance. Indeed, in the original formula-
tion [16], the selected basis set is not PW, but a localized basis set as 
in equation (11). Hence, the electronic wavefunctions depend also 
on the atomic coordinates RI and the request of orthogonality at each 
step is released to save time, meaning that the scalar product <i|j> 
is no longer vanishing. Analogously, the total energy EDFT is not re-
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optimized as in full self-consistent BO procedures and for this rea-
son is indicated as non-self-consistent energy ENSC. Wavefunctions 
are propagated according to an algorithm which resembles the origi-
nal CPMD formulation in the sense that second order EOMs are 
used, but a damping term (first-order derivative) is present which 
reminds a sort of steepest-descent algorithm typical of the BO dy-
namics. The net result is the electron dynamics, 
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which is then solved via a predictor-corrector scheme. With no pre-
tention of completeness, the procedure can be summarized as fol-
lows. On a first instance, in a localized basis set {|q>}, the electronic 
wavefunctions are expanded as 
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on the M functions composing the localized basis. Then the NxM 
matrix of the expansion coefficient is written as  
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and the density matrix becomes P = CCT = PSP. The MxM matrix 
indicated as S is just given by the expansion coefficient and its ma-
trix elements have the usual form 
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Hence, the (DFT) total energy can be rewritten as Etot[C,RI] which 
can be used in a straightforward way to write a BO dynamics 
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under the given constraint on C which resumes in an implicit or-
thogonality condition. However it must be kept into account that: (i) 
Diagonalization and minimization of Etot are required in BO; (ii) 
Hellman-Feynman forces are just one component since Pulay forces 
due to the local basis set are present. Residual force components ap-
pear due to non-self-consistency (NSC) of the approach. To take into 
account all the points above, the basic strategy can be summarized in 
four major points: 
1. Propagate the electronic variables in time according to the CP 

original idea of updating on-the-fly to avoid expensive full diag-
onalization operations 

2. Use a good propagation algorithm C(tn)=f(C(tn-1),…,C(tn-m)) de-
pending on previous time steps m∈[1,K] time steps 

3. Select the appropriate number of steps K to keep C(tn) as close 
as possible to the (electronic) ground state 

4. Enforce convergence on the BO surface, correct this propagation 
CPMD-like afterwards 

Point 3 corresponds to the first move in the numerical integration 
procedure and it can be identified as the “predictor” part directly de-
riving from a standard numerical integration of the CPMD type 
equations of motion. Point 5, instead, is the “corrector” needed af-
terwards to better converge the wavefunctions and to restore the ne-
glected self-consistent loop. The use of not necessarily fully con-
verged wavefunctions at the predictor propagation stage allows for 
large integration steps, thus resulting in a remarkable boost in the 
dynamics. 
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