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Introduction

In structural mechanics and in practically all branches of industry, when parametric uncertainty is incorporated in the mathematical model, its propagation is needed to evaluate how the randomness of input parameters affects the computed outputs and to handle, consequently, more and more realistic behaviors. In a probabilistic framework, statistical approaches such as the well-known Latin Hypercube Sampling (LHS) [START_REF] Helton | Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[END_REF] use a great number of samples of random variables for reasonable accuracy and therefore require a prohibitive computation time. On the other side, among other non statistical approaches, the generalized polynomial chaos expansion (gPCE) [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] has shown a growing emphasis in recent years due to its simple implementation and high performance. It combines polynomial basis vectors and deterministic coefficients, which can be computed by means of intrusive or non-intrusive approaches [START_REF] Berveiller | Eléments finis stochastiques : Approches intrusive et non intrusive pour des analyses de fiabilité[END_REF]. In the context of the latter, more advantageous than the former since it considers the original FE model as a black box, among other existing methods [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF], regression technique permits to estimate the gPCE coefficients by minimizing the difference between the referential LHS response and the approximation, corresponding to a set of random variables chosen among combinations of Hermite polynomial roots.

Nevertheless, the most expensive part of its implementation lies in the successive LHS evaluations. To overcome this issue, we focus, in this paper, on coupling the non-intrusive regression technique with a robust condensation method adapted to the Craig-Bampton component mode synthesis (CBCMS). In fact, the prohibitive cost of prediction is due to: the computational time of the full model using direct analysis, the computation of reduction basis for each random sample while propagating uncertainties and the number of iterations necessary to obtain accurate approximations using iterative techniques in presence of nonlinearities. Consequently, model condensation must be applied. Furthermore, the use of the CBCMS [START_REF] Craig Rr | Coupling of substructures for dynamic analyses[END_REF][START_REF] Lombard | Contribution à la réduction des modèles éléments finis par synthèse modale[END_REF] allows considering some substructures, which are uncertain and/or containing localized nonlinearities, being condensed independently of the others. Nevertheless, the main issue lies on forming a robust enriched condensed Craig-Bampton Transformation (CBT) [START_REF] Lombard | Contribution à la réduction des modèles éléments finis par synthèse modale[END_REF][START_REF] Bouazizi | Robust component modal synthesis method adapted to the survey of the dynamic behavior of structures with localized nonlinearities[END_REF] which takes into account uncertainties and localized nonlinearities.
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In the literature, some works focus on coupling uncertainty propagation methods and condensation techniques in order to attain a robust design. In [START_REF] Guedri | Reduction of the stochastic finite element models using a robust dynamic condensation method[END_REF], the authors implemented the CMS taking into account stochastic aspect to compute frequency linear structures responses using stochastic spectral FE method (SSFEM). In [START_REF] Maute | A reduced-order stochastic finite element approach for design optimization under uncertainty[END_REF], a reduced-order model (ROM) is integrated into SSFEM, using a basis spanned by displacements and derivatives of displacements, and implemented to optimize the shape of a linear shell structure. Afonso et al. [START_REF] Afonso | Structural optimization under uncertainties considering reduced-order modeling, 10th world congress on structural and multidisciplinary optimization[END_REF] implemented Monte Carlo (MC) method and Probabilistic Collocation Method (PCM) based on reduced-order modeling (ROM) approach incorporated via proper orthogonal decomposition method (POD).

The main originality of this paper lies on combining gPCE and robust CBCMS in order to obtain a metamodel, which allows computing stationary temporal solution of large size stochastic periodic structures containing local nonlinearities, with high accuracy and low computational cost.

