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Higher-order corrections to spin-spin scalar interactions in HD + and H + 2

The largest hyperfine interaction coefficients in the hydrogen molecular ion HD + , i.e. the electronproton and electron-deuteron spin-spin scalar interactions, are calculated with estimated uncertainties slightly below 1 ppm. The (Zα) 2 EF relativistic correction, for which a detailed derivation is presented, QED corrections up to the order α 3 ln 2 (α) along with an estimate of higher-order terms, and nuclear structure corrections are taken into account. Improved results are also given for the electron-proton interaction coefficient in H + 2 , in excellent agreement with RF spectroscopy experiments. In HD + , a 4σ difference is found in the hyperfine splitting of the (v, L) = (0, 3) → (9, 3) two-photon transition that was recently measured with high precision. The origin of this discrepancy is unknown.

II.

I. INTRODUCTION

The interest of laser spectroscopy of the HD + molecular ion for the metrology of fundamental constants was pointed out more than forty years ago [START_REF] Wing | Observation of the Infrared Spectrum of the Hydrogen Molecular Ion HD +[END_REF]. This potential was recently realized in two experiments, in which a one-photon rotational transition [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF] and a two-photon vibrational transition [START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF] were measured in the Lamb-Dicke regime, thereby suppressing the first-order Doppler broadening. In these works, a spin-averaged transition frequency was deduced from the measured hyperfine components, with respective accuracies of 13.5 and 2.9 parts per trillion, and compared to theoretical predictions [START_REF] Korobov | Fundamental Transitions and Ionization Energies of the Hydrogen Molecular Ions with Few ppt Uncertainty[END_REF], allowing to improve the determination of the proton-electron mass ratio. On the other hand, the experimental data also enables a high-precision investigation of the hyperfine structure of HD + . In the case of the rotational transition [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF], six hyperfine components were measured with uncertainties of a few tens of Hz, while in the vibrational transition [START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF], two hyperfine components were measured with uncertainties below 1 kHz.

On the theoretical side, the hyperfine structure of HD + has been calculated within the Breit-Pauli approximation [START_REF] Bakalov | High-Precision Calculation of the Hyperfine Structure of the HD + Ion[END_REF] including the anomalous magnetic moment of the electron, yielding a relative accuracy of order α 2 . The effective spin Hamiltonian introduced in that work reads 

H eff = E 1 (L•s e ) + E
+E 8 2L 2 (I p •I d ) -3[(L•I p )(L•I d ) + (L•I p )(L•I d )] + E 9 2L 2 I 2 d - 3 2 (L•I d ) -3(L•I d ) 2 , (1) 
where s e , I p , I d are the spins of the electron, proton and deuteron, respectively, and L is the total orbital angular momentum. The largest coefficients are the spin-spin scalar interactions, E 4 ∼ 900 MHz and E 5 ∼ 140 MHz in the ground vibrational state, followed by the spin-orbit term E 1 ∼ 30 MHz and the tensor interaction constants E 6 , E 7 in the few-MHz range. Other coefficients range from a few kHz to a few tens of kHz. In order to improve the theory further, the first priority is to calculate higher-order corrections to the spin-spin coefficients. This has been done in [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF][START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF] in the case of H + 2 ; here, we extend this work to the HD + case [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF][START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF][START_REF] Alighanbari | Rotational spectroscopy of cold and trapped molecular ions in the Lamb-Dicke regime[END_REF]. In doing so, we make further improvements in the treatment of nuclear structure corrections and higher-order QED corrections, and present extensive numerical results for a range of ro-vibrational states. This will allow a detailed comparison with recent and future experiments when the theoretical precision of next largest coefficients (E 1 , E 6 , E 7 ) is sufficiently improved. Preliminary results for the E 1 coefficient have been obtained in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF].

The paper is organized as follows. In Sec. II, we briefly review the theory of the ground-state hyperfine splitting in atomic hydrogen and deuterium. The theory of higher-order corrections to E 4 and E 5 in HD + is described in Sec. III. Two contributions that require new calculations are considered separately in the next sections: the relativistic correction of order (Zα) 2 E F , and a vibrational contribution at the next order α(Zα) 2 E F . Finally, numerical results are presented in Sec.VI and compared with available experimental data.

The ground-state hyperfine splitting of a hydrogenlike atom is given in the nonrelativistic approximation by the so-called Fermi energy [START_REF] Bethe | Quantum mechanics of one-and two-electron atoms[END_REF], which may be written in (SI) frequency units as

E F = 4 3 µ 0 µ B h (s e •µ M ) F =I+1/2 -(s e •µ M ) F =I-1/2 δ(r) = 8 3 Z 3 α 2 cR ∞ µ M m M p 2I + 1 2I 1 + m M 3 . (2) 
Here, µ M is the nuclear magnetic moment, and µ M its value in units of the nuclear Bohr magneton: µ M = µ M µ N I/I with µ N = |e|h/2M p . I is the nuclear spin, F the total spin quantum number (F = I + s e ), and Z the nuclear charge. Finally, m, M p and M are respectively the masses of the electron, proton and nucleus. QED corrections without recoil terms have been known for some time [START_REF] Sapirstein | Quantum Electrodynamics[END_REF][START_REF] Kinoshita | Radiative corrections to the muonium hyperfine structure: The α 2 (Zα) correction[END_REF][START_REF] Eides | Theory of Light Hydrogenic Bound States[END_REF][START_REF] Mondéjar | Radiative-nonrecoil corrections of order α 2 (Zα)EF to the hyperfine splitting of muonium[END_REF][START_REF] Mohr | CODATA recommended values of the fundamental physical constants: 2014[END_REF] and may be expressed as 

∆E hfs (QED) = E F a e + 3 2 (Zα) 2 + ln 2 - 5 2 α(Zα) + α(Zα) 2 π - 8 
α 2 (Zα) π + D (4) (α, Zα) + . . . , (3) 
where a e is the electron anomalous magnetic moment. We have kept Z in all expressions in order to identify the origins of different corrections. Corrections at order α 4 E F have been partially evaluated [START_REF] Eides | Theory of Light Hydrogenic Bound States[END_REF][START_REF] Mohr | CODATA recommended values of the fundamental physical constants: 2014[END_REF], 

D (4) (α, Zα) = 17 8 (Zα) 4 + α(Zα)
α 3 (Zα) π 2 . ( 4 
)
Note that the term (-2.102(3)) at order α(Zα) 3 actually includes corrections of higher order in Zα [START_REF] Yerokhin | Electron Self-Energy in the Presence of a Magnetic Field: Hyperfine Splitting and g Factor[END_REF][START_REF] Yerokhin | Self-energy correction to the hyperfine splitting and the electron g factor in hydrogenlike ions[END_REF][START_REF] Sunnergren | Radiative corrections to the hyperfinestructure splitting of hydrogenlike systems[END_REF][START_REF] Karshenboim | Vacuum polarization in a hydrogen-like relativistic atom: hyperfine structure[END_REF].

In addition to QED corrections, there are recoil and nuclear structure corrections. In the hydrogen atom case (see [START_REF] Sapirstein | Quantum Electrodynamics[END_REF][START_REF] Eides | Theory of Light Hydrogenic Bound States[END_REF][START_REF] Volotka | Zemach and magnetic radius of the proton from the hyperfine splitting in hydrogen[END_REF][START_REF] Carlson | Proton Structure Corrections to Hydrogen Hyperfine Splitting[END_REF] for a detailed discussion), these corrections are written as

∆E S = ∆E Z + ∆E p R + ∆E pol . (5) 
The first and largest term is the Zemach correction [START_REF] Zemach | Proton structure and the hyperfine shift in hydrogen[END_REF] that reads, including radiative corrections [START_REF] Karshenboim | Nuclear structure-dependent radiative corrections to the hydrogen hyperfine splitting[END_REF] 

∆E Z = -2(Zα)m r (1 + δ rad Z )r Z E F ∼ -40 × 10 -6 E F , (6) 
where m r = (mM p )/(m+M p ), δ rad Z = 0.015, and r Z is the Zemach radius, a mean radius associated with a convolution of the proton's charge and magnetization distributions,

r Z = 1 π 2 d 3 q q 4 1 - G E (-q 2 )G M (-q 2 ) µ p . (7) 
G E and G M are the proton's electric and magnetic form factors. The second term of Eq. ( 5) is the recoil correction, where contributions at orders (Zα)(m/M )E F [START_REF] Carlson | Proton Structure Corrections to Hydrogen Hyperfine Splitting[END_REF][START_REF] Arnowitt | The Hyperfine Structure of Hydrogen[END_REF][START_REF] Newcomb | Mass Corrections to the Hyperfine Structure in Hydrogen[END_REF][START_REF] Bodwin | Some recoil corrections to the hydrogen hyperfine splitting[END_REF], (Zα) 2 (m/M )E F [START_REF] Bodwin | Some recoil corrections to the hydrogen hyperfine splitting[END_REF] and the α(Zα)(m/M )E F radiativerecoil correction [START_REF] Karshenboim | Nuclear structure-dependent radiative corrections to the hydrogen hyperfine splitting[END_REF] add up to around 5.8 × 10 -6 E F [START_REF] Carlson | Proton Structure Corrections to Hydrogen Hyperfine Splitting[END_REF][START_REF] Faustov | Proton polarizability contribution to hydrogen hyperfine splitting[END_REF]. Finally, the last term is the proton polarizability correction, evaluations of which yielded the values 1.4(6) × 10 -6 E F [START_REF] Faustov | Proton polarizability contribution to hydrogen hyperfine splitting[END_REF] and 1.88(64) × 10 -6 E F [START_REF] Carlson | Proton Structure Corrections to Hydrogen Hyperfine Splitting[END_REF].

The deuterium atom case is different, due to the deuteron being a much more weakly bound system than the proton. Nuclear structure corrections are dominated in this case by the deuteron polarizability contribution which amounts to about 240 × 10 -6 E F [START_REF] Friar | Nuclear corrections to hyperfine structure in light hydrogenic atoms[END_REF], while the Zemach term contributes at a level of ∼ -100 × 10 -6 E F [START_REF] Friar | Zemach moments for hydrogen and deuterium[END_REF].

In order to get accurate predictions of the HD + Fermi interaction terms, we will make use of the fact that the total nuclear corrections can be determined phenomenologically with very good accuracy by subtracting the results of the pure QED calculation from the experimental value:

∆E hfs (nucl) = E hfs (exp) -E hfs (QED), (8) 
with E hfs (QED) = E F + ∆E hfs (QED). Being due to short-range interactions, the nuclear correction is mainly determined by the squared value of the electronic wavefunction at the nucleus (ψ(0) 2 ) and only very weakly depends on its value at finite distances. This dependence may be neglected without serious loss of accuracy, which allows us to directly plug the nuclear correction, as determined phenomenologically from the experimental atomic hyperfine splitting, in the theory of hydrogen molecular ions, as detailed in the next section. A summary of QED contributions and the nuclear correction obtained from Eq. ( 8) are shown in Table I for both the H and D atoms. For completeness, one should mention additional small corrections not included in E hfs (QED), from muonic and hadronic vacuum polarization [START_REF] Karshenboim | Nuclear structure-dependent radiative corrections to the hydrogen hyperfine splitting[END_REF], and weak interaction [START_REF] Beg | Exotic Interactions of Charged Leptons[END_REF]. E hfs (nucl) therefore corresponds to a sum of nuclear corrections and of these contributions. 2)], and rows 2-5 are the QED corrections as written in the first line of Eq. ( 3). ∆E ho corresponds to the terms appearing in the second line of Eq. ( 3); uncertainties take into account the theoretical uncertainties indicated in Eq. ( 4), as well as uncertainties of the nuclear magnetic moment values. The experimental values are respectively taken from an adjustment done in [START_REF] Karshenboim | Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants[END_REF] for the hydrogen atom, and from Ref. [START_REF] Wineland | Atomic Deuterium Maser[END_REF] for deuterium.

III. SPIN-SPIN SCALAR INTERACTIONS IN HD +

From here on, we use atomic units. Like in atoms, the electron-proton and electron-deuteron spin-spin scalar interactions are given at the leading orders (mα 4 and mα 5 ) by the Fermi term appearing in the Breit-Pauli Hamiltonian, taking into account the anomalous magnetic moment a e of the electron [START_REF] Bakalov | High-Precision Calculation of the Hyperfine Structure of the HD + Ion[END_REF]:

H (0) ss = α 2 8π 3 (1 + a e ) m M p µ p δ(r p )(s e •I p ) + µ d 2 δ(r d )(s e •I d ) . (9) 
The leading contributions to the E 4 and E 5 hyperfine coefficients (see Eq. ( 1)) are then

E (lo) 4 = (1 + a e )E (F ) 4 , E (F ) 4 = α 2 8π 3 m M p µ p δ(r p ) , (10) 
E (lo) 5 = (1 + a e )E (F ) 5 , E (F ) 5 = α 2 4π 3 m M p µ d δ(r d ) . (11) 
This corresponds to the leading-order contribution of Eq. ( 2), with the first term of Eq. ( 3) included as well, and was the only contribution considered in [START_REF] Bakalov | High-Precision Calculation of the Hyperfine Structure of the HD + Ion[END_REF].

In order to improve the theoretical values of E 4 and E 5 , one should consider higher-order QED corrections and nuclear structure effects, as seen for the atomic case in the previous section. A key point is that the major part of these contributions are state-independent, i.e. contact-type interactions only depending on the value of the squared density of the nonrelativistic wavefunction at the electron-nucleus coalescence point. Such contributions are given by a fixed coefficient taken from the H (respectively D) atom theory regarding corrections to E 4 (respectively E 5 ) multiplied by the expectation values of δ-function operators in HD + , which have been already obtained with very high accuracy from variational three-body wavefunctions [START_REF] Aznabayev | Leading-order relativistic corrections to the rovibrational spectrum of H + 2 and HD + molecular ions[END_REF]. Thus they do not require any new calculations. The most important state-dependent contribution is the relativistic correction of order (Zα) 2 E F (the second term of Eq. ( 3) in the atomic case, also known as the "Breit correction"). This term requires an independent calculation, which is presented in the next section. All other terms are included in the form of contact interactions:

E α(Zα) 4,5 = ln 2 - 5 2 α 2 E (F ) 4,5 (12) 
E α(Zα) 2 ln 2 (Zα) 4,5 = - 8 3π ln 2 (α) α 3 E (F ) 4,5 (13) 
E (ho) 4,5 = 0.767 × 10 -6 E (F ) 4,5 (14) 
E (nucl) 4 = -32.616 × 10 -6 E (F ) 4 (15) 
E (nucl) 5 = 138.256 × 10 -6 E (F ) 5 (16) 
The expressions of the first two terms are exact, whereas the next ones are obtained by neglecting the state dependence of the respective contributions. Among the higher-order nonrecoil QED corrections [Eq. ( 14)], the largest state-dependent term is that of order α(Zα) 2 ln(Zα) (first term in the second line of Eq. ( 3)). Among nuclear corrections [Eqs. [START_REF] Mohr | CODATA recommended values of the fundamental physical constants: 2014[END_REF][START_REF] Yerokhin | Electron Self-Energy in the Presence of a Magnetic Field: Hyperfine Splitting and g Factor[END_REF]], the only term having a non-negligible state dependence is the recoil correction of order (Zα) 2 (m/M )E F [START_REF] Bodwin | Some recoil corrections to the hydrogen hyperfine splitting[END_REF], while for other terms the state dependence is much smaller, e.g. they contribute to the specific difference D 21 = 8E hfs (2S) -E hfs (1S) at the level of a few Hz only [START_REF] Karshenboim | Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants[END_REF]. The uncertainty induced by the approximate expressions (14-16) can be estimated as equal to the sum of all state-dependent contributions, leading to a theoretical uncertainty:

∆E 4 ∼ 0.93 × 10 -6 E (F ) 4 , ∆E 5 ∼ 0.59 × 10 -6 E (F ) 5 . (17) 
The difference between the proton and deuteron cases stems from the different magnitude of the (Zα) 2 (m/M )E F recoil correction [START_REF] Bodwin | Some recoil corrections to the hydrogen hyperfine splitting[END_REF].

IV. THE (Zα) 2 EF RELATIVISTIC CORRECTION

We now derive the "Breit" correction to the spin-spin scalar interaction coefficients (E 4 and E 5 ) in HD + . In the H + 2 ion, the corresponding contribution was calculated in [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF][START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF]. The derivation presented here for HD + is similar in spirit, but differs in the details due the existence of two separate interaction constants instead of a global interaction between the electron spin and the total nuclear spin.

We use the adiabatic approximation, and calculate the correction to the bound electron. The nonrelativistic electronic Hamiltonian is

H 0 = p 2 2m + V, V = - Z 1 r 1 - Z 2 r 2 , ( 18 
)
where p is the electron's impulse operator, Z 1 , Z 2 the nuclear charges and r 1 , r 2 the distances between the electron and the nuclei. In what follows we will assume that Z 1 = Z 2 = Z. We respectively denote by E 0 and ψ 0 the nonrelativistic energy and wavefunction (in our numerical calculations, we will consider only the ground 1sσ electronic state). The first step consists in deriving the effective potentials of order mα 6 (m/M ) by the NRQED approach. This was done in [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF], and these potentials were later rederived in [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] along with other spin-dependent interactions at order mα 6 . Here, we use the notations of Ref. [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF]. The potentials contributing to the spin-spin scalar interactions are the following (Eq. ( 42) of [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF], see also Eq. ( 33) of [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]):

V 4 = -α 4 1 4m 3 p 2 , 8π 3 s e •µ i δ(r i ) - r 2 i s e •µ i -3(s e •r i )(µ i •r i ) r 5 i , V 6 = α 4 Z 6m 2 2(r 1 •r 2 )(s e •µ I ) r 3 1 r 3 2 + (r 1 •r 2 )(s e •µ I )-3(r 1 •s e )(r 2 •µ 2 )-3(r 2 •s e )(r 1 •µ 1 ) r 3 1 r 3 2 , V 8 = α 4 Z 6m 2 2(s e •µ i ) r 4 i + r 2 i (s e •µ i )-3(r i •s e )(r i •µ i ) r 6 i . (19) 
Here, {X, Y } = XY + Y X. µ 1 , µ 2 are the nuclear magnetic moments (µ 1 ≡ µ p , µ 2 ≡ µ d ), and µ I = µ 1 + µ 2 . In each line, the first and second term contribute to scalar and tensor interactions, respectively. Keeping only the terms contributing to scalar interactions, we arrive at the total effective Hamiltonian:

H (6) s = α 4 - 1 6m 3 p 2 , 4πδ(r 1 ) + Z 3m 2 1 r 4 1 + r 1 •r 2 r 3 1 r 3 2 s e •µ 1 +α 4 - 1 6m 3 p 2 , 4πδ(r 2 ) + Z 3m 2 1 r 4 2 + r 1 •r 2 r 3 1 r 3 2 s e •µ 2 . ( 20 
)
From now on, we focus on the s e • µ 1 interaction term, calculations for the other term being identical. It may be rewritten as

H (6) s1 = α 4 3Zm 2 - 1 2m p 2 , ρ 1 + E 1 •E s e •µ 1 , (21) 
with the definitions:

V i = -Z/r i , 4πρ i = ∆V i , E i = -∇V i (i = 1, 2), and ρ = ρ 1 + ρ 2 , E = E 1 + E 2 .
According to the nonrelativistic perturbation theory, the total energy correction of order mα 6 (m/M ) to the s e •µ 1 interaction is given by

∆E (6) s1 = H (6) s1 + 2α 4 H (2) B Q(E 0 -H 0 ) -1 QH (1) ss1 . (22) 
Here, we have omitted a second-order perturbation term induced by the electronic spin-orbit and nuclear spin-orbit interactions (respectively denoted by H so and H so N in Eq. ( 28) of Ref. [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]), which is negligibly small for σ electronic states. The brackets denote an expectation value over the nonrelativistic electronic wavefunction ψ 0 , and Q is a projection operator on a subspace orthogonal to ψ 0 . H

ss1 is the leading-order Fermi interaction, and H

B is the spinindependent part of the Breit-Pauli Hamiltonian accounting for leading-order relativistic corrections to the bound electron:

H (2) B = - p 4 8m 3 + Z 8m 2 4π δ(r 1 ) + δ(r 2 ) , H (1) ss1 = 2 3m H (1) 
B1 s e •µ 1 ,

here H

(1) B1 = 4πZδ(r 1 ). Both terms in Eq. ( 22) are divergent, but their sum is finite. They need to be transformed in order to separate and cancel divergent terms, as was done in [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF] for H + 2 . The first-order term can be transformed using the relationship p 2 Ψ 0 = 2m(E 0 -V )Ψ 0 , commutation relations, and integration by parts (see Appendix A for details). One gets, using Eq. ( A4b):

H (6) s1 = α 4 3Zm 2 -E 1 •E + 4m V 1 V 2 -4mE 0 V 1 V + 2 pV 1 V p +4π V 2 ρ 1 -V 1 ρ 2 -8πE 0 ρ 1 s e •µ 1 . ( 24 
)
Let us now consider the second-order term. We introduce the first-order perturbation wavefunction Ψ

(1) B1 , solution of the equation

(E 0 -H 0 )Ψ (1) B1 = QH (1) B1 Ψ 0 . ( 25 
)
This wavefunction behaves like 1/r 1 in the limit r 1 → 0. The 1/r 1 singularity can be separated by setting Ψ

B1 = - 2Zm r 1 Ψ 0 + Ψ(1) B1 = U 1 Ψ 0 + Ψ(1) B1 , U 1 = 2mV 1 , where Ψ (1) 
B1 is a less singular function, behaving like ln r 1 at r 1 → 0, and is a solution of the equation

(E 0 -H 0 ) Ψ(1) B1 = H (1) 
B1 -H

(1) B1

Ψ 0 , H

B1 = -(E 0 -H 0 )U 1 -U 1 (E 0 -H 0 ) + H (1) (1) 
Similarly, for H B (2) , we introduce the first-order wavefunction Ψ

B :

(E 0 -H 0 )Ψ (2) 
B = QH (2) B Ψ 0 , (26) 
and separate its 1/r 1 and 1/r 2 singularities:

Ψ (2) B = Z 4m - 1 r 1 - 1 r 2 Ψ 0 (r) + Ψ(2) B = U 2 Ψ 0 + Ψ(2) B , U 2 = - 1 4m V.

Here Ψ(2)

B is a solution of the equation

(E 0 -H 0 ) Ψ(2) B = H (2) B -H (2) B Ψ 0 , H (2) 
B = -(E 0 -H 0 )U 2 -U 2 (E 0 -H 0 ) + H (2) B
Then, the divergent part of the second-order term can be separated as follows:

∆E A1 = α 4 4 3m Ψ 0 H (2) B Q(E 0 -H 0 ) -1 QH (1) B1 Ψ 0 s e •µ 1 = α 4 4 3m Ψ 0 H (2) B -H (2) B U 1 Ψ 0 + Ψ 0 U 2 H (1) B1 -H (1) B1 Ψ 0 + Ψ 0 H (2) B Q(E 0 -H 0 ) -1 QH (1) B1 Ψ 0 s e •µ 1
In this expression, the last term is finite. The divergences are located in the first two terms, which can be written as the expectation value of an effective Hamiltonian:

H (6) s1 = α 4 2 3m H (2) B U 1 + U 1 H (2) B + H (1) B1 U 2 + U 2 H (1) B1 -2 H (2) B U 1 -2 H (1) B1 U 2 -U 1 (E 0 -H 0 )U 2 -U 2 (E 0 -H 0 )U 1 (s e •µ 1 ) = α 4 2 3Zm - p 4 V 1 +V 1 p 4 4m 2 + 4πZ ρ 2 V 1 -ρ 1 V 2 2m - (V 1 p 2 V +V p 2 V 1 ) 4m -V 1 V 2 + E 0 V 1 V -4m H (2) B V 1 + H (1) B1 V 2m (s e •µ 1 ) (27) 
Using Eqs. (A3a) and (A4a) (see Appendix A), the expectation value of H

s1 can be transformed to:

H (6) s1 = α 4 1 3Zm 2 E 1 •E -4m V 1 V 2 + 8mE 0 V 1 V -4π V 2 ρ 1 -V 1 ρ 2 -4mE 2 0 V 1 -8m 2 H (2) B V 1 + H (1) B1 V s e •µ 1 (28) 
Finally, the total correction of order mα 6 (m/M ) to the E 4 coefficient is given by

∆E (6) 4 = ∆E (6) A1 + ∆E (6) B1 , (29) ∆E (6) 
A1 = α 4 4 3 m M p µ p Ψ 0 H (2) B Q(E 0 -H 0 ) -1 QH (1) B1 Ψ 0 , (29a) ∆E (6) 
B1 = α 4 2 3Z m M p µ p pV 1 V p + 2mE 0 V 1 V -2mE 2 0 V 1 -4π E 0 ρ 1 -4m 2 H (2) B V 1 + 1 2 H (1) B1 V . (29b) 
Both the second-order term and the first-order term, in which the divergent terms proportional to E 1 •E and to

V 1 V 2 have been cancelled out in the sum H (6) s1 + H (6) s1 
, are now finite. Expressions for the E 5 coefficient are identical, excepted that the prefactor (m/M p )µ p is replaced by (m/(2M p ))µ d .

Comparing our final result (29a)-(29b) with the expression obtained in H + 2 , Eqs. ( 49)-(50) of Ref. [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF], it is easily seen that they are equivalent under the assumption that the electronic wavefunction is symmetric with respect to the exchange of nuclei, which is the case in the standard adiabatic approximation that we will use here [START_REF] Wolniewicz | The vibration-rotational energies of the hydrogen molecular ion HD +[END_REF]. Indeed, under this assumption the following equalities hold:

pV 1 V p = 1 2 pV 2 p , V 1 V = 1 2 V 2 , V 1 = 1 2 V , ρ 1 = ρ 2 .
In the adiabatic framework, corrections to ro-vibrational energy levels are obtained by averaging the correction curve ∆E

4,5 (R) over the adiabatic vibrational wave functions χ v,L (R). The second-order perturbation term induced by the leading-order Fermi interaction and the spin-independent Breit-Pauli Hamiltonian requires specific attention. The correction written in the second term of Eq. ( 22) accounts for the perturbation of the electronic part of the wave function only, and one should also take into account the perturbation of the vibrational wavefunction caused by the shift of the potential energy curve [START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF]. The total correction is

∆E (Zα) 2 4 (v, L) = ∆E (Zα) 2 (el) 4 (v, L) + ∆E (Zα) 2 (vb) 4 (v, L), (30) 
∆E (Zα) 2 (el) 4 (v, L) = χ v,L |∆E (6) 4 (R)|χ v,L , (30a) 
∆E (Zα) 2 (vb) 4 (v, L) = 2α 4 χ v,L |E (2) 
B (R)Q (E 0 -H vb ) -1 Q E ss1 (R)|χ v,L . (30b) 
In the last line,

E ss1 (R) = H ss1 , E (2) 
B (R) = H (2)
B , Q is a projection operator onto a subspace orthogonal to χ v,L , and H vb is the nuclear radial Hamiltonian [START_REF] Wolniewicz | The vibration-rotational energies of the hydrogen molecular ion HD +[END_REF] 

H vb = - ∆ R 2µ + U (R) + L(L + 1) 2µR 2 , U (R) = E 0 (R) + Z 2 R - ∆ r 8µ - ∆ R 2µ ,
where µ = m p m d /(m p + m d ), and r denotes the electronic coordinates.

V. VIBRATIONAL CORRECTION OF ORDER α(Zα) 2 EF

There is one last contribution that should be included in our theory. As illustrated in the preceding section, in a molecular system, second-order correction terms consist of an "electronic" contribution (the second term of Eq. ( 22)) and a "vibrational" one (Eq. (30b)). Our estimate of higher-order corrections in Eq. ( 14) only includes the electronic part, so that the vibrational part must be included separately. One such contribution is significant at the level of the theoretical uncertainties [START_REF] Yerokhin | Self-energy correction to the hyperfine splitting and the electron g factor in hydrogenlike ions[END_REF], namely the α(Zα) 2 E F -order term induced by the leading-order Fermi interaction and leading-order radiative corrections:

∆E α(Zα) 2 (vb) 4 (v, L) = 2α 5 χ v,L |E rad (R)Q (E 0 -H vb ) -1 Q E ss1 (R)|χ v,L , (31) 
with

E rad (R) = 4 3 ln 1 α 2 -β(R) + 5 6 - 1 5 Z δ(r 1 ) + δ(r 2 ) . (32) 
β(R) is the nonrelativistic Bethe logarithm for the bound electron. Its values as a function of R can be found in the Supplemental Material of [START_REF] Korobov | Calculation of the relativistic Bethe logarithm in the two-center problem[END_REF]. Before discussing numerical results, it is worth summarizing the improvements brought in our present treatment with respect to that presented in Refs. [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF][START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF] in H + 2 , and used in HD + in Refs. [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF][START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF][START_REF] Alighanbari | Rotational spectroscopy of cold and trapped molecular ions in the Lamb-Dicke regime[END_REF]]: • Nuclear corrections are determined phenomenologically from the difference between the experimental groundstate hyperfine splitting in the H and D atoms and the QED prediction [Eq. ( 8)]. Note that the treatment of Ref. [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF], where nuclear correction terms were calculated individually, is actually similar in spirit since a value of the proton's Zemach radius deduced from the experimental H-atom ground-state hyperfine splitting was used in that work [START_REF] Volotka | Zemach and magnetic radius of the proton from the hyperfine splitting in hydrogen[END_REF]. The more self-consistent approach used here only leads to small differences in E 4 and E 5 (∼ 100 -200 Hz).

• More importantly, we take into account an estimate of higher-order nonrecoil QED corrections [Eq. ( 14)], which includes as well the "vibrational" contribution of order α(Zα) 2 E F [Eq. [START_REF] Karshenboim | Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants[END_REF]]. In addition, the sum of statedependent corrections gives an estimate of the theoretical uncertainty.

VI. NUMERICAL RESULTS AND DISCUSSION

We report here the results of calculations of the E 4 and E 5 hyperfine coefficients in HD + and of the b F spin-spin coefficient in H + 2 [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF][START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF], for a range of ro-vibrational states. For the leading-order contribution [Eqs. ( 10)-( 11)], as well as QED and nuclear corrections [Eqs. ( 12)-( 16)], expectation values of δ-function operators are taken from Ref. [START_REF] Aznabayev | Leading-order relativistic corrections to the rovibrational spectrum of H + 2 and HD + molecular ions[END_REF]. The potential curve corresponding to the (Zα) 2 E F relativistic correction, E

s1 (R) [Eqs. ( 29)-(29b)] has been shown to be identical to that obtained in the H + 2 case [START_REF] Korobov | Relativistic corrections of mα 6 (m/M ) order to the hyperfine structure of the H + 2 molecular ion[END_REF] in the adiabatic approximation used here. To calculate corrections to rovibrational levels [Eqs. ( 30)-(30b) and ( 31)], adiabatic vibrational wavefunctions are obtained by solving numerically the radial Schrödinger equation for the nuclear motion.

In H + 2 , the results presented here represent a slight improvement with respect to those of Ref. [START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF]. As explained above, the main improvement is that (estimated) higher-order QED corrections are taken into account through the term b

(ho) F = 0.767×10 -6 b (F ) F (where b (F ) F
is the Fermi value of b F ), along with the vibrational contribution [Eq. [START_REF] Karshenboim | Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants[END_REF]]. As shown in Table II, the excellent agreement with experiments reported in [START_REF] Korobov | Theoretical Hyperfine Structure of the Molecular Hydrogen Ion at the 1 ppm Level[END_REF] is not significantly altered by the inclusion of higher-order QED effects. More extensive results for the range (L = 1, 3, 0 ≤ v ≤ 10) are reported in Table III In HD + , all contributions to E 4 and E 5 are shown in detail in Table IV for a few rovibrational states probed in high-precision experiments [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF][START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF][START_REF] Zhong | High-precision spectroscopy of hydrogen molecular ions[END_REF], while complete results for a range of states (0 ≤ L ≤ 4, 0 ≤ v ≤ 10) are given in Table V. Inspection of Table IV reveals that our values of E 4 (E 5 ) are smaller than those given in [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF][START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF] by about 1.7 kHz (0.25 kHz) for v = 0 states, while differences are much smaller for v = 9 (∼ 0.2 kHz for E 4 and 0.03 kHz for E 5 ), due to the smaller value of the α(Zα) 2 E F vibrational correction. This shifts the measured hyperfine components of the L = 0 → 1 rotational transition [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF] by only a few tens of Hz, which does not significantly change the level of agreement between theory and experiment. This is due to a strong cancellation effect, as transition frequencies essentially depend on the differences E 4 (v = 0, L = 1)-E 4 (v = 0, L = 0) and E 5 (v = 0, L = 1)-E 5 (v = 0, L = 0). The rotational transition is thus not a stringent test for the theory of spin-spin scalar interactions, and is much more sensitive to the spin-orbit and tensor coefficients (E 1 , E 6 , E 7 ) in the L = 1 state. A more detailed analysis requires calculation of higher-order corrections to these coefficients, which is currently in progress [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF].

In the (L, v) = (3, 0) → (3, 9) two-photon transition [START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF], the additional contributions included in the present work decrease the theoretical value of the separation between the two measured hyperfine components by about 1.5 kHz, down to f hfs,theo = 178.2462(18) MHz, [START_REF] Aznabayev | Leading-order relativistic corrections to the rovibrational spectrum of H + 2 and HD + molecular ions[END_REF] to be compared with the experimental value

f hfs,exp = 178.2544(9) MHz. ( 34 
)
The values of the other hyperfine coefficients can be found in the Supplementary Materials of Ref. [START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF], excepted for E 1 where we used the value of Ref. [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF]. To estimate the theoretical uncertainty, we have assumed an uncertainty of 400 Hz for the E 1 coefficient [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF], and a relative uncertainty of 10 -4 for the other (smaller) coefficients. The difference between theory and experiment amounts to 8.2 kHz or 4.1 combined standard deviations, whereas in H + 2 , excellent agreement, within the 0.8 kHz experimental error bar, is obtained with the same theoretical ingredients.

The origin of this discrepancy is unknown. It is unlikely that it is due to an error in other hyperfine coefficients, as they were calculated at the leading order from the well-known Breit-Pauli Hamiltonian [START_REF] Bakalov | High-Precision Calculation of the Hyperfine Structure of the HD + Ion[END_REF], and higher-order corrections are of the order of 1 kHz for E 1 [START_REF] Korobov | Hyperfine structure in the H + 2 and HD + molecular ions at order mα 6[END_REF] and smaller for other coefficients. In addition, experimental data on the rotational transition [START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF] has confirmed the theoretical values of these coefficients at the level of a few hundred Hz for the (L = 1, v = 0) level. Concerning the theory of the spin-spin coefficients presented here, the main approximation, apart from neglecting the state dependence of higher-order QED corrections [Eq. 14], consists in using the adiabatic approximation to calculate the (Zα) 2 E F relativistic correction. The associated uncertainty can be estimated to be of relative order (m/M ), that is, smaller than 100 Hz. One additional feature of HD + (as compared to H + 2 ) that is not taken into account in the adiabatic framework is the g/u symmetry breaking due to the mass asymmetry between proton and deuteron, which strongly affects rovibrational states close to the dissociation limit (see e.g. [START_REF] Carrington | Spectroscopy of the hydrogen molecular ion[END_REF]). However, even the (v = 9, L = 3) level is quite far from the dissociation limit, and the asymmetry of the wavefunction is still small (in the 10 -3 range). In any case, a recalculation of the Breit correction in a full three-body approach would be highly desirable to test the accuracy of our results. Consideration of the state-dependent recoil correction of order (Zα) 2 (m/M )E F might also be of interest.

In conclusion, we have presented a theory of higher-order corrections to the spin-spin scalar interaction in hydrogen molecular ions, and applied it to obtain improved values of the corresponding hyperfine coefficients for a range of rovibrational states in H + 2 and HD + . While the agreement with experimental data is excellent in H + 2 , a substantial discrepancy is observed in HD + . It is currently unexplained, and will be the object of further investigations.
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					v	bF (L = 1, v) bF (L = 3, v)	
					0	922.9301(9)	917.5297(9)	
					1	898.7493(8)	893.6950(8)	
					2	876.3961(8)	871.6699(8)	
					3	855.7560(8)	851.3422(8)	
					4	836.7287(8)	832.6136(8)	
					5	819.2267(8)	815.3988(8)	
					6	803.1745(7)	799.6241(7)	
					7	788.5075(7)	785.2269(7)	
					8	775.1712(7)	772.1546(7)	
					9	763.1211(7)	760.3644(7)	
					10 752.3219(7)	749.8233(7)	
	TABLE III: Values (in MHz) of the spin-spin scalar interaction coefficient bF for rovibrational states (L, v) of H + 2 .
	L v	lo	(Zα) 2	α(Zα)	α(Zα) 2	ho		α(Zα) 2 (vb)	nucl.	This work
	0 0	925.4559	0.0669	-0.0889	-0.0074	0.0007	-0.0029	-0.0301	925.3942(9)	925.39588 [2]
	1 0	924.6295	0.0669	-0.0889	-0.0074	0.0007	-0.0029	-0.0301	924.5677(9)	924.56943 [2]
	E4 3 0	920.5415	0.0665	-0.0885	-0.0073	0.0007	-0.0029	-0.0300	920.4800(9)	920.48165 [3]
	3 9	775.7556	0.0572	-0.0746	-0.0062	0.0006	-0.0012	-0.0253	775.7061(7)	775.70633 [3]
	1 6	816.7692	0.0597	-0.0785	-0.0065	0.0006	-0.0018	-0.0266	816.7161(8)
	0 0 142.27278 0.01027 -0.01367 -0.00113 0.00011 -0.00045	0.01965 142.28756(8) 142.28781 [2]
	1 0 142.14591 0.01026 -0.01366 -0.00113 0.00011 -0.00045	0.01963 142.16067(8) 142.16092 [2]
	E5 3 0 141.51840 0.01020 -0.01360 -0.00113 0.00011 -0.00044	0.01954 141.53307(8) 141.53332 [3]
	3 9 119.41918 0.00879 -0.01148 -0.00095 0.00009 -0.00019	0.01649 119.43193(7) 119.43196 [3]
	1 6 125.64226 0.00916 -0.01207 -0.00100 0.00010 -0.00027	0.01735 125.65551(7)
				v	[7]	This work		Experiment [36]
				4 836.7294 836.7287(8)		836.7292(8)	
				5 819.2272 819.2267(8)		819.2273(8)	
				6 803.1750 803.1745(7)		803.1751(8)	
				7 788.5079 788.5075(7)		788.5079(8)	
				8 775.1714 775.1712(7)		775.1720(8)	
	TABLE II: Theoretical and experimental values (in MHz) of the spin-spin scalar interaction coefficient bF for a few rovibrational
	states of H + 2 . The rotational quantum number is L = 1.				

TABLE IV :

 IV Contributions to E4 and E5 (in MHz) for a few rovibrational states (L, v) of HD + (columns 3-9). Our final theoretical values are given in column 10. The theoretical values given in[START_REF] Alighanbari | Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions[END_REF][START_REF] Sayan Patra | Proton-electron mass ratio from laser spectroscopy of HD + at the part-per-trillion level[END_REF] are shown in the last column for comparison.

TABLE V :

 V Values (in MHz) of the spin-spin scalar interaction coefficients E4 and E5 for rovibrational states (L, v) of HD + .

	L v	E4	E5	L v	E4	E5
	0 0	925.3942(9) 142.28756(8)	2 6	815.5646(8) 125.47914(7)
	0 1	904.1471(8) 139.03010(8)	2 7	801.7350(7) 123.37411(7)
	0 2	884.2889(8) 135.98714(8)	2 8	788.9278(7) 121.43086(7)
	0 3	865.7411(8) 133.14692(8)	2 9	777.1025(7) 119.64475(7)
	0 4	848.4337(8) 130.49899(8)	2 10 766.2212(7) 118.01236(7)
	0 5	832.3039(8) 128.03411(8)	3 0	920.4800(9) 141.53307(8)
	0 6	817.2953(8) 125.74423(7)	3 1	899.5058(8) 138.31764(8)
	0 7	803.3575(7) 123.62237(7)	3 2	879.9078(8) 135.31479(8)
	0 8	790.4451(7) 121.66266(7)	3 3	861.6089(8) 132.51296(8)
	0 9	778.5169(7) 119.86036(7)	3 4	844.5404(8) 129.90192(8)
	0 10 767.5349(7) 118.21194(7)	3 5	828.6406(8) 127.47263(8)
	1 0	924.5677(9) 142.16067(8)	3 6	813.8543(8) 125.21721(7)
	1 1	903.3665(8) 138.91027(8)	3 7	800.1320(7) 123.12888(7)
	1 2	883.5519(8) 135.87404(8)	3 8	787.4294(7) 121.20197(7)
	1 3	865.0459(8) 133.04026(8)	3 9	775.7061(7) 119.43193(7)
	1 4	847.7786(8) 130.39852(8)	3 10 764.9249(7) 117.81546(7)
	1 5	831.6874(8) 127.93962(8)	4 0	917.2621(9) 141.03904(8)
	1 6	816.7161(8) 125.65551(7)	4 1	896.4674(8) 137.85123(8)
	1 7	802.8145(7) 123.53928(7)	4 2	877.0404(8) 134.87475(8)
	1 8	789.9372(7) 121.58507(7)	4 3	858.9052(8) 132.09817(8)
	1 9	778.0434(7) 119.78818(7)	4 4	841.9938(8) 129.51139(8)
	1 10 767.0951(7) 118.14511(7)	4 5	826.2452(8) 127.10551(8)
	2 0	922.9238(9) 141.90827(8)	4 6	811.6051(8) 124.87277(7)
	2 1	901.8138(8) 138.67192(8)	4 7	798.0247(7) 122.80652(7)
	2 2	882.0862(8) 135.64910(8)	4 8	785.4602(7) 120.90121(7)
	2 3	863.6634(8) 132.82815(8)	4 9	773.8718(7) 119.15243(7)
	2 4	846.4759(8) 130.19874(8)	4 10 763.2228(7) 117.55703(7)
	2 5	830.4616(8) 127.75173(8)			

APPENDIX A: RELATIONS BETWEEN DIVERGENT MATRIX ELEMENTS

In this Appendix, we will assume that the Coulomb potential V is regularized in some way, and that the charge distribution ρ (4πρ = ∆V ) is a smooth function of space variables. We recall that the brackets denote an expectation value over the nonrelativistic wave function Ψ 0 ; the nonrelativistic energy is denoted by E 0 . Other relevant definitions are given right after Eq. [START_REF] Carlson | Proton Structure Corrections to Hydrogen Hyperfine Splitting[END_REF].

The divergent terms that we want to transform are V 1 p 4 and V 1 p 2 V , which appear in the second-order term, Eq. ( 27), and ρ 1 p 2 , appearing in the first-order term, Eq. ( 21). Using the relationship

Using commutation relations and integration by parts one can obtain the following relationships:

Subtracting Eq. (A2c) from Eq. (A2a), and using again p 2 ψ 0 = 2m(E 0 -V )ψ 0 in the second line, we obtain a suitable expression for the first required expectation value:

Adding up (A2b) and (A2c) and taking into account (A3a), we arrive at:

Finally, using (A1a) and (A1b) we find the following expressions for the other two expectation values: