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HYPERTRANSCENDENCE AND LINEAR DIFFERENCE
EQUATIONS

BORIS ADAMCZEWSKI, THOMAS DREYFUS, AND CHARLOTTE HARDOUIN

Abstract. After Hölder proved his classical theorem about the
Gamma function, there has been a whole bunch of results showing that
solutions to linear difference equations tend to be hypertranscendental
(i.e., they cannot be solution to an algebraic differential equation). In
this paper, we obtain the first complete results for solutions to general
linear difference equations associated with the shift operator x 7→ x+ h
(h ∈ C∗), the q-difference operator x 7→ qx (q ∈ C∗ not a root of unity),
and the Mahler operator x 7→ xp (p ≥ 2 integer). The only restriction
is that we constrain our solutions to be expressed as (possibly ramified)
Laurent series in the variable x with complex coefficients (or in the vari-
able 1/x in some special case associated with the shift operator). Our
proof is based on the parametrized difference Galois theory initiated by
Hardouin and Singer. We also deduce from our main result a general
statement about algebraic independence of values of Mahler functions
and their derivatives at algebraic points.

1. Introduction

Number theorists have to face the following challenge. On the one hand,
the fields of rational and algebraic numbers are too poor, while, on the other
hand, the fields of real and complex numbers seem far too large (uncount-
able). An attempt to classify transcendental numbers leads to the introduc-
tion of the ring of periods P (see [KZ01]) and to the following classification:

Q ⊂ Q ⊂ P ⊂ C .

The main features of P are that most of classical mathematical constants
(e.g., π, log 2, ζ(3), Γ(1/3)3...)∗ belong to it, and that P is a countable
set whose elements contain only a finite amount of information and can be
identified in an algorithmic way. After the pioneering works of Cauchy and
Riemann, analytic and holomorphic functions figure prominently in mathe-
matics. As already observed by Hilbert [Hil02], their study gives rise to a
similar difficulty: the fields of rational and algebraic functions are too limited,
but the ring C[[x]] is huge. In order to overcome this deficiency, he suggested
to classify transcendental functions according to whether they are holonomic
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(i.e., satisfy a linear differential equation with polynomial coefficients), dif-
ferentially algebraic (i.e., satisfy an algebraic differential equation), or not.
Hence, we obtain the following classification:

(1.1) Rat ⊂ Alg ⊂ Hol ⊂ Dif ⊂ C[[x]] .

Functions that are not differentially algebraic are said to be hypertranscen-
dental. Note that, if we restrict our attention to power series with algebraic
coefficients, the rings Hol and Dif become countable, and, again, their ele-
ments contain only a finite amount of information and can be identified in an
algorithmic way. These rings play, in the setting of holomorphic functions, a
role similar to the one played by P in the setting of complex numbers. The
classification (1.1) is also significant in enumerative combinatorics. To some
extent, the nature of a generating series reflects the underlying structure of
the objects it counts (see the discussion in [BM06]). An appealing example,
where all cases of (1.1) appear at once, is given by the study of generat-
ing series associated with lattice walks (see, for instance, [DHRS18] and the
references therein).

Hilbert also observed that the class of differentially algebraic functions
misses important functions coming from number theory. Here are few exam-
ples. The very first comes from a classical result of Hölder [Höl87] stating
that the gamma function Γ(x) is hypertranscendental. Furthermore, it fol-
lows from the identity

ζ(x) = 2(2π)x−1Γ(1− x) sin
(πx

2

)
ζ(1− x)

that the Riemann zeta function is also hypertranscendental. In an other
direction, Moore [Moo96] has shown that f1(x) =

∑
n≥0 x

2n is hypertran-
scendental. A result reproved and extended later by Mahler [Mah30a] in
connection with the so-called Mahler’s method in transcendental number
theory. More recently, Hardouin and Singer [HS08] proved hypertranscen-
dence for some q-hypergeometric series, such as

f2(x) :=
∞∑
n=0

(1− a)2(1− aq)2 · · · (1− aqn−1)2

(1− q)2(1− q2)2 · · · (1− qn)2
xn ,

where q ∈ C∗ is not a root of unity, a 6∈ qZ and a2 ∈ qZ. Most proofs about
hypertranscendence turn out to be based on the fact that the function under
consideration satisfies a functional equation of a different type (i.e., not dif-
ferential). For instance, the three results we just mentioned are respectively
based on the following linear difference equations:

Γ(x+ 1) = xΓ(x) , f1(x
2) = f1(x)− x ,

and
f2(q

2x)− 2ax− 2

a2x− 1
f2(qx) +

x− 1

a2x− 1
f2(x) = 0 .

Broadly speaking, satisfying both a linear difference equation and an alge-
braic differential equation would enforce too much symmetry for a transcen-
dental function. In this paper, we follow this motto:

(A) A solution to a linear difference equation should be either rational or
hypertranscendental.
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Of course, this must be taken with a pinch of salt. For instance, log(x),
exp(x), and the Jacobi theta function θq(x) =

∑
n∈Z q

−n(n−1)/2xn are all
differentially algebraic, but they also satisfy the following simple linear dif-
ference equations:

log(xp) = p log x , exp(x+ 1) = e exp(x) , θq(qx) = qxθq(x) .