Theoretical Backgrounds

Generalized Polynomial Chaos Expansion (gPCE)

Thanks to the generalization of the PC approach [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF], several types of random variables and orthogonal polynomials are taken into account to develop its expansion. In this section, a compact form of the gPCE formulation is presented [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Berveiller | Eléments finis stochastiques : Approches intrusive et non intrusive pour des analyses de fiabilité[END_REF][START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF]. The gPCE of second order random variable is a decomposition, truncated by retaining only terms of the polynomials with degree up to p, of the form

Y D P X ˛D0 y ˛ˆ˛. / D y T ˆ. / ; (24.1) 
where y ' are the unknown deterministic coefficients, ˚˛the multivariate polynomials of d independent random variables

D f i .Â/g d i D1
and ˛the multidimensional index such as j˛j D

d X i D1
˛i .

The number of terms retained in Eq. 24.1 is defined as A necessary condition for the numerical stability of the regression approximation is choosing an ED of size N P C 1 which ensures the well-conditioning of the matrix (ˆT ˆ) which will be inverted. The selection of the ED is carried out using two different methods; according to the first one, the ED is chosen randomly with respect to the probability distribution of the random variables, the second method consists on selecting the ED, in a deterministic way, among Hermite polynomial roots [START_REF] Berveiller | Eléments finis stochastiques : Approches intrusive et non intrusive pour des analyses de fiabilité[END_REF]. In fact, the roots of the Hermite polynomial of degree p C 1 are at first computed, then all their possible combinations .p C 1/ d are calculated and finally these roots combinations are classified such that the following variable .n/ 2 Ã (24.5) is maximized or (n)2 minimized. The roots combinations retained to create the ED are subject to another selection [START_REF] Blatman | An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis[END_REF]. Indeed, to ensure that the invertible matrix (ˆT ˆ) is well-conditioned, a condition number Ä defined as

P C 1 D .d C p/Š
Ä D ˆT ˆ 1 :ˆT ˆ(24.6)
must be minimized, where . is the 1-norm of the matrix. To the smallest value of Ä corresponds a number N of roots combinations which verify Eq. 24.5 and thus create the ED needed for gPCE coefficients. Note that the N successive deterministic FE evaluations needed for LHS method is the most expensive part of the gPCE implementation especially for large size FE models, large number of uncertain parameters, presence of nonlinearities and when using iterative techniques to compute dynamic structure responses. To overcome this issue, the regression technique is coupled with a robust condensation method adapted to the CBCMS.

Model Condensation

In nonlinear dynamics, a mechanical system can generally be represented in the time domain by the following differential equation

OEM f R yg C OEB f P yg C ff i nt g D ff ext g fyg .t 0 / D fyg 0 ; f P yg .t 0 / D f P yg 0 W initial conditions (24.8)
where [M] and [B] stand for the mass and damping matrices of the system, ff ext g the exciting force and ff i nt g D .OEK C ff NL g .fyg ; f P yg// fyg the internal force vector, [K] is the stiffness matrix.

Modeling complex structures requires large size FE models for satisfying accuracy. To overcome the high computational cost of the analysis, a reduced order model has to be designed using only few normal modes with respect to the frequency range of interest. Therefore, the projection of the time response on an adequate condensation basis, considering the variable transformation fy.t/g D OET fq.t/g to generalized coordinates, is needed. Hence, the equation of motion Eq. 24.8 becomes

OET T OEM OET f R q.t/g C OET T OEB OET f P q.t/g C OET T ff i nt g r D OET T ff ext g ; (24.9)
where the index r denotes the term reduced, OET T OEM OET D OEM r ; OET T OEB OET D OEB r ; in this case, the internal force vector is expressed as

ff i nt g r D OET T .OEK C ff NL g .OET fqg ; OET f P qg// OET fqg : (24.10)
The time solution of the Eq. 24.9 can be approximated by using the Newmark nonlinear time integration scheme, which allows expressing the displacement and the velocity at the instant t nC1 as a function of their expression at t n .

The implementation of the Newmark method permits to write the equation of motion Eq. 24.9 in an incremental form
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where ([K eff ] r ) n is the instantaneous (effective) stiffness matrix function of the tangent stiffness matrix .OEK T r / n D @.ff i nt g r / n =@ OET fqg n obtained by applying the Newton iterative scheme.

