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We study the structural origin of the Bauschinger effect by accessing numerically the local plastic
thresholds in the steady state flow of a two-dimensional model glass under athermal quasistatic
deformation. More specifically, we compute the local residual strength, ∆τ c, for arbitrary load-
ing orientations and find that plastic deformation generically induces material polarization, i.e., a
forward-backward asymmetry in the ∆τ c distribution. In steady plastic flow, local packings are
on average closer to forward (rather than backward) instabilities, due to the stress-induced bias of
barriers. However, presumably due to mechanical noise, a significant fraction of zones lie close to
reverse (backward) yielding, as the distribution of ∆τ c for reverse shearing extends quasilinearly
down to zero local residual strength. By constructing an elementary model of the early plastic
response, we then show that unloading causes reverse plasticity of a growing amplitude, i.e., reverse
softening, while it shifts away forward-yielding barriers. This result in an inversion of polarization
in the low-∆τ c region and, consequently, in the Bauschinger effect. This scenario is quite generic,
which explains the pervasiveness of the effect.

The Bauschinger effect [1] is the remarkably common
property that after experiencing plastic strain, materials
generally exhibit a softer stress response under reverse
loading as compared with reloading. Initially observed in
mono- and polycrystalline metals [2, 3], this phenomenon
has been evidenced in polymers [4], and more recently in
amorphous materials such as metallic glasses [5]. It is
thus found in almost all material classes. Yet, its origin
remains the topic of ongoing debates across the concerned
disciplines.

Our interest here is to understand the origin of the
Bauschinger effect in amorphous solids. This is an espe-
cially challenging goal since there is no consensus today
on how to describe the internal state of a glass [6, 7] in
view of predicting its mechanical response. The plastic
response of glasses is known to result from local rear-
rangements (or “flips”) [8–11] that occur when certain
regions (“zones”) a few atoms wide reach local instabil-
ities. Yet, due to structural disorder, these instabilities
are not associated with specific local structures such as
topological defects; they may also occur at different local
yield stress levels [12, 13]. Besides, every zone flip intro-
duces long-range, elastic, stress fluctuations, which act
as a mechanical noise, that may cause secondary events
and avalanche behavior [11, 14]. Any stable packing,
hence, approaches instabilities haphazardly [15] as its lo-
cal stress fluctuates under the combined effects of exter-
nal forcing and mechanical noise.

Few numerical works exist on the Bauschinger effect
in amorphous solids [16–19]. Procaccia and co-workers
found a signature of loading asymmetry in high order
derivatives of the potential energy surface [17]. In a
model of silica, in unloaded states after shear plasticity,
Rountree et al. [18] observed the emergence of a type of
structural anisotropy captured by a variant of the fabric
tensor [20] classically associated with structural asym-

metry in granular materials [21]. Such findings, however,
remain difficult to relate to a physical picture of flow
mechanisms in the spirit of mesoscale or mean-field mod-
els [7, 9, 22, 23]. Rodney and Schuh [19] used the ART
method [24] to sample the barriers of a sheared system;
they found a signature of polarization in the strains asso-
ciated with barrier crossings [25], but could not connect
it directly to the Bauschinger effect.

Here, we identify the origin of the Bauschinger effect
in an amorphous solid under steady athermal quasistatic
(AQS) flow [11], using a recently developed method,
which consists in probing the instabilities of small cir-
cular domains under strain [13, 26], and was recently ex-
tended to deal with deviatoric strains of arbitrary ori-
entations [27]. By measuring ∆τc, the local residual
strength, for arbitrary strain orientations, we bring ev-
idence of a strain-induced material polarization, which
we characterize precisely both in steady state and during
the Bauschinger test.

Our analysis shows that the Bauschinger effect origi-
nates from an inverse polarization of the low-∆τc tails
during unloading. More precisely, we find that, in steady
state, the distribution of ∆τc extends down to ∆τc = 0
for any strain orientation, a property expected to arise
due to mechanical noise. Strikingly, this holds even for
barriers responding to reverse shearing. It follows that,
from its very onset, unloading causes reverse plasticity of
a growing amplitude, i.e., reverse softening, while shifting
forward-yielding barriers away. The Bauschinger ensues
since after any finite amount of unloading, the reverse re-
sponse (i.e. the continuation of unloading) is soft (plas-
tic), while reloading is nearly elastic.

This work uses the same numerical system as Ref. [27,
28]: a two-dimensional (2D) binary Lennard-Jones model
with second order smoothing near the interaction cutoff.
Physical units are fixed by the characteristic energy and
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length scales of the pair potential. The simulation cell
is square and periodic, of fixed volume. We use 104-
atom configurations and systematically collate 100 in-
dependent runs to obtain statistically significant data.
Plastic deformation is applied in simple shear, with Lees-
Edwards boundary conditions, using the AQS protocol,
in which a system is deformed by small increments of
affine strain ∆γxy = 10−4 followed by energy minimiza-
tion, which guarantees mechanical balance [11]. As a re-
sult, the system tracks reversible elastic branches except
at instabilities where avalanchelike plastic events occur
and dissipate energy.

As is well known, the early shear response of a glass
depends significantly on its preparation, and especially
on its degree of relaxation: a poorly relaxed glass typi-
cally displays strain hardening; a very well relaxed glass
typically develops a peak stress followed by softening and
usually accompanied by localization. Yet, when steady
shear can be maintained beyond the initial, transient, re-
sponse, all glasses are eventually driven toward a unique
ensemble. This steady flow state is usually inaccessi-
ble in experiments on hard glasses due to strain local-
ization, but is commonly observed in soft glasses, and
can be easily realized in numerical simulations using pe-
riodic boundary conditions. This is illustrated in the
Supplemental Material [29], where we monitor the con-
vergence of shear stress to a unique level, starting from
three widely different glasses, namely prepared by instan-
taneously quenching a high temperature liquid (HTL),
an equilibrated supercooled liquid (ESL), or a system re-
laxed via a slow gradual quench (GQ) [27].

Here, as detailed in Fig. 1, we evidence the Bauschinger
effect starting from steady flow configurations, so as
to emphasize that it is unrelated to the preparation-
dependent, hardening or softening, transient response of
the glass. In this figure, the origin of strains is taken with
reference to the zero-stress states reached after unloading
steady flow configurations. The unloading stress-strain
relation (black) appear nearly, but not quite, elastic. A
small (less that ' 0.6%) but clear hysteresis is seen when
reloading (green), which entails that unloading induces
a small amount of plasticity. The reverse loading curve
(red), which is the continuation of unloading beyond zero
stress, i.e., at negative strains, is considerably softer than
the reloading (green) one—this is the Bauschinger effect.

To understand the origin of this phenomenon, we now
analyze steady flow configurations using the method of
Refs. [13, 27]. It consists in identifying the first plastic
event undergone by atoms inside a small circular test
domain (of radius Rfree = 5) when forced by imposing an
affine strain to the outer atoms within a shell of width
larger than the pair interaction cutoff Rcut. We only
consider pure (deviatoric) strains parametrized as

∝
(
− sin 2α cos 2α
cos 2α sin 2α

)
(1)

with a positive prefactor and 2α ∈ [0, 2π]. Thus 2α = 0
when strain is aligned with the simple shear flow direc-
tion, and 2α = π for reverse loading. Statistically signif-
icant data are accumulated by considering all inclusions
centered on regular grid points with a mesh size ≈ Rcut,
while 2α takes values at regular (π/9) intervals.

For each test domain and each 2α ∈ [0, 2π], we measure
the average (over inclusion atoms) shear stress conjugate
to the imposed pure shear deformation. The residual
strength of the inclusion in this orientation, ∆τ c(2α), is
the corresponding stress increment at the first instabil-
ity. The left panels of Fig. 2 display polar maps of the
function P (∆τ c; 2α) in the (∆τ c, 2α), 2α ∈ [0, 2π] plane.
The right panels show cuts of this function along the x
axis, i.e. plots of P vs ∆τ cxy = ∆τ c for 2α = 0 (forward),
and vs ∆τ cxy = −∆τ c for 2α = π (backward).

In as-quenched systems, as illustrated in Fig. 2-(a) for
the ESL, P (∆τ c; 2α) is isotropic. Moreover [see cuts on
panel (d)], the more relaxed the system, the higher the
local yield stresses, as previously observed [27].

In the steady flow ensemble [Fig. 2(b) and blue curves
in panels (e),(f)], P (∆τ c; 2α) is clearly anisotropic, and
more precisely polarized in the sense that it breaks the
right-left, cos 2α→ − cos 2α symmetry, corresponding to
the sign inversion of the off-diagonal strain. The mean
barrier height 〈∆τ c〉(2α), in white in Fig. 2(b), remains
circular (a curious feature we cannot explain), but is
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FIG. 1. Mean stress vs strain (both in absolute values) dur-
ing three tests: unloading from steady flow (black); backward
(red) and forward (green) loading from fully unloaded (zero
stress) configurations. In all three cases, strain is measured
with reference to the zero-stress state. Solid black line: fit
of the unloading curve using Eq. (2) and ρ a2∆ε0 ' 0.25.
Solid green and red lines: consequent predictions for the
Bauschinger tests. Dashed lines: predicted reloading and
backward loading curves, when the model is used starting
from the steady flow barrier distribution (see text), i.e., while
taking into account its prediction for the unloading-induced
asymmetry. Inset: corresponding evolution of mean barrier
polarizations and their asymptotic values (dotted lines).
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FIG. 2. Left frames: the polar function P (∆τ c, 2α), with
〈∆τ c〉(2α) in white. (a) As-quenched isotropic (ESL) state,
(b) steady state, and (c) unloaded steady state configura-
tions. Right frames: cuts of P (∆τ c; 2α) along the forward
(2α = 0) and backward (2α = π) directions (d) in our three
as-quenched glasses of different degrees of relaxation (HTL,
ESL and GQ) [27]. (e,f) In steady flow (blue) and unloaded
states (red), and (up to a scaling factor) model prediction for
unloading (see text, dashed black).

shifted horizontally by χ = 1
2 (〈∆τ c〉(0)− 〈∆τ c〉(π)), a

quantity we call the mean barrier polarization. Since
χ ' −0.31 < 0, inclusions are on average closer to the
forward (α = 0) barriers: this is, of course, expected
since the steady flow ensemble is under a positive aver-
age stress τflow

xy = 0.53.
In unloaded states [Fig. 2(c)], 〈∆τ c〉(2α) (white) is still

circular, but shifted to the right: unloading inverts the
mean barrier polarization as χunloaded ' 0.14 > 0; in-
clusions are then, on average, closer to reverse barriers.
We systematically examined P (∆τ c; 2α) and 〈∆τ c〉(2α)
at many strain levels (not shown) and always found
〈∆τ c〉(2α) to be hardly distinguishable from a circle, so
that χ is the center of the mean yield curve. It thus
closely resembles the “backstress” in its initial meaning
as a phenomenological parameter meant to represent a
strain-dependent shift of the yield surface [30].

In continuum theories of plasticity, although this was
recently challenged [31], the backstress is often presumed
to reflect an asymmetry of local stress [3, 32]. We thus
emphasize that, in our system, the unloaded local stress

distribution is nearly perfectly symmetric [29]. The bar-
rier distribution asymmetry does not result from stress
asymmetry, but from the dynamical equilibrium between
the postflip production of new barriers (rejuvenation)
and the preferential elimination of forward-yielding ones.

The evolution of χ with strain is reported in the inset
of Fig. 1, for the three considered tests. Clearly, the bar-
rier distribution develops a history-dependent forward-
backward asymmetry, which is inverted during unload-
ing. This raises the question of the possible link between
mechanical polarization and the Bauschinger effect. Yet,
since χ overshoots its steady state value (dotted lines,
inset of Fig. 1), it does not appear sufficient to charac-
terize the material state. If it did, the barrier distribution
would recover symmetry when χ vanishes, which is not
the case [29], as it can be guessed from Fig. 2-(e), since
certain asymmetric features (narrowness, peak heights)
are not inverted after full unloading.

The question remains to understand how the forward-
backward asymmetry of the barrier distribution may play
a role in the Bauschinger effect. For this purpose, we re-
call that, in AQS plasticity, yielding occurs when atomic
packings are mechanically brought beyond local yield
thresholds [11, 33–35]. Therefore, the early plastic re-
sponse during Bauschinger tests (i.e., forward or back-
ward loading from zero stress) is expected to result pri-
marily from the crossing of the nearest thresholds re-
sponding to the external forcing orientation, in the initial,
unloaded, state. This points to the forward-backward
asymmetry of the small barrier tails of P (∆τ c; 2α), which
[Fig. 2(f)], like χ, is visibly inverted during unloading.

To illustrate the key role of small barriers, we take an
arbitrary zero-stress configuration and report in Fig. 3
its backward (a) and forward (b) barrier maps, on top
of which we mark the locations of the local flips under-
gone in the first 2% of strain in the corresponding load-
ing direction. Clearly, there is a higher fraction of small
barriers (red) and more events (symbols) in panel (a)
rather than (b). Also, in both cases, the loci of the plas-
tic events seem to correlate with the low barrier regions.

FIG. 3. Maps of the local residual strength for shearing (a) in
the backward (2α = π) and (b) forward (2α = 0) directions.
Symbols show the loci of plastic events in the 2% of strain in
the corresponding direction.
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This supports our expectation that the forward-backward
response contrast (the Bauschinger effect) results from
the small barrier density bias in unloaded states.

This idea is quantitatively tested by constructing an
elementary model relating the early plastic response to
the barrier distribution in the initial state. Three types
of loading are considered: both Bauschinger tests, along
with unloading from steady state. In all three cases, the
macroscopic strain increment δγxy is taken with reference
to the initial state: it grows positive for reloading, and
negative, for unloading and reverse loading. The strain-
induced change in macroscopic stress is written as δτxy =
µδγxy− δτpl

xy with µ ' 15.7 the shear modulus, and δτpl
xy

the stress released by plastic events.
For all the three considered cases, we looked at plas-

tic drops within the first few percents of strain [29],
and found them to typically involve isolated rearrange-
ments, which supports that avalanche dynamics are inac-
tive, and hence mechanical noise can be neglected. Since
we seek to capture the beginning of the stress response
only, we also neglect rejuvenation. We thus assume that
early plasticity results exclusively from instabilities of
fixed thresholds τ cxy, preexisting in the initial state. Ne-
glecting elastic heterogeneities, the preyield local stress
reads τxy(δγxy) = τxy(0)+δτxy, and yielding occurs when
∆τ cxy(δγxy) = ∆τ cxy(0)− δτxy vanishes [36], so that

µδγxy − δτxy = δτpl
xy = 2µρa2∆ε0

∫ δτxy

0

p
(
∆τ cxy

)
d∆τ cxy

(2)
which defines δτxy(δγxy). Here, p is the distribution, in
the initial state, of the barriers responding to the con-
sidered forcing, a a the typical zone size, ∆ε0 the typical
strain release, and ρ is the number density of yield bar-
riers [37].

Equation (2) provides a quantitative test of the relation
between barrier tails and the Bauschinger effect because
it effectively depends only on the combination ρ a2∆ε0,
i.e., of a single unknown parameter that can be obtained
by fitting (solid black line on Fig. 1) the beginning of
the unloading curve (using for p the steady state back-
ward barrier distribution). This yields ρ a2∆ε0 ' 0.25.
To confirm the relevance of this value, we have computed
coarse-grained local strain changes during isolated plas-
tic events, and estimate a2∆ε0 (not shown) to lie in the
0.4–0.7 range. We have also estimated ρ ' 0.39 by relat-
ing the average strain interval between plastic drops in
steady state to the distribution of forward barriers [29].
These values are therefore mutually consistent.

Once ρ a2∆ε0 is thus determined, Eq. (2) provides
parameter-free predictions for both Bauschinger tests,
i.e., forward and backward loading from zero-stress
states. The resulting curves (Fig. 1, solid green and red
lines), do match strikingly well the corresponding stress-
strain relations, up to at least 5% of strain. It establishes
that the Bauschinger effect does result from the forward-

backward asymmetry, in unloaded states, between the
small barrier tails, i.e., for ∆τ cxy

<∼ 0.5, which corresponds
to the macroscopic stress change over the fitted strain
range.

The remarkable ability of our model to jointly account
for these three mechanical tests supports that its core
assumption (barriers are mechanically shifted by macro-
scopic stress up to instabilities) is quite reasonable up to
strains about a few percents. This legitimates using the
model itself to understand how full unloading (down to
zero stress) leads to the small barrier distribution asym-
metry which we have just shown to be responsible for
the Bauschinger effect. We thus plot in Figs. 2(e) and
2(f) (black dashed lines) the barrier distribution P (m)

the model predicts after full unloading: it is merely the
steady state distribution, translated by τflow

xy along the x
axis, and truncated to reflect the elimination of instable
barriers. P (m) is multiplied by an arbitrary factor to bet-
ter show how it departs from the measured distribution,
P (u). Since, for all |∆τ cxy| >∼ 1, P (m) falls right atop P (u),
we conclude that the assumed elastic shift of barriers is
a very reasonable assumption away from threshold.

The model remarkably predicts an inversion of small
barrier tails during unloading, as observed, yet with two
discrepancies. It overestimates the growth of the back-
ward barrier density near threshold, expectedly due to
the neglect of mechanical noise, which facilitates the
crossing of small barriers, hence requires P (u) to essen-
tially vanish at ∆τ cxy = 0 [15, 38]. As for the forward
barrier density, the model predicts the appearance, dur-
ing unloading, of a gap over ∆τ cxy < τflow

xy . In this range,

remarkably, the measured P (u) does present a pseudogap,
i.e., a weak initial growth compared with its rise beyond
τflow
xy . But it does not strictly vanish, presumably due to

rejuvenation and/or noise associated with the small plas-
tic activity during unloading. This analysis suggests that
the elastic shift of barriers up to instabilities is the main
drive behind the inversion in small barrier densities dur-
ing unloading, while the neglected effects, rejuvenation
and noise, which arise from unloading-induced plasticity,
are only mitigating factors.

To test this interpretation, we compute the model pre-
dictions for Bauschinger’s tests, when replacing the ini-
tial (unloaded) density P (u) by P (m). The predicted
response curves are displayed in Fig. 1 (dashed lines):
reloading is strictly elastic; backward loading is the con-
tinuation of unloading. These curves clearly exhibit
a Bauschinger effect of very reasonable amplitude, al-
though slightly overestimated. This unambiguously con-
firms that the discrepancies previously identified betwen
P (m) and P (u) only reflect compensation mechanisms,
while the elastic shift (up to instabilities) hypothesis at
the basis of the model captures the core mechanism re-
sponsible for unloading-induced inversion of the small
barrier asymmetry leading to the Bauschinger effect.

Additionally, according to the model: (a) for any finite
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unloading, a gap opens in the forward barrier distribu-
tion, hence reloading is pure elastic; (b) from its very
onset, unloading initiates reverse plasticity and soften-
ing. The model therefore predicts that the Bauschinger
effect exists at partial unloading levels, and that the as-
sociated contrast grows with the decreasing stress. This
is unambiguously confirmed by simulations [29]. While
the (pseudo)-gap formation [(a)] results merely from the
stability condition ∆τ cxy ≥ 0, reverse softening originates
from the remarkable property that the steady flow reverse
barrier distribution vanishes only at threshold. This fea-
ture is expected to result from mechanical noise [15, 35],
which causes local stress to diffuse over the whole stabil-
ity domain [38]. The Bauschinger effect thus appears to
be an indirect consequence of mechanical noise.

This work has shown that strain induces a history-
dependent polarization of local yield thresholds in an
amorphous solid under AQS shear. The Bauschinger ef-
fect then appears to arise because the backward-yielding
barrier distribution vanishes only (and quasilinearly) at
threshold, so that unloading causes reverse plasticity of
growing amplitude (i.e. softening), jointly with the emer-
gence of a pseudogap in the forward barrier distribution,
guaranteeing nearly elastic reloading. Although we used
a 2D model, we expect these conclusions to carry over
to 3D since our main qualitative results (forward-reverse
symmetry breaking, and presence of near-threshold re-
verse barriers) are not dimension dependent.

M.L. and S.P. acknowledge the support of French Na-
tional Research Agency through the JCJC project PAM-
PAS under Grant No. ANR-17-CE30-0019-01.
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Phys. Rev. Lett., 78, 2020 (1997).

[8] A. S. Argon, Acta Metall., 27, 47 (1979).
[9] M. L. Falk and J. S. Langer, Phys. Rev. E, 57, 7192

(1998).
[10] C. A. Schuh and A. C. Lund, Nat. Mater., 2, 449 (2003).
[11] C. E. Maloney and A. Lemâıtre, Phys. Rev. Lett., 93,
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[38] A. Lemâıtre and C. Caroli, Phys. Rev. Lett., 103, 065501
(2009).
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Supplemental Material: “Origin of the Bauschinger effect in amorphous solids”

ACCESSING A PREPARATION-INDEPENDENT
STEADY STATE

We show in Fig. SM1, the mean stress-strain τxy and
mean barrier polarizations χ curves starting from three
very different initial ensembles [27]: the first two are ob-
tained from instantaneous quenches from resp. a high
temperature liquid (HTL, at T = 7.8TMCT where TMCT

is the temperature of the mode-coupling transition), and
an equilibrated supercooled liquid (ESL, at 0.95TMCT );
the third one is obtained by a gradual quench (GQ), at
a rate Ṫ = 0.32× 10−6 across the glass transition, which
allows the system to equilibrate down to a relaxation
timescale of order Tg/Ṫ ' 106, with Tg the glass tran-
sition temperature. As seen for the GQ system, when
starting from a tempered and hard glass, the early plas-
tic response displays strain-softening, which is accompa-
nied by transient localization [28]. When starting from a
very poorly tempered, very soft glass (our HTL ensem-
ble), the erasure of the initial state shows up as a strain-
hardening effect. The evolution of χ is roughly opposite
of τxy, since the mean stress tends to bring local packings
closer, on average, to forward-yielding instabilities. All
systems eventually reach the same steady flow ensemble,
which we use as a starting point of our analysis.
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FIG. SM1. For our three different initial ensembles: mean
stress τxy and mean barrier polarizations χ vs ln(1 + γxy),
with γxy the linear macroscopic strain.

ABSENCE OF SYMMETRY IN THE BARRIER
DISTRIBUTION WHEN χ = 0

On figure SM2, we report the forward and backward
barrier distributions at γxy = 0.015 (from the zero stress
state, i.e. ≈ −3% of unloading), a strain at which χ ≈ 0
(see Fig. 1 in the Article). Clearly these distributions are
not symmetric, although they present almost identical
〈∆τ c〉 values.
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FIG. SM2. Residual strength ∆τ cxy distribution along the
forward/backward loading direction in the unloading branch
at γxy = 0.015 that corresponds to mean barrier polarizations
χ ≈ 0.

ABSENCE OF NON-TRIVIAL STRESS
ASYMMETRY

In continuum theories of plasticity, the Bauschinger
effect is classically interpreted as arising from “mi-
crostresses”, i.e. presumed local excesses of negative
stress, that would cause certain regions to be closer to
reverse yielding [3, 32]. Here, we would like to emphasize
that this interpretation does not apply to our systems,
since the distribution of stress in the tested inclusions,
which is reported in Fig. SM3, is nearly perfectly sym-
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FIG. SM3. The distribution of inclusion stresses in flow
(black) and unloaded (red) states; the latter distribution is
also plotted after the x→ −x transformation (green) to show
that it is nearly symmetric. The steady state distribution
shifted by the flow stress is also very similar (blue).

metric in unloaded states, and corresponds to the elastic
shift by the mean stress τxy of its counterpart in flow
states.

EVENT SAMPLES AND ESTIMATION OF THE
TYPICAL STRAIN RELEASE

In Fig. SM4, we display typical displacement fields ob-
tained from the first plastic events observed under dif-
ferent conditions: (a) steady flow; (b) unloading from
steady state; (c) backward loading from zero stress
(which is just the continuation of unloading) and (d) re-
loading after full (zero stress) unloading. In steady flow,
we clearly see that a typical plastic drop corresponds to
a system-spanning avalanche; in the three other tests we
usually observe independent Eshelby-like events. Note,
however, that reverse loading, which is the continuation
of unloading, occasionnally features plastic events that
may combine a few spatially separated rearrangements
due to the reverse polarization (higher amplitude) of the
low-∆τ c density in the backward direction.

We estimate the typical strain release ∆ε0 by comput-
ing the corresponding local strain from a coarse-graining
procedure describe in [27, 28] over a the typical test do-
main size a = 5. This analysis is performed only for
isolated plastic events and gives values lying in the 0.016–
0.028 range, which corresponds to a2∆ε0 in the 0.4–0.7
range.

ESTIMATING ρ FROM THE AVERAGE LENGTH
OF ELASTIC BRANCHES IN STEADY STATE

Let us consider a configuration taken from steady
state, at the end of a plastic stress drop. Previous stud-

FIG. SM4. Example of displacement fields for plastic drops
under different types of loading conditions. (a) in steady
state, an event is typically an avalanche; in contrast, during
unloading (b), reverse loading (c), or re-loading (d), typical
events are well separated Eshelby-like single zone flips.

ies [34, 39] have shown that, at such a point, the length
of the following elastic branch is already determined by
the local packing which first reaches instability when con-
vected by external loading. Consistently with our sim-
ple plasticity model, we assume that: (i) in a system
of volume V = L2, the instability arises among one of
the N = ρL2 barriers that are independent, distributed
according to the steady state forward distribution p re-
ported on Fig. 2-(e) and (f) in the article
(ii) at each point, the local distance to threshold shifts as
∆τ cxy(δγxy) = ∆τ cxy(0)−µδγxy up to the first instability.
Under these assumptions, δγxy > γ∗ iff all N barriers
verify ∆τ cxy(0) > µγ∗, which occurs with probability:

P(δγ > γ∗) =

(∫ ∞
µ γ∗

dδτ p(δτ)

)N
(SM1)

Since the density of δγ is the derivative −P ′(δγ), the
average strain interval is:

〈δγ〉 = −
∫ ∞

0

dxxP ′(x)

=

∫ ∞
0

dxP(x)

(SM2)

We measure 〈δγ〉 and p independently and then find the
value of N which fits the above two relations. This yields
ρ ' 0.39.
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FIG. SM5. Mean stress vs strain for different responses:
full unloading from steady flow (black symbols); after full
or partial unloading (by δγu

xy) from steady state, during re-
loading (continuous lines), and backward loading (after in-
version about (γu

xy, τ
u
xy), dashed lines). In all cases, strain is

measured with reference to the zero-stress state.

BAUSCHINGER EFFECT AT PARTIAL
UNLOADING LEVELS

On figure SM5, we report the forward and backward
mechanical response, starting at a few levels of un-
loading from steady flow, ranging from δγuxy = −0.02
(down from steady state) to fully unloaded (zero stress,
δγfull
xy ≈ −0.045) configurations. In unloaded states, the

strain measured with respect to the zero stress state is
γuxy = δγfull

xy − δγuxy. To evidence the response contrast,
the re-loading data is plotted after the inversion about
the point (γuxy, τ

u
xy), which amounts to plotting in all

cases |τxy−τuxy|+τuxy vs |γxy−γuxy|+γuxy. These curves un-
ambiguously confirm our prediction that the Bauschinger
effect exists at finite unloading, and that the associated
contrast between forward and backward responses grows
with the increasing unloading level.