Nevertheless, we obtain in this paper the first complete results about hyper-
transcendence of solutions to general linear difference equations associated
with the shift operator x 7→ x+h (h ∈ C∗), the q-difference operator x 7→ qx
(q ∈ C∗ not a root of unity), and the Mahler operator x 7→ xp (p ≥ 2 inte-
ger). The only restriction is that we constrain our solutions to be expressed
as (possibly ramified) Laurent series in the variable x (or in the variable 1/x
in some special case associated with the shift operator). For a precise state-
ment, we refer the reader to our main result, Theorem 1.2, which confirms
guess (A) for these three operators.

1.1. Statement of our main result. All along this paper, our framework
consists in a tower of field extensions C ⊂ K ⊂ F0 ⊂ F with the following
properties.

• The field K is equipped with an automorphism ρ and a derivation
∂†.
• The automorphism ρ extends to F0 and F .
• The derivation ∂ extends to F , but F0 is not necessarily closed under
∂.

Our aim is to prove that, if f ∈ F0 is solution to a linear ρ-equation with
coefficients in K, then either f ∈ K or f is hypertranscendental over K.
Specifically, we consider the following four situations, which we refer to as
Cases S0, S∞, Q, and M, respectively.

Case S0. In this case, we let K = C(x), ∂ = d
dx , and ρ denote the automor-

phism of K defined by

ρ(f(x)) = f(x+ h), h ∈ C∗.
The automorphism ρ and the derivation ∂ naturally extend to the of field
F := Mer(C) of meromorphic functions on C. Let K0 := C(x, exp(∗x))
denote the field generated over C(x) by the functions exp(`x), ` ∈ C. In
this setting, we let F0 be any field extension of C(x) on which ρ extends and
satisfying the following three conditions.

(i) F0 ⊂Mer(C).
(ii) {f ∈ F0 | ρ(f) = f} = C.
(iii) F0 ∩K0 = C(x).

Remark 1.1. For h = 1, let us see that we can choose F0 = C(x,Γ(x)), where
Γ(x) is the Gamma function. The functional equation Γ(x + 1) = xΓ(x)
shows that ρ extends to F0 and it is well-known that Γ ∈ Mer(C). Thus,
(i) holds. Now, let β ∈ F0 be such that ρ(β) = β. Writing β as a ratio-
nal function in Γ with coefficients in C(x), and then using the functional
equation satisfied by Γ and the fact that Γ is transcendental over C(x),

†A derivation ∂ on K is a map from K into itself satisfying ∂(a+ b) = ∂(a) + ∂(b) and
∂(ab) = ∂(a)b+ a∂(b) for every a, b ∈ K.
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we can deduce that β ∈ C. Hence (ii) holds. Finally, to prove (iii) it is
sufficient to show that Γ is transcendental over K0. The latter property fol-
lows from classical asymptotics showing that, for every α(x) ∈ K0, we have
limx→+∞ |Γ(x)/α(x)| = +∞. Thus, Case S0 of Theorem 1.2 is a generaliza-
tion of Hölder’s theorem.

Case S∞. In this case, we consider K, ρ, and ∂ as in Case S0. We note that
the automorphism ρ and the derivation ∂ naturally extend to the of field of
Laurent series C((x−1)), and we set F0 = F = C((x−1)).

Case Q. In this case, we let K =
⋃
j≥1

C(x1/j) denote the field of ramified

rational functions. We also use the notation C(x1/∗) for this field. Given
q ∈ C∗ that is not a root of unity, we let ρ denote the automorphism of K
defined by

ρ(f(x)) = f(qx), ∂ = x
d

dx
,

and we let F0 = F =
⋃
j≥1

C((x1/j)) denote the field of Puiseux series. We

also use the notation C((x1/∗)) for this field.

Case M. In this case, we let K = C(x1/∗) and, given a natural number
p ≥ 2, we let ρ denote the automorphism of K defined by

ρ(f(x)) = f(xp) ,

and we set ∂ = x d
dx and F0 = F = C((x1/∗)).

In all cases, ∂ is a derivation on K and F . An element f in F is said to
be differentially algebraic or ∂-algebraic over K if there exists n ∈ N such
that the functions f, ∂(f), . . . , ∂(n)(f) are algebraically dependent over K.
Otherwise, f is said to be hypertranscendental over K. Our main result
reads as follow.

Theorem 1.2. Let K, F0, and ρ be defined as in Cases S0, S∞, Q, and
M, and let n be a positive integer. Let f ∈ F0 be solution to the ρ-linear
difference equation of order n

(1.2) ρn(y) + an−1ρ
n−1(y) + · · ·+ a1ρ(y) + a0y = 0 ,

where a0, . . . , an−1 ∈ K. Then either f ∈ K or f is hypertranscendental
over K.

On the road to Theorem 1.2, there is already a whole bunch of partial
results and a number of them are used in our proof. These results can
roughly be divided into three different types.

• Those concerned with affine equations of order one, that is with
equations of the form ρ(y) = ay + b. References include [Höl87,
Moo96, Mah30a, Nis84, Ran92, Ish98, Har08, HS08, Ngu12].
• Those concerned with equations whose difference Galois group is
large (e.g., simple, semisimple, reductive). References include
[HS08, DHR18, DHR16, AS17, ADR18]. In particular, such results
have nice applications to equations of order 2.
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• Those dealing with general equations, but reaching only nonholo-
nomicity instead of hypertranscendence (see Theorem 1.3 and Re-
mark 1.4 below). References include [Ram92, BG93, Béz94, SS19].

Among these results, we quote the following one, which may be considered
as a first step towards a proof of Theorem 1.2 (see Remark 1.4 for precise
attribution).
Theorem 1.3. In each of the cases S0, S∞, Q, and M, the following prop-
erty holds. Any element of F0 that satisfies both a ρ-linear equation and a
∂-linear equation with coefficients in K belongs to K.

Remark 1.4. Theorem 1.3 can be rephrased by saying that, if f is as in
Theorem 1.2, then either f ∈ K or f is not holonomic. Note that recently
the authors of [SS19] give a uniform proof for all cases of Theorem 1.3,
see Corollaries 3 and 5 therein. In each case, we also mention the original
reference. Case S0 is due to Bézivin and Gramain [BG93]. Case S∞ is due
to Schäfke and Singer [SS19, Corollary 5]. Furthermore, in Cases Q and M,
a change of variable of the form z = x1/`, ` ∈ N∗, can be used to reduce
the situation to the case where K = C(x) and F0 = C((x)). In the latter
situation, Case Q is due to Ramis [Ram92], while Case M is due to Bézivin
[Béz94].
1.2. Strategy of proof. Elements of the rings Rat, Alg, and Hol are
well-understood. We have recurrence formulas for their coefficients, precise
asymptotics, and a good understanding of their finitely many singularities.
In contrast, our knowledge about differentially algebraic functions is much
more limited (see, for instance, the survey [Rub89]). In fact, such functions
can behave quite wildly. For example, the function

∑
xn

2 is differentially
algebraic and admits the unit circle as a natural boundary‡. Thus, prov-
ing hypertranscendence required more involved tools, and is substantially
more difficult than proving irrationality, transcendence, or nonholonomicity.
In this direction, Hardouin and Singer [HS08] built a new Galois theory of
difference equations, which is designed to measure the differential dependen-
cies among solutions to linear difference equations. In particular, it applies
to hypertranscendence. We refer the reader to [DV12] and [Har16] for an
introduction to this topic. Our proof of Theorem 1.2 relies on this theory.

Let us briefly describe our strategy. Since f satisfies a linear difference
equation, it is classical to associate with this equation its difference Galois
group, which is a linear algebraic group that encodes the algebraic relations
between the solutions to this equation. The more involved parametrized Ga-
lois theory developed in [HS08] attaches to any linear difference equation,
a geometric object, the parametrized Galois group, whose structure encodes
the algebraic relations satisfied by the solutions and their derivatives. This
is not a linear algebraic group anymore, but a linear differential group (see
Section 2.2). Nevertheless, both groups are strongly related and, viewed on a
suitable field extension, the latter is Zariski dense in the former (see Proposi-
tion 2.5). In this framework, we can conclude that f is hypertranscendental

‡Incidentally, this example shows that the "outrageous conjecture" suggested at the
end of [Rub89] is false. Indeed, it follows from a theorem of Nesterenko that

∑
2−n2

is
transcendental.



6 BORIS ADAMCZEWSKI, THOMAS DREYFUS, AND CHARLOTTE HARDOUIN

when the corresponding parametrized Galois group is large. Furthermore,
there are several results, culminating in [AS17], showing that if the classical
difference Galois group is large, then both groups are the same when viewed
on a suitable field extension. We emphasize that such results follow a strat-
egy initiated in [HS08] and developed further in [DHR18]. It combines a
fundamental result about classification of differential algebraic subgroups of
semisimple algebraic groups by Cassidy [Cas72, Cas89], parametrized Galois
correspondence, and Theorem 1.3.

We prove Theorem 1.2 by induction on the order n of the ρ-linear equation
satisfied by f . We first prove the result for affine equations of order one.
Then we show that, iterating the associated linear system if necessary, one
can reduce the situation to the case where the associated difference Galois
group G is connected. Now, if G acts irreducibly on Cn, we show how to
reduce the situation to the case where G is semisimple. In that case, the
difference Galois group is large enough and a recent result of Arreche and
Singer [AS17] allows us to conclude that f is hypertranscendental. Finally,
if G acts reducibly on Cn, we assume that f is differentially algebraic and
we show how to construct from f a differentially algebraic function g that
satisfies a linear equation of smaller order. Furthermore, this construction
ensures that g ∈ K if and only if f ∈ K. Applying the induction assumption
to g, we deduce that f ∈ K, as wanted. Thus, once the case of order one
equation is solved, the proof really makes a dichotomy between irreducible
and reducible difference Galois groups.

1.3. An application to number theory. At the end of the 1920s, Mahler
[Mah29, Mah30b, Mah30a] introduced a new method for proving transcen-
dence and algebraic independence of values at algebraic points of analytic
functions satisfying different types of functional equations associated with
the operator x 7→ xp. Mahler’s method aims at transferring results about
algebraic independence over Q(x) of such functions to the algebraic inde-
pendence over Q of their values at algebraic points. A major result in
this direction is Nishioka’s theorem [Nis90], which provides an analogue
of the Siegel-Shidlovskii theorem for linear Mahler systems. Let us also
mention that significant progress in this theory has been made recently
[Phi15, AF17, AF18a, AF18b]. Combining Case M of Theorem 1.2 with
Nishioka’s theorem and following the line of argument given in the proof of
Proposition 4.1 in [AF18b], we can deduce the following general result. We
recall that f(x) ∈ Q[[x]] is a p-Mahler function if there exist polynomials
a0(x), . . . , an(x) ∈ Q[x], not all zero, such that

a0(x)f(x) + a1(x)f(xp) + · · ·+ an(x)f(xp
n
) = 0 .

We simply say that f is a Mahler function if it is p-Mahler for some integer
p ≥ 2. According to Theorem 1.2, a Mahler function is thus either ratio-
nal or hypertranscendental. We recall that an irrational Mahler function is
meromorphic on the open unit disc and admits the unit circle as a natural
boundary.

Theorem 1.5. Let f(x) ∈ Q[[z]] be a Mahler function that is not rational,
let r be a positive integer, and let K be a compact subset of the open unit
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disc. Then, for all but finitely many algebraic numbers α ∈ K, the complex
numbers f(α), f ′(α), . . . , f (r)(α) are algebraically independent over Q.

Results of this type have been first obtained by Mahler [Mah30a] for solu-
tions to affine order one equations. The main feature of Theorem 1.5 is that
it applies to any irrational Mahler function. It is also almost best possible
in the sense that one cannot avoid the possibility of finding infinitely many
exceptions in the whole open unit disc. For instance, the transcendental
2-Mahler function

f(z) =
∞∏
n=0

(1− 3z2
n
)

vanishes at all algebraic numbers α such that α2n = 1/3 for some integer
n ≥ 0. This shows that, even for r = 1, the exceptional set can depend on K.
However, if K is fixed, we do not know whether the exceptional set always
remains finite when r tends to infinity.

1.4. Organization of the paper. This article is organized as follows.
In Section 2, we provide a short introduction to difference Galois theory
and to parametrized difference Galois theory, following [vdPS97, HS08].
In Section 3, we describe, for each Cases S0, S∞, Q, and M, the suitable
framework that is needed to use the parametrized difference Galois theory
of [HS08]. Several auxiliary results are gathered in Section 4. They
concern algebraic groups, the behavior of the difference Galois group when
considered over different field extensions, and Picard-Vessiot extensions
associated with iterated systems. Finally, Section 5 is devoted to the proof
of Theorem 1.2.

Acknowledgments. We warmly thank Michael F. Singer for his care-
ful reading of an earlier version of this paper and for making many useful
suggestions. We are also grateful to Daniel Bertrand for his comments.

2. Difference and parametrized difference Galois theories

In this section, we provide a short introduction to difference Galois theory
and to parametrized difference Galois theory.

2.1. Difference Galois theory. We first recall some notation, as well as
classical results, concerning difference Galois theory. We refer the reader to
[vdPS97] for more details.

2.1.1. Notation in operator algebra. A difference ring is a pair (R, ρ) where
R is a ring and ρ is a ring automorphism of R. If R is a field, then (R, ρ)
is called a difference field or a ρ-field. An ideal I of R such that ρ(I) ⊂ I is
called a difference ideal or a ρ-ideal. We say that the difference ring (R, ρ) is
simple if the only ρ-ideals of R are {0} and R. Two difference rings (R1, ρ1)
and (R2, ρ2) are isomorphic if there exists a ring isomorphism ϕ between R1

and R2 such that ϕ ◦ ρ1 = ρ2 ◦ ϕ. A difference ring (S, ρ′) is a difference
ring extension of (R, ρ) if S is a ring extension of R and if ρ′|R = ρ. In this
case, we usually keep on denoting ρ′ by ρ. When R is a ρ-field, we say that
S is a R-ρ-algebra. Two difference ring extensions (R1, ρ) and (R2, ρ) of the
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difference ring (R, ρ) are isomorphic over (R, ρ) if there exists a difference
ring isomorphism ϕ from (R1, ρ) to (R2, ρ) such that ϕ|R = IdR. The ring
of constants of the difference ring (R, ρ) is defined by

Rρ := {f ∈ R | ρ(f) = f} .
If Rρ is a field, it is called the field of constants. If there is no risk of
confusion, we usually simply say that R, instead of (R, ρ), is a difference
ring (or a difference field, or a difference ring extension...).

2.1.2. Difference equations and linear difference systems. Let (K, ρ) be a
difference field. A linear ρ-equation of order n over K is an equation of the
form

(2.1) L(y) := ρn(y) + an−1ρ
n−1(y) + · · ·+ a0y = 0 ,

with a0, ..., an−1 ∈ K. If a0 6= 0, this relation can be written in matrix form
as

(2.2) ρY = ALY

where

AL :=


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
−a0 −a1 · · · · · · −an−1

 ∈ GLn(K) .

The matrix AL is called the companion matrix associated with Equa-
tion (2.1). It is often more convenient to use the notion of linear difference
system, that is of system of the form

(2.3) ρ(Y ) = AY, with A ∈ GLn(K).