Robust Craig-Bampton Component Mode Synthesis Method (CBCMS)

Dividing the complete structure into several components (substructures) is interesting in the case of presence of uncertainties and localized nonlinearities in large size complex structures. It permits to apply the adequate condensation technique to each component independently of the others.

In deterministic linear case, the reduced model is obtained using standard CBCMS [START_REF] Craig Rr | Coupling of substructures for dynamic analyses[END_REF][START_REF] Lombard | Contribution à la réduction des modèles éléments finis par synthèse modale[END_REF] of the linear system in its blocked interface configuration. In this case, the CBT is defined, for a substructure k, as

fyg k D y j y i k D Ä I jj 0 ij ' i k q j q c k D OET CB k fqg k (24.12)
where fy i g k are the interior coordinates transformed to the blocked junctions modal coordinates fq c g k , fy j g k are the junction coordinates denoted as constraint coordinates fq j g k , ij D K 1 i i K ij is the static subbasis which contains the constraint modes, I jj is the identity matrix, and [® i ] is the dynamic one containing the truncated normal modes basis at blocked interfaces ( ˚yj « D 0) of the corresponding component. Nevertheless, using standard CBT requires computing more and even all normal modes for accurate results, which leads to a prohibitive computation cost.

In stochastic case with localized nonlinearities, the standard CBT [T CB ] cannot satisfy the required accuracy and robustness of the model. Therefore, adding a complementary basis [T] is necessary in order to form an enriched CBT (ECBT) [T ECB ]. The obtained basis, for each sub-structure, is thus of the form

OET ECB k D h T CB : : : T i k : (24.13)
The complementary basis is a set of static residuals calculated according to the type of enrichment.

For each component k, to enrich the basis by taking into account stochastic aspect, the residual vectors are static responses with correspondence to a set of residual forces [F S ] presenting the stochastic effects. These forces are generated depending on the stochastic zones of the mass and stiffness matrices [START_REF] Guedri | Reduction of the stochastic finite element models using a robust dynamic condensation method[END_REF]. The first complementary subbasis [T S ] k is thereafter obtained and added to the standard Craig-Bampton one.

To take into account localized nonlinearity effects, another type of complementary subbasis [T NL ] k has to be created [START_REF] Bouazizi | Robust component modal synthesis method adapted to the survey of the dynamic behavior of structures with localized nonlinearities[END_REF] as a set of static responses corresponding to unit residual force vectors fF i g k with respect to each nonlinear degree of freedom (dof) i for each component k.

The CBT can also be enriched if the external loading effect is considered [START_REF] Lombard | Contribution à la réduction des modèles éléments finis par synthèse modale[END_REF]. Thus, an additional subbasis [T E ] k must be computed using a set of unit static loadings fF E g k imposed on internal excited substructure dofs. Note that a singular value decomposition (SVD) is needed to ensure linear independence of the vectors forming each complementary subbasis and also carried out on [T ECB ] k to ensure the linear independence of the subbases and thus the well-conditioning of the ECBT. The synthesis of the complete structure requires finally the assembly of the different CBT matrices according to the hypothesis of continuity of displacements at junction dofs.

Robust Metamodel Combining CBCMS and gPCE

The CBCMS and the gPCE methods were previously independently presented. The main aim of this paper is to couple them in order to replace large size dynamical structures with considerably condensed and sufficiently accurate metamodel. needed for the gPCE regression method implementation (Eq. 24.4), using the ECBT Eq. 24.14. The notion of robustness consists, in our study, on satisfying two different criterions; the accuracy of the responses and the gain in terms of computational time. To verify the first criterion, a set of temporal statistic moments M i , also called times indicators or energy criterions, has to be calculated in order to quantify the response accuracy in terms of amplitude and periodicity errors. These moments are expressed as [START_REF] Hemez | From shock response spectrum to temporal moments and vice-versa, international modal analysis conference (IMAC-XXI)[END_REF] M

i D C1 Z 1 .t t s / i y.t/ 2 dt (24.15)
where y(t) is the temporal response, i the order of the moment and t s the temporal shift chosen in our case as t s D 0.

