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ORIGINAL ARTICLE
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Background. Previous studies have suggested the role of microcalcifications in plaque
vulnerability. This exploratory study sought to assess the potential of hybrid positron-emission
tomography (PET)/magnetic resonance imaging (MRI) using 18F-sodium fluoride (18F-NaF) to
check simultaneously 18F-NaF uptake, a marker of microcalcifications, and morphological
criteria of vulnerability.

Methods and results. We included 12 patients with either recently symptomatic or
asymptomatic carotid stenosis. All patients underwent 18F-NaF PET/MRI. 18F-NaF target-to-
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background ratio (TBR) was measured in culprit and nonculprit (including contralateral
plaques of symptomatic patients) plaques as well as in other arterial walls. Morphological
criteria of vulnerability were assessed on MRI. Mineral metabolism markers were also col-
lected. 18F-NaF uptake was higher in culprit compared to nonculprit plaques (median TBR 2.6
[2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) but was not associated with morphological criteria of vul-
nerability on MRI. We found a positive correlation between 18F-NaF uptake and calcium
plaque volume and ratio but not with circulating tissue-nonspecific alkaline phosphatase
(TNAP) activity and inorganic pyrophosphate (PPi) levels. 18F-NaF uptake in the other arterial
walls did not differ between symptomatic and asymptomatic patients.

Conclusions. 18F-NaF PET/MRI may be a promising tool for providing additional insights
into the plaque vulnerability. (J Nucl Cardiol 2020)

Key Words: Carotid stenosis Æ Positron-Emission Tomography-Computed Tomography Æ
Hybrid MR/PET Æ Sodium Fluoride Æ Stroke

Abbreviations
18F-NaF 18F-sodium fluoride

AP Alkaline phosphatase

BMI Body mass index

BW Bandwidth

CE-MRA Contrast-enhanced

CRP C-reactive protein

CT Computed tomography

DUS Doppler ultrasound

FC Fibrous cap

FLASH Fast-low angle shot

FOV Field of view

IPH Intraplaque hemorrhage

IQR Interquartile range

LDL Low-density lipoprotein

LRNC Lipid-rich necrotic core

MR Angiography

MRI Magnetic resonance imaging

NA Number of averages

NASCET North American Symptomatic Carotid

Endarterectomy Trial

NIHSS National institutes of health stroke

scale

PET Positron-emission tomography

PPi Inorganic pyrophosphate

ROI Region of interest

SD Standard Deviation

SPAIR Spectral attenuated inversion recovery

SUVmax Maximum standard uptake value

TE Echo time

TBR Target-to-background ratio

TIA Transient ischemic attack

TNAP Tissue-nonspecific alkaline

phosphatase

TOF Time-of-flight angiography

TR Repetition time

VSMC Vascular smooth muscle cell

INTRODUCTION

Atherosclerotic stenosis of the extracranial carotid

artery accounts for 15 to 20% of ischemic strokes.1

Beyond the degree of stenosis, plaque vulnerability and

subsequent thromboembolic events are related to a

combination of factors that include a large lipid-rich

necrotic core (LRNC), a thinning/ruptured fibrous cap

(FC), an intraplaque hemorrhage (IPH), and inflamma-

tory processes.2,3 Identifying high-risk plaques is

therefore critical for improving both risk prediction

and prevention of ischemic stroke.