We recall that two difference systems ρ(Y ) = AY and ρ(Y ) = BY with
A,B ∈ GLn(K) are said to be equivalent over K if there exists a gauge trans-
formation T ∈ GLn(K) such that B = ρ(T )AT−1. In that case, ρ(Y ) = AY
if and only if ρ(TY ) = B(TY ).

Remark 2.1. By [HS99, Theorem B.2.], if K contains a nonperiodic ele-
ment with respect to ρ, then the cyclic vector lemma holds, and any linear
difference system is equivalent to one given by a companion matrix associ-
ated with some linear equation. Let L be a ρ-field extension of K and let
(f0, f1, . . . , fn−1)

> ∈ Ln be a nonzero solution to a linear system ρ(Y ) = AY ,
with A ∈ GLn(K). Then each coordinate fj satisfies some linear ρ-equation
over K of order at most n.

2.1.3. Picard-Vessiot rings and difference Galois groups. A Picard-Vessiot
ring for (2.3) over a difference field (K, ρ) of characteristic zero is a K-ρ-
algebra satisfying the following three properties.

(1) There exists U ∈ GLn(R) such that ρ(U) = AU . Such a matrix U is
called a fundamental matrix.

(2) R is generated as a ring over K by the coordinates of U and by
det(U)−1, that is R = K[U,det(U)−1].

(3) R is a simple difference ring.
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A Picard-Vessiot ring is not always an integral domain. However, it is a
direct sum of integral domains which are transitively permuted by ρ. More
precisely, by [vdPS97, Corollary 1.16], there exist r ≥ 1 and orthogonal
idempotent elements e0, . . . , er−1, such that

R = e0R⊕ · · · ⊕ er−1R ,
where eiR is an integral domain and ρ(ei) = ei+1modr. We recall that
Picard-Vessiot rings always exist. Indeed, it is sufficient to endow the poly-
nomial K-algebra K[X, 1

det(X) ] with a structure of K-ρ-algebra by setting
ρ(X) = AX. Then, for any maximal ρ-ideal M of K[X, 1

det(X) ], the quotient
R = K[X, 1

det(X) ]/M is a Picard-Vessiot ring. However, this construction
does not guarantee that the ring of ρ-constant has not grown. This justifies
the introduction of the more convenient notion of Picard-Vessiot extension.

A Picard-Vessiot extension Q for (2.3) over a difference field (K, ρ) of
characteristic zero is a K-ρ-algebra Q satisfying the following properties.

(1) There exists U ∈ GLn(Q) such that ρ(U) = AU . Such a matrix U is
called a fundamental matrix.

(2) Q is a pseudofield extension ofK, that is there exist a positive integer
r, orthogonal idempotent elements e0, . . . , er−1 of Q, and a field ex-
tension L of K such that Q = e0L⊕. . .⊕er−1L and ρ(ei) = ei+1modr.

(3) Q is the smallest pseudofield extension of K containing U .
(4) Qρ = Kρ.
When Q is a field, we say that Q is a Picard-Vessiot field extension. By

[vdPS97, §1.1], ifKρ is algebraically closed, then there exists a Picard-Vessiot
extension and two Picard-Vessiot extensions are isomorphic as K-ρ-algebras.
The relation between Picard-Vessiot-rings and Picard-Vessiot-extensions is
given by the following proposition, which is a straightforward consequence
of [OW15, Proposition 2.5 and Corollary 2.6].

Proposition 2.2. If Kρ is an algebraically closed field of characteristic zero,
then the following properties hold.

• Let Q be a Picard-Vessiot extension over K and let us define
R := K[U, 1

det(U) ] ⊂ Q, where U is a fundamental matrix. Then R is
a Picard-Vessiot ring.
• If R is a Picard-Vessiot ring over K then the total quotient ring§ of
R is a Picard-Vessiot extension.

From now on, we assume that K is a ρ-field such that k := Kρ is an
algebraically closed field of characteristic zero. Let Q be a Picard-Vessiot
extension over K. The difference Galois group Gal(Q/K) of (2.3) over K is
defined as the group of K-ρ-algebra automorphisms of Q:

Gal(Q/K) := {σ ∈ Aut(Q/K) | ρ ◦ σ = σ ◦ ρ}.
For any fundamental matrix U ∈ GLn(Q), an easy computation shows

that U−1σ(U) ∈ GLn(k) for all σ ∈ Gal(Q/K). By [vdPS97, Theorem 1.13],

§We recall that, given a ring R, its total quotient ring is defined as the localization of
R at the multiplicative set formed by all nonzero divisors of R.
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the faithful representation

Gal(Q/K) → GLn(k)

σ 7→ U−1σ(U)

identifies Gal(Q/K) with a linear algebraic subgroupG ⊂ GLn(k). Choosing
another fundamental matrix of solutions U leads to a conjugate representa-
tion.

2.1.4. Torsor and algebraic relations. A fundamental result in difference Ga-
lois theory ([vdPS97, Theorem 1.13]) says that the Picard-Vessiot ring R is
the coordinate ring of a Gal(Q/K)-torsor over K. Thereby, the difference
Galois group controls the algebraic relations satisfied by the solutions to
the underlying linear system. As a corollary of this structure of Gal(Q/K)-
torsor, one obtains the fundamental equality

dimkGal(Q/K) = trdegKQ ,

where we let trdegKQ denote the transcendence degree of the field extension
L/K. Here, the field L is defined as in (2) of the definition of a Picard-Vessiot
extension.

2.1.5. The Galois correspondence. The Galois correspondence for linear dif-
ference systems can be summarized as follows (see [vdPS97, Theorem 1.29]).

Theorem 2.3. Let Q be a Picard-Vessiot extension over K. Let R denote
the set of K-ρ-algebras F such that F ⊂ Q and such that every nonzero
divisor of F is a unit of F . Let G denote the set of algebraic subgroups of
Gal(Q/K). Then the following properties hold.

- For any F ∈ R, the set

G(Q/F ) := {σ ∈ Gal(Q/K) | σ(f) = f, ∀f ∈ F}

is an algebraic subgroup of Gal(Q/K).
- For any H ∈ G, the set

QH := {f ∈ Q | σ(f) = f, ∀σ ∈ H}

belongs to R.
- The maps

r : R → G
F 7→ G(Q/F )

and g : G → R
H 7→ QH

are each other’s inverses.

Remark 2.4. In the case where R is an integral domain, Q is a difference
field, and Theorem 2.3 provides a correspondence between the difference
subfields of Q containing K, on the one hand, and the algebraic subgroups
of Gal(Q/K), on the other hand.

2.2. Parametrized difference Galois theory. We recall here some nota-
tion and results concerning parametrized difference Galois theory. We refer
the reader to [HS08] for more details.
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2.2.1. Notation in operator algebra. A differential ring is a pair (R, δ) where
R is a ring and δ is a derivation on R, that is a homomorphism of the additive
group from R into itself satisfying the Leibniz rule:

δ(ab) = δ(a)b+ aδ(b) .

If R is a field, then (R, δ) is called a differential field or a δ-field. The ring
of constants of R is defined by

Rδ = {f ∈ R | δ(f) = 0} .
Let L be a δ-ring extension of a δ-ring R. Given a subset S of L, we let
R{S}δ denote the smallest R-δ-algebra generated by S. A field K endowed
with a structure of both difference and differential field is called a (ρ, δ)-field
if ρ and δ commute, that is if

ρ ◦ δ(f) = δ ◦ ρ(f)

for every f ∈ K.
The study of algebraic structures of difference and differential fields is

the main object of the so-called differential and difference algebra. We refer
the interested reader to the founding books of Kolchin ([Kol73]) for further
details concerning differential algebra and to the book of Cohn for further
details concerning difference algebra ([Coh65]). It is worth mentioning that
these two setting are very different. In order to avoid many analogous def-
initions, we use the following convention: we add an operator prefix to an
algebraic attribute to signify the compatibility of the algebraic structure with
respect to the operator. For instance, a (ρ, δ)-ring is a ring equipped with ρ
and δ, a (ρ, δ)-field extension K ⊂ L is a field extension such that the fields
L and K are (ρ, δ)-fields and such that the action of ρ and δ are compatible
with the field extension, and so on.

2.2.2. (ρ, δ)-Picard-Vessiot ring and the parametrized difference Galois
group. Let K̃ be a (ρ, δ)-field and let A ∈ GLn(K̃). We consider the differ-
ence system

(2.4) ρ(Y ) = AY.

A (ρ, δ)-Picard-Vessiot ring for (2.4) over K̃ is a (ρ, δ)-ring extension R̃
of K̃ satisfying the following three properties.

(1) There exists U ∈ GLn(R̃) such that ρ(U) = AU . Such a matrix U is
called a fundamental matrix.

(2) R̃ is generated as a δ-ring over K̃ by the coordinates of U and by
det(U)−1, that is R̃ = K̃{U,det(U)−1}δ.

(3) R̃ is a simple (ρ, δ)-ring, that is the only (ρ, δ)-ideals of R̃ are {0}
and R̃.

A (ρ, δ)-Picard-Vessiot ring is not always an integral domain but it is a
direct sum of integral domains closed under δ and transitively permuted by
ρ. A construction similar to that of Section 2.1.3 shows that (ρ, δ)-Picard-
Vessiot rings always exist. Again, this construction does not ensure that the
ring of ρ-constants has not grown. This justifies the introduction of the more
convenient notion of (ρ, δ)-Picard-Vessiot extension.
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A (ρ, δ)-Picard-Vessiot extension Q̃ for (2.4) over K̃ is a K̃-ρ-δ-algebra
satisfying the following properties.

(1) There exists U ∈ GLn(Q̃) such that ρ(U) = AU . Such a matrix U is
called a fundamental matrix.

(2) Q̃ is a pseudo δ-field extension of K̃, that is there exist a positive
integer r, orthogonal idempotent elements e0, . . . , er−1 of Q̃, and
L̃ a δ-field extension of K̃ such that Q̃ = e0L̃ ⊕ . . . ⊕ er−1L̃ and
ρ(ei) = ei+1modr.

(3) Q̃ is equal to K̃〈U〉, that is the smallest pseudo δ-field extension of
K̃ containing U .

(4) Q̃ρ = K̃ρ.

When Q̃ is a field, we say that Q̃ is a (ρ, δ)-Picard-Vessiot field exten-
sion. By [Wib12, Corollary 9], if K̃ρ is algebraically closed, then there
exists a (ρ, δ)-Picard-Vessiot extension Q̃ for (2.4) over K̃. The smallest
K̃-(ρ, δ)-subalgebra K̃{U, 1

det(U)}δ of Q̃ generated by a fundamental matrix
and the inverse of its determinant is a (ρ, δ)-Picard-Vessiot ring. However,
in order to ensure the uniqueness of (ρ, δ)-Picard-Vessiot rings up to K̃-
(ρ, δ)-algebra isomorphisms, one needs the field K̃ρ to be δ-closed ([HS08,
Proposition 6.16]). We recall that a differential field (L, δ) is called differ-
entially closed or δ-closed if, for every set of δ-polynomials F , the system of
δ-equations F = 0 has a solution in some δ-field extension of L if and only if
it has a solution in L. Note that a δ-closed field is algebraically closed. Dif-
ferentially closed fields are huge and, for instance, none of the function fields
K introduced in Section 1.1 satisfies the assumption that Kρ is differentially
closed. Nonetheless, working with δ-closed fields allows us to simplify many
arguments. Thus, we will embed K into a (ρ, δ)-field K̃ whose field of ρ-
constants is δ-closed, and we will use some descent argument to go back to
K if necessary (see Sections 3 and 4.2).

From now on, we let K̃ denote a (ρ, δ)-field whose field of ρ-constants
C̃ := K̃ρ is δ-closed. Let Q̃ be a (ρ, δ)-Picard-Vessiot extension over K̃.
The parametrized difference Galois group Galδ(Q̃/K̃) of (2.4) over (K̃, ρ, δ),
also called the (ρ, δ)-Galois group, is defined as the group of K̃-(ρ, δ)-algebra
automorphisms of Q̃:

Galδ(Q̃/K̃) :=
{
σ ∈ Aut(Q̃/K̃)

∣∣∣ ρ ◦ σ = σ ◦ ρ and δ ◦ σ = σ ◦ δ
}
.

The parametrized difference Galois group Galδ(Q̃/K̃) is a geometric ob-
ject that encodes the differential algebraic relations between the solutions to
(2.4). See [HS08, Proposition 6.24] for more details. Roughly speaking, the
larger Galδ(Q̃/K̃), the fewer δ-algebraic relations over K̃ that hold among
the elements of Q̃.
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For any fundamental matrix U ∈ GLn(Q̃), an easy computation shows
that U−1σ(U) ∈ GLn(C̃) for any element σ ∈ Galδ(Q̃/K̃). By [HS08, Propo-
sition 6.18], the faithful representation

Galδ(Q̃/K) → GLn(C̃)

σ 7→ U−1σ(U)

identifies Galδ(Q̃/K̃) with a linear differential algebraic subgroup H ⊂
GLn(C̃), i.e. a subgroup of GLn(C̃) that can be defined as the vanishing
set of polynomial δ-equations with coefficients in C̃. Furthermore, choosing
another fundamental matrix U leads to a conjugate representation.

2.2.3. Comparison between difference Galois groups and parametrized differ-
ence Galois groups. Let R̃ denote a (ρ, δ)-Picard-Vessiot ring for the system
(2.4) over K̃, let Q̃ denote the associated (ρ, δ)-Picard-Vessiot extension, and
let U ∈ GLn(R̃) be a fundamental matrix of solutions. By [HS08, Propo-
sition 6.21], R := K̃[U,det(U)−1] is a Picard-Vessiot ring for (2.4) over K̃.
Let Q denote the Picard-Vessiot extension corresponding to R. Then we
have Q ⊂ Q̃ and one can identify Galδ(Q̃/K̃) with a subgroup of Gal(Q/K̃)

by restricting the elements of Galδ(Q̃/K̃) to Q. The following result pro-
vides a fundamental link between classical difference Galois theory and its
parametrized counterpart, see [HS08, Proposition 6.21].

Proposition 2.5. The parametrized difference Galois group Galδ(Q̃/K̃) is
a Zariski-dense subgroup of Gal(Q/K̃).

3. The parametrized framework

Let us go back to our K,F0, F, ρ, ∂ corresponding to Cases S0, S∞, Q,
and M (see Section 1.1). We first observe that, in each case, Kρ = C
is algebraically closed and K has characteristic zero. Hence the theory of
[vdPS97] described in Section 2.1 applies. In this section, we describe some
suitable field extensions K̃ of K, and C̃ of C = F ρ, that allow us to apply
the parametrized difference Galois theory of [HS08] described in Section 2.2.

We first recall that any differential field K has a differential closure, i.e.
a differentially closed field extension that can be embedded in every differ-
entially closed field extension of K. In Case S0, we set δ := ∂, and we let C̃
denote a δ-closure of Ch, the subfield ofMer(C) formed by those meromor-
phic functions that are h-periodic. Note that Ch is also a δ-field for ρ and
δ commute. Sometimes, we will use the notation C̃h instead of C̃. In Cases
S∞ and Q, we also set δ := ∂, and we let C̃ denote a δ-closure of C and we
set C̃ := C̃. By [DHR18, Lemma 2.3], in these three cases, the field

K̃ := Frac(K ⊗C C̃)

is a (ρ, δ)-field extension of K such that K̃ρ = C̃.

Case M is a bit more tricky. Indeed, in order to apply the theory of
[HS08], we need to consider a derivation δ on K̃ such that δ and ρ commute.
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Following [DHR18], we let log denote a transcendental element over K, and
we define δ = log×∂ to be the derivation that acts on K(log) by

δ(log) = log and δ(xa) = axa log .

Then we define a structure of ρ-field on K(log) by setting ρ(log) = p log. We
observe that K(log)ρ = C and that ρ and δ commute. Finally, we consider
C̃ a δ-closure of C such that ρ acts trivially on C̃. We set C̃ := C̃ and by
[DHR18, Lemma 2.3], the field

K̃ := Frac(K(log)⊗C C̃) ,

is a (ρ, δ)-field such that K̃ρ = C̃.
In all cases, K is a ρ-field of characteristic zero such that Kρ = C, F is a

ρ-field extension of K with C := F ρ, and K̃ is a (ρ, δ)-field of characteristic
zero, such that K̃ρ = C̃, where C̃ is differentially closed. Furthermore, ρ
and δ commute. The following table summaries the different frameworks we
consider in this paper.

Case F K C ∂ δ C̃ K̃

S0 Mer(C) C(x) Ch
d
dx

d
dx C̃h C̃h(x)

S∞ C((x−1)) C(x) C d
dx

d
dx C̃ C̃(x)

Q C((x1/∗)) C(x1/∗) C x d
dx x d

dx C̃ C̃(x1/∗)

M C((x1/∗)) C(x1/∗) C x d
dx log×x d

dx C̃ C̃(x1/∗)(log)

Remark 3.1. Note that the field of δ-constants of C is the algebraically closed
field C. Then, by [CS07, Lemma 9.3], the field of δ-constants of C̃ is also C.
At some places, we will consider some iteration of the operator ρ. In Case
S0, it might happen that we start with the ρ-field extension K̃ = C̃h(x)
of K, and then consider this extension as a ρr-field extension. Note that
C̃h 6= C̃rh. Nonetheless, C̃h is a ρr-constant field and all results of Section 2
can be applied to the (ρr, δ)-field K̃.

4. Auxiliary results

In this section, we let (K, ρ) be a difference field of characteristic zero and
we consider a ρ-linear difference system

(4.1) ρ(Y ) = AY, with A ∈ GLn(K) ,

where k := Kρ is an algebraically closed field.

4.1. Irreducible and reducible difference Galois groups. The strategy
for proving Theorem 1.2 is very different according to whether the difference
Galois group associated with the difference equation over K satisfied by f is
irreducible or not. By irreducible, we mean that the group acts irreducibly
on kn, see Definition 4.1. We point out that this is different from saying that
an algebraic group, viewed as an algebraic variety, is irreducible.

Definition 4.1. Let G ⊂ GLn(k) be a group. We say that G is irreducible
if it acts irreducibly on kn, that is, if the only k-vector subspaces of kn

invariant by G are {0} and kn. We say that G is reducible otherwise. When
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G is an irreducible group, we say that G is imprimitive if there exist an
integer r ≥ 2, and V1, . . . , Vr, some k-vector spaces satisfying the following
conditions.

(i) kn = V1 ⊕ · · · ⊕ Vr.
(ii) For every g ∈ G, the mapping Vi 7→ g(Vi) is a permutation of the set
{V1, . . . , Vr}.

We say that G is primitive otherwise.

The next result shows that a difference Galois group that is irreducible
and imprimitive cannot be connected. We recall that an algebraic group G
is connected if it has no proper open subgroup with respect to the Zariski
topology. The identity component of G is the connected component of G
containing the identity.

Lemma 4.2. Let G ⊂ GLn(k) be an algebraic group. If G is connected and
irreducible, then G is primitive.

Proof. Let us assume by contradiction that G is imprimitive. Then there
exist an integer r ≥ 2 and some nonzero C-vector-spaces V1, . . . , Vr ( kn

such that kn = V1 ⊕ · · · ⊕ Vr. Furthermore, the action induced by every
element of G on kn is a permutation of the sets {V1, . . . , Vr}. Let GV1 denote
the stabilizer of V1 in G. This is an algebraic subgroup of G. We claim that
it has finite index in G. Let us assume by contradiction that there are an
infinite number of cosets giGV1 of GV1 in G. Since the group of permutations
of a set with r elements is finite, there exist two distinct cosets g1GV1 and
g2GV1 such that g1 and g2 induce the same permutation of the Vi’s. In that
case, g−12 g1 stabilizes V1 and thus belongs to GV1 , providing a contradiction.
This proves the claim. Now, since GV1 is a closed subgroup of G of finite
index, it contains the identity component of G. The latter is equal to G for
G is assumed to be connected. This means that V1 is invariant under the
action of G. Hence, G is reducible. This provides a contradiction. �

Now, let us recall the definition of a difference module, see [vdPS97, §1.4].

Definition 4.3. A K-difference module M is a pair (M