The total energy of the response E D M 0 permits the verification of the accuracy in term of amplitude. M 1 =M 0 D T and M 2 =M 0 .M 1 =M 0 / 2 D D 2 are respectively the central time and the root mean square duration computed to verify the accuracy of the response in term of periodicity.

A numerical application is presented in Sect. 24.3 in order to illustrate the main features of the proposed robust metamodel designed to analyze the dynamic behavior in presence of uncertainties and localized nonlinearities.

Numerical Application

Proposed Structure and Validation Process

The proposed academic structure, Fig. The stationary temporal response evaluation is done in the time interval [0-0.5 s], divided into steps of 10 4 s, in which the stationary regime is already attained.

To apply the CBCMS method, the complete structure is divided into substructures. In fact, being in the case of periodic structure, we propose to consider each set of coupling elements (localized damper, linear and nonlinear springs) and a beam as a substructure (Fig. 24.1). The first and the third components are considered as two stochastic zones in which the Young modulus of the beam and the linear coupling stiffness are supposed to be uncertain parameters such as The proposed metamodel results are discussed with respect to the responses considered as reference, computed using LHS method using 1,000 samples of random variables. In fact, the process of evaluation of the metamodel efficiency is as follow 
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Results and Discussion

The ECBT matrix contains n j D 8 junctions dofs, n i D 8 retained normal modes and n e D n e S Cn e NL Cn e E D 2C5C1 D 8 enriching static residual vectors, where n eS corresponds to the stochastic enrichment, n eNL to the nonlinear one and n eE to the external force enrichment. Hence, the size of the ECBT transformation matrix is 200 24, which signify that the reduction ratio of the full problem is of 88 % (200 dofs).

For a second order gPCE, the ED is of size 31 random variables combinations chosen with correspondence to the conditions defined in Eqs. 24.5 and 24.6 among 81 Hermite polynomial roots combinations (.p C 1/ d D 3 4 D 81) and then transformed with respect to the probability distributions (Table 24.1). For the fourth order, 84 random variables are needed among 625 possible combinations. The MAC matrix, presented in Fig. 24.2, illustrates the stochastic effect on the eight first modes retained for ECBT. Indeed, the level of uncertainty is not high but sufficient to show the interest of the stochastic enrichment. Consequently, the level of nonlinearities is chosen to be low in order to ensure the contribution of each type of enrichment in the ECBT. In fact, high level of nonlinearities leads to a negligible stochastic enrichment contribution in the ECBT and thus enriching using only nonlinear effect is sufficient.

The obtained results of different implemented models are compared in terms of accuracy and time consuming by means of the CPU computation time and the temporal moments E, T and D 2 (Tables 24.1 and 24.2). In fact, Table 24.1 recalls the size of the problems to be solved and gives the values of the associated temporal moments and The results displayed in Figs. 24.3 and 24.4 show that the proposed metamodel can replace the original one without a significant loss of accuracy with respect to the reference results computed by LHS method on the full structure. Note that the higher the order of the gPCE is, the more accurate the results are, the longer the required computational time is, as shown in Table 24.2 shows that the computation time can be reduced by 93.4 % when implementing the proposed metamodel, and 195 it increases when the gPCE order is higher. Note that despite the fact that the example is not sufficiently representative in size ECBT with LHS or gPCE reflects more than 30 h of time reduction (1 % of gain is 61 min). For larger size examples, and also when using properly optimized algorithms, the robust CBCMS contribution should be more illustrated.

Concluding Remarks

In this paper, a robust metamodel is proposed in order to approximate structure behaviors in presence of uncertainties and localized nonlinearities. This metamodel is obtained by the combination between the parametric uncertainty propagation method and a robust CMS approach. The efficiency of the metamodel was successfully evaluated on the temporal response approximations of the coupled beams structure with respect to the reference LHS method results, thanks to different verified robustness criterions. The reduction in terms of time consuming and model size using the comparison of the computation times and temporal moments prove the efficiency and the usefulness of the proposed metamodel for the robustness analysis of large size nonlinear stochastic model.
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  Consequently, the final enriched basis has the following formOET ECB k D

1 Fig. 24. 1

 11 Fig. 24.1 Coupled beams structure

  (24.1), is composed of five identical beams loaded in pure flexion. The discretization of each beam into 20 elements (two dofs per node: v y , Â z ) leads to a 200 dofs FE model. The beams are of rectangular section with b D 3 10 2 m and h D 1 10 2 m, length L b D 5 10 1 m, Young modulus E 0 D 2:1 10 11 P a, density 0 D 7800 kg:m 3 and Poisson's ratio D 0:3 and are submitted each one to a localized excitation force (N) P f D 10 cos .2 f 1 t/, where f 1 D 82:96 rad:s 1 is the first eigenfrequency, according to the v y dof (Y direction). The five beams are coupled using five local dampers such as c D 10 2 N:s:m 1 , five linear springs k 0 D 10 6 N:m 1 and nonlinear ones k NL D 10 11 N:m 1 . Several observation points P oj .j D 1; 2; : : : / are considered to evaluate the efficiency of the proposed metamodel.

2 E

 2 D E 0 .1 C E E / and k D k 0 .1 C k k / (24.16) where E and k are two random variables of respectively uniform and lognormal probability distributions and E D k D 10% are the considered dispersions. The effect of the stochastic aspect of the uncertain parameters is shown using the MAC (Modal Assurance Criterion) [6] matrix, which compares the normal modes of the deterministic model to the means of the modes of the stochastic model computed with correspondence to each random variable.
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  A) Implementing the 1,000 samples LHS method on: 1-the complete model (projection on complete eigenvectors basis) denoted LHS-REF, 2-the reduced model (projection on the ECBT matrix) denoted LHS-ECBT; (B) Implementing the regression gPCE: 1-on the complete model for two gPCE orders (2 and 4) denoted respectively REG-2-REF and REG-4-REF, 2-combined with the ECBT (proposed metamodel) also for two gPCE orders, denoted respectively REG-2-ECBT and REG-4-ECBT.

Figure 24. 2

 2 Figure 24.2 shows the stochastic effect on the model normal modes through the MAC matrix. Figures 24.3 and 24.4 illustrates the comparison between the means of stochastic velocities obtained by implementing the different methods with correspondence to the above proposed process (A and B) at two chosen observation points P o1 and P o4 .

Fig. 24. 3

 3 Fig. 24.2 MAC matrix comparing the deterministic normal modes and the means of the stochastic ones

Fig. 24. 4

 4 Fig. 24.4 Mean of the stochastic velocity at the observation point P o4 computed on the reference (complete) model (REF) and the condensed one (ECBT) using LHS and fourth order gPCE methods

  196 and uncertain parameter number to show the efficiency of the CBCMS, the gain of nearly 30 % attained when implementing 197 Combining Robust Condensation and Generalized Polynomial Chaos Expansion

Table 24 . 1

 241 Model size and associated temporal moments

  Table 24.2 contains different computational time values.

Table 24 .2 Computational CPU time
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 24 2. Only the fourth order gPCE approximations are presented, the second order gPCE results are discussed through 191 their temporal moments presented in Table24.1. The ECBT efficiency can be at first evaluated comparing the two first curves 192 (Figs. 24.3 and 24.4) and the two first lines of Table24.1, which show that the amplitude and periodicity errors between the 193 results of the LHS method on full and condensed model are very small.
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