The formation and progression of atherosclerotic

plaques are a dynamic process that includes macro-

phage-driven inflammation and calcifications, two

related but distinct processes. Until now, in vivo explo-

ration of plaque inflammatory processes has been mostly

explored by the use of 18F-fluorodesoxyglucose (18F-

FDG), a known marker of vascular macrophage bur-

den.4–9 18F-sodium fluoride (18F-NaF) positron-emission

tomography (PET) has recently been proposed as a

technique to detect microcalcifications, a key component

of the inflammatory process within plaques.10 The use of

this latter radiotracer adds additional information as

evidenced by the fact that arterial 18F-FDG retention is

not correlated with arterial 18F-NaF uptake.11–13 Studies

on coronary arteries have shown that 18F-NaF uptake

was higher in culprit lesions of acute myocardial

infarction than in nonculprit lesions.14,15 Other studies

found that 18F-NaF uptake localized high-risk plaques in

asymptomatic patients using optical coherence tomog-

raphy, intravascular ultrasound, and coronary computed

tomography angiography.16,17 In carotid arteries, results

of preliminary studies using 18F-NaF-PET/computed

tomography (CT) have suggested an association

between 18F-NaF uptake and the symptomatic nature

of carotid plaques.11,14,15,18–21

Among the noninvasive imaging techniques avail-

able today, carotid plaque MRI is able to detect
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morphological changes underlying plaque vulnerability

with moderate-to-good sensitivity and specificity com-

pared to histological findings.22,23 Thus, hybrid 18F-NaF

PET/MRI is able to simultaneously assess 18F-NaF

uptake, a marker of microcalcifications, and morpho-

logical criteria of vulnerability and may therefore

provide additional insights into plaque vulnerability.

Experimental studies have demonstrated that tissue-

nonspecific alkaline phosphatase (TNAP) is a key

determinant of tissue calcification.24 In hydrolyzing

inorganic pyrophosphate (PPi), one of the main inhibi-

tors of calcification, it contributes to the formation of

hydroxyapatite crystals. Higher levels of serum alkaline

phosphatase (AP) are associated with the increased risk

of all-cause and cardiovascular mortality among sur-

vivors of myocardial infarction or stroke and in a

general population sample.25,26

The aim of this study was to investigate if 18F-NaF

uptake—assessed using hybrid 18F-NaF PET/MRI—

differed between culprit and nonculprit carotid plaques.

Secondary aim ignored the symptomatic nature of the

plaque and compared TBR and morphological criteria of

vulnerability on MRI or mineral metabolism markers

(TNAP and PPi). We also compared 18F-NaF uptake in

other arterial walls in symptomatic and asymptomatic

patients.

MATERIALS AND METHODS

Study Population

Patients were prospectively recruited between Jan-

uary 2016 and December 2017 from the stroke

department and the department of vascular surgery in

Lyon, France. Patients with carotid stenosis (C 50%

according to the North American Symptomatic Carotid

Endarterectomy Trial (NASCET) criteria) were included

and classified as symptomatic (transient ischemic attack

(TIA) or minor stroke B 15 days) or asymptomatic.27

Culprit plaques were plaques recently responsible for

ipsilateral transient ischemic attack or minor stroke

B 15 days. Nonculprit plaques were contralateral pla-

ques of symptomatic patients and plaques of

asymptomatic patients. Indication for carotid endarterec-

tomy was decided by a surgeon expert panel according

to current guidelines.28 Exclusion criteria were ongoing

pregnancy, severe renal failure (estimated glomerular

filtration rate by the Cockroft-Gault formula\ 50 ml/

min), metallic implants, and severe claustrophobia.

Clinical history, common risk factors, Doppler

ultrasound (US), CT angiography data including cal-

cium volume and ratio into the plaque, and routine

biological markers drawn the same day including

calcemia, phosphoremia, and C-reactive protein (CRP)

Figure 1. Study flow diagram (NASCET: North American Symptomatic Carotid Endarterectomy
Trial, 18F-NaF PET/MRI PET: 18F-sodium fluoride positron-emission tomography/magnetic
resonance).
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were collected. When carotid endarterectomy was indi-

cated, histological analyses of the plaques were

performed.

The study protocol was registered at the Clini-

calTrials.gov online database (NCT02726984), with the

approval of the local research ethics committee in

accordance with the declaration of Helsinski. All

patients provided written informed consent before

enrollment.

18F-NaF PET–MRI

PET/MRI Protocol All patients underwent PET/

MRI. The 15 min PET acquisition was centered on the

carotid arteries and was performed 60 min after injec-

tion of 3 MBq/kg of 18F-NaF.

The 3T MR multi-contrast protocol consisted of a

3D time-of-flight angiography (TOF), a 3D T1-weighted

variable flip angle turbo spin echo (SPACE) sequence,

and a 3D contrast-enhanced angiography (CE-MRA)

performed during the first passage of 30 cm3 of a

Gadolinium-based contrast agent (DOTAREM�, Guer-

bet, France), administered at 2 cm3/s, followed by a

10 cm3 saline flush.

The following TOF sequence was performed: rep-

etition time/echo time (TR/TE) 21.0/3.60 ms, flip angle

25�, field of view (FOV) 200 9 150 9 30 mm, slice

thickness 0.7 mm, in-plane resolution 0.7 9 0.6 mm,

number of averages (NA) 1, acquisition bandwidth

(BW) 252 Hz/pixel, parallel imaging (GRAPPA) accel-

eration factor in the phase-encoding direction: 2, and

scan time: approximately 3 min.

The 3D SPACE sequence was performed in the

coronal orientation using a spectral attenuated inversion

recovery (SPAIR) fat suppression pulse with the fol-

lowing parameters: TR/TE 800/22 ms, voxel 0.7 mm

Figure 2. 18F-sodium fluoride positron-emission tomography/magnetic resonance (18F-NaF PET/
MRI) PET/MRI from a 59-year-old patient (No. 11) who experienced right hemiparesis and aphasia
related to left middle cerebral artery territory infarct. Axial, coronal, and sagittal views of PET (A–
C) showing 18F-NaF uptake into the left carotid plaque (black arrow). Axial, coronal, and sagittal
views of merged PET/MRI (E–G) images showing 18F-NaF uptake overlayed on the T1-w images
(black arrow); Axial, coronal, and sagittal views of contrast-enhanced angiography (I–K) showing
an eccentric plaque of the left carotid artery causing a luminal stenosis; Coronal T1-weighted MR
images pre- and post-gadolinium showing a macrocalcification and a focal enhancement of the
plaque (D, H).
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isotropic, turbo factor 55, TSE echo spacing/shot dura-

tion 4.32/238 ms, BW 630 Hz/pixel, NA 1.4, GRAPPA

acceleration factor in the phase-encoding direction: 2,

and scan time of 6.16 min.

CE-MRA coronal images were acquired in the

coronal orientation using a 3D T1-weighted fast low-

angle shot (FLASH) sequence with the following

parameters: TR/TE 3.13/1.16 ms, Field of view (FOV)

480 9 427 mm, fractional anisotropy (FA) 25�, 88

slices of 1 mm, in-plane resolution: 1.1 9 0.9 mm,

GRAPPA acceleration factor in the phase-encoding

direction: 2, BW 650 Hz/pixel, 3D- centric reordering

with time to center of k-space: 1 s, NA 1, and scan time

of 31 s. The 3D T1-weighted SPACE acquisition was

repeated after contrast injection to evaluate contrast

uptake in the plaque.

Image Analysis MRI was assessed for morpho-

logical criteria of vulnerability, only for plaque with

stenosis C 50%. The maximum standard uptake value

(SUVmax) (the decay-corrected tissue concentration of

the tracer divided by the injected dose per body weight)

was measured using 3 regions of interest (ROI) centered

on the area of highest uptake in the plaque identified on

coregistered PET/MRI fusion images. If there was no

plaque, on the contralateral carotid, the 18F-NaF uptake

in the proximal 1 cm of internal carotid artery, just distal

to the bifurcation was quantified. 18F-NaF uptake was

also quantified in other artery walls as aortic arch,

ostium of brachiocephalic trunk, left subclavian artery,

and left common carotid artery using MRI data. Blood-

pool SUV was estimated as the mean of five ROIs in the

mid lumen of the superior vena cava. The target-to-

background ratio (TBR) was calculated by dividing

SUVmax by the blood-pool SUV. Two experienced

raters reviewed PET/MRI and estimated the 18F-NaF

TBR blinded to clinical data (J. T. and A. B-S.).

Blood Sampling Protocol

A peripheral blood sample was collected from each

patient the same day as the 18F-NaF PET/MRI. Sera

were prepared and stored at - 80�C within a 3-h delay

at the NeuroBioTec biobank (CRB-HCL: BB-0033-

00046, France). All samples were thawed only once for

Table 1. Patient baseline characteristics

Symptomatic patients
(n = 6)

Asymptomatic patients
(n = 6)

P
value

Age, y 72 [59-78] 72 [63-75] 0.94

Male 5 (83.3) 4 (66.7) 1.00

Qualifying event

TIA 2 (33.3) – –

Ischemic stroke 4 (66.7) – –

Baseline NIHSS 2 [0-4] – –

Hypertension 5 (83.3) 3 (50) 0.55

Diabetes 1 (16.7) 1 (16.7) 0.77

Hyperlipidemia 4 (66.7) 2 (33.3) 0.57

Current smoking 1 (16.7) 1 (16.7) 1.00

BMI, kg/m2 28.2 [25.0-29.4] 25.1 [23.0-26.9] 0.11

Coronary artery disease 1.0 (0.7) 2 (33.3) 1.00

Atrial fibrillation 2 (33.3) 0 0.45

LDL-cholesterol, g/L 1.2 [0.8-1.2] 1.3 [0.4-1.5] 0.87

CRP, mg/L 3.8 [1.2-15.0] 1.7 [0.8-3.1] 0.17

Calcemia, mmol/L 2.3 [2.1-2.3] 2.4 [2.3-2.4] 0.03

Phosphoremia, mmol/L 1.1 [0.9-1.1] 1 [1.0-1.1] 0.75

TNAP activity, nmol/min/

mg

0.08 [0.06-0.15] 0.08 [0.07-0.12] 0.75

PPI, lM 9.1 [6.8-12.2] 10.6 [7.2-14.7] 0.42

TIA transient ischemic attack; NIHSSNational Institutes of Health Stroke Scale; BMI body mass index; LDL low-density lipoprotein;
CRP C-reactive protein; TNAP tissue-nonspecific alkaline phosphatase; PPi inorganic pyrophosphate
Variables are displayed as absolute number (percentage of column total), mean ± SD, or median (25th–75th percentiles) as
appropriate
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study measurements. Serum samples were diluted at 1/

25. TNAP activity (nmol/min/mg) was quantified by the

absorbance of para-nitrophenol generated by TNAP

hydrolysis of para-nitrophenylphosphate. PPi levels

(lM) were determined by luminescence using the PPi

light inorganic pyrophosphate assay kit from Lonza.

Sensitivity was 0.02 lM.

Histological Analyses

Vessels were fixed in buffered formalin and embed-

ded in paraffin after decalcification. Transverse sections

of 3 lm were cut using a rotary microtome (Leica

Microsystems GmbH, Wetzlar, Germany) and stained

with hematoxylin, phloxine, and saffron in order to

analyze the following elements: lipid core, plaque

hemorrhage, cap fibroatheroma (thin or thick), micro-

calcifications, inflammation, thrombi, and

neoangiogenesis.

Statistical Analysis

This study was designed as a pilot transversal

investigation. The primary analysis was the comparison

of 18F-NaF TBR in carotid culprit plaques and noncul-

prit plaques. Secondary analysis ignored the

symptomatic nature of the plaque and compared 18F-

NaF TBR and morphological criteria of vulnerability on

MRI as well as mineral metabolism markers. We also

compared 18F-NaF TBR in the other artery walls in

symptomatic and asymptomatic patients. Categorical

Table 2. Plaque imaging and histological characteristics in culprit and nonculprit plaques

Culprit plaques
(n = 6)

Non culprit
plaques (n = 18) P value

CT angiography

Calcium volume, mm3 462 [88-843] 105 [0-474] 0.19

Calcium volume, % 35.6 [5.3-78.9] 21.9 [0-59] 0.51

MRI

Intraplaque hemorrhage 2 (50) 2 (11.1) 0.14

Lipid-rich necrotic core 2 (50) 3 (16.7) 0.21

Thinning and/or ruptured fibrous cap 1 (25) 5 (27.8) 1.00
18F-NaF uptake

SUV max, g/mL 4.2 [1.8-5.9] 2.3 [1.8-3.1] 0.18

TBR 2.6 [2.2-2.8] 1.7 [1.3-2.2] 0.03

Histological exam

Intraplaque hemorrhage 3 (100) 2 (66.7) 1.00

Lipid-rich necrotic core 3 (100) 3 (100) –

Thinning and/or ruptured fibrous cap 3 (100) 3 (100) –

Microcalcifications 3 (100) 3 (100) –

Inflammatory cells 2 (66.7) 3 (100) 1.00

Neoangiogenesis 1 (33.3) 3 (100) 0.4

18F-NaF 18F-sodium fluoride; SUV standard uptake value; TBR target-to-background ratio
Variables are displayed as absolute number (percentage of column total), mean ± SD, or median (25th–75th percentiles) as
appropriate

Figure 3. 18F-sodium fluoride (18F-NaF) uptake in culprit
(N = 6) vs nonculprit (N = 18) plaques. Box and Whisker Plot.
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variables are presented as numbers and relative frequen-

cies (percentages), and continuous variables as medians

with interquartile ranges (IQR). Normality of distribu-

tions was assessed graphically and with the Shapiro–

Wilk test. All probability values were 2 sided, and

values of P\ 0.05 were considered statistically signif-

icant. Fisher’s test was used to analyze categorical

variables and the Mann–Whitney U test for continuous

variables. Correlation was undertaken with Spearman’s

q. Inter-observer reproducibility of 18F-NaF uptake

measurements was determined using intraclass correla-

tion coefficient. All analyses were performed using

Stata/IC (ACADEMIC/L, SCIC, L1Wi0H,E).

RESULTS

Baseline Characteristics of Patients
and Plaques

Fifteen patients were included between 15/01/2016

and 11/12/2017. Three patients were excluded because

of incomplete or uninterpretable PET/MRI (Figure 1).

Two others had PET imaging but incomplete or unin-

terpretable MRI. The final sample included 6

symptomatic and 6 asymptomatic patients. Their mean

age was 68 years (± 10), and seventy-five percent of the

patients were men. Among the six symptomatic patients,

4 had minor ischemic stroke and 2 had TIA. The main

characteristics of the symptomatic and asymptomatic

patients and the main characteristics of culprit and

nonculprit plaques are presented in Tables 1 and 2 and

Online Resource 1. Calcemia was slightly higher in

asymptomatic patients compared to symptomatic

patients (median calcemia 2.4 mmol/L [2.3-2.4] vs

2.3 mmol/L [2.1-2.3]; P = 0.03). Six patients, 3 symp-

tomatic and 3 asymptomatic, underwent carotid

endarterectomy through the eversion procedure. All

retrieved plaques contained microcalcifications and their

histological results are detailed in Table 2.

Figure 4. 18F-sodium fluoride uptake with respect to calcium volume (A) and calcium ratio (B)
(18NaF, 18sodium fluoride; TBR, target-to-background ratio). Scatter Plot.

Table 3. 18F-sodium fluoride (18F-NaF) uptake in other arterial walls in symptomatic and asymptomatic
patients

Symptomatic patients
(n = 6)

Asymptomatic patients
(n = 6)

P
value

Aorta 1.0 [0.5-1.4] 1.0 [0.7-1.2] 0.81

Brachiocephalic trunk 1.4 [1.1-1.8] 1.3 [1.1-1.4] 0.52

Left subclavian artery 1.2 [1.2-1.5] 1.2 [1.0-1.3] 0.75

Left common carotid

artery

1.1 [0.7-1.2] 1.0 [0.7-1.2] 0.75

Variables are displayed as median (25th–75th percentiles) Target-to-background ratio
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18F-NaF UPTAKE IN CULPRIT AND NONCULPRIT
PLAQUES

The mean delay between symptoms and PET–MRI

was 9.2 days (± 6.2). 18F-NaF uptake was higher in

culprit plaques compared to nonculprit plaques (median

TBR 2.6 [2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) (Figs. 2, 3

and Table 2). Intraclass correlation coefficient was 0.98.

18F-NaF UPTAKE COMPARED
WITH MORPHOLOGICAL CRITERIA OF PLAQUE

VULNERABILITY ON MRI AND MINERAL
METABOLISM MARKERS

18F-NaF uptake was not associated with morpho-

logical criteria of plaque vulnerability on MRI (TBR

1.80 [1.42-2.18] in plaques with IPH vs 1.93 [1.32-2.37]

in plaques without IPH; P = 1.00; TBR 1.46 [1.45-2.14]

in plaques with LRNC vs 1.93 [1.32-2.37] in plaques

without LRNC; P = 0.78; TBR 1.45 [1.39-1.53] in

plaques with thinning and/or ruptured FC vs 2.12 [1.37-

2.45] in plaques without thinning and/or ruptured FC;

P = 0.18). 18NaF uptake was correlated with calcium

plaque volume (q = 0.82; P\ 0.01) and ratio (q = 0.66;

P = 0.04) but was not correlated with circulating TNAP

activity or PPi levels (Figure 4).

18F-NaF UPTAKE IN OTHER ARTERY WALLS
IN SYMPTOMATIC AND ASYMPTOMATIC

PATIENTS

There was no increase of 18F-NaF uptake in the

other arterial walls in symptomatic patients compared to

asymptomatic patients (Table 3).

BRAIN 18F-NaF UPTAKE

In the 4 patients with stroke, intense 18F-NaF uptake

was observed (median TBR = 6.2 [3.8-12.2] vs median

TBR = 0.2 [0.1-0.2] for contralateral not infarcted brain;

P = 0.02).

DISCUSSION

This pilot study was designed to evaluate for the

first time the added value of 18F-NaF PET/MRI in the

carotid plaques assessment, in checking simultaneously
18F-NaF uptake, a marker of microcalcifications, and

morphological criteria of vulnerability on MRI. 18F-NaF

uptake was higher in culprit plaques compared to

nonculprit plaques in a decoupled way from morpho-

logical MRI criteria of vulnerability.

Our results confirm previous results from PET/CT

studies in showing a higher 18F-NaF uptake in culprit

plaques compared to nonculprit plaques.11,19 Recent

studies also suggested an association between 18F-NaF

uptake in carotid plaque and the severity of white matter

lesions on brain MRI.29,30 In contrast, other studies

reported different results likely linked to delayed acqui-

sition (180 min after 18F-NaF injection) or delay between

symptoms and imaging longer than one month.18,20,21

It is increasingly recognized that the type and

location, rather than the extent, of calcifications are

important in determining atherosclerotic plaque stabil-

ity. Microcalcification represents the early stages of

intimal calcium formation and greatly amplifies

mechanical stresses on the surface of the fibrous plaque

that may directly contribute to its rupture.31,32 Simulta-

neous carotid plaque MRI acquisition appears to be an

effective method for assessing their particular impact on

plaque vulnerability. In our study, 18F-NaF uptake was

decoupled from morphological MRI criteria of vulner-

ability. That could be linked to the fact that

microcalcifications occurred earlier in human plaque

development.2,33 Conversely studies performed with

PET/CT for carotid and coronary arteries showed that
18F-NaF uptake was higher in ruptured and high-risk

atherosclerotic plaques.11,16,17 This discrepancy could

be explained by the use of different methodological

options to define vulnerable plaque.

Histological studies documented that 18F-NaF can

detect vascular microcalcification activity and binds

only at the surface of large macrocalcifications while CT

is able to detect advanced macrocalcification deposits

with a diameter of approximately 200-500 lm.10,11,21 As

other authors, we found that 18F-NaF uptake was

associated with CT calcium volume and ratio.10,11,34

By contrast, TNAP activity in the serum was not

associated with 18F-NaF uptake, suggesting that circu-

lating TNAP was not involved in the deposition of

microcalcifications. This conclusion is strengthened by

the fact that circulating TNAP activity was not inversely

correlated with PPi levels. We hypothesize that TNAP

expressed locally in plaque vascular smooth muscle cells

rather than circulating TNAP that participates in plaque

calcification. Experiments in mice showed that whereas

TNAP overexpression in vascular smooth muscle cells

(VSMCs) induced lethal vascular calcification, liver-

targeted TNAP overexpression that resulted in strong

circulating TNAP activity had no effect.35,36

PET–MRI has the added benefit of checking simul-

taneously neck and thorax arteries. As atherosclerosis is

considered as a global inflammatory disease and gener-

alized vulnerability may be more important overall than

characterizing the individual sites of vulnerability in the

individual patient, we assessed whether 18F-NaF uptake

in other arteries may reflect global atherosclerotic

activity and if this latter was higher in symptomatic
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than in asymptomatic patients.37,38 This preliminary

analysis failed to show any difference between symp-

tomatic and asymptomatic patients but may be biased by

the absence of coronary artery tree assessment.

As a previous study using PET/CT, we observed a
18F-NaF uptake within the cerebral infarction.11 Mech-

anisms are not completely understood. A recent study

has identified an overlap between the pathophysiology

of atherosclerosis and liquefactive necrosis related to

ischemia in the brain, a lipid-rich organ.39 Another

hypothesis is the passive transfer across the blood–brain

barrier.

We recognize some limitations of our study. First,

the small sample size in this exploratory study would

have prevented us from drawing any statistically signif-

icant conclusions regarding the relationship between
18F-NaF uptake and morphological MRI criteria of

vulnerability or circulating TNAP and PPi levels, as well

as for histological data. Whether 18F-NaF PET/MRI

provide additional insights on plaque vulnerability from

morphological MRI criteria needs further explorations.

Second, the 18F-NaF signal in the plaque may be

contaminated by spillover from the spine. To limit this

phenomenon, we performed a reconstruction including a

point spread function model in the iterative process,

which is known to enhance resolution and reduce

spillover effects.40 Furthermore, the attenuation correc-

tion with the MRI images is potentially suboptimal since

the spine is not present in the computed attenuation

maps.41

In our preliminary study using hybrid 18F-NaF PET/

MRI, 18F-NaF uptake was higher in culprit compared to

nonculprit plaques, in a decoupled way from morpho-

logical MRI criteria of vulnerability. Thus, 18F-NaF

uptake may provide additional insights into the plaque

vulnerability and should be considered as a potential

surrogate marker of early atherosclerosis.2,33 The rele-

vance of a risk score combining stenosis and plaque 18F-

NaF uptake in predicting clinical events as proposed

with 18F-FDG needs further explorations.42 This study

further outlined the complex relationship between

plaque activity and circulating biomarkers, confirming

the importance of molecular imaging at the lesion site. It

could be a relevant tool if new drugs that target

microcalcifications process become available, for exam-

ple, TNAP inhibitors.43

NEW KNOWLEDGE GAINED

In this pilot transversal study conducted in symp-

tomatic and asymptomatic patients with carotid stenosis,
18F-NaF uptake was higher in culprit compared to

nonculprit plaques, in a decoupled way from morpho-

logical MRI criteria of vulnerability, suggesting that

hybrid 18F-NaF PET/MRI approach may be a promising

tool for providing additional insights into the atheroscle-

rotic plaque vulnerability.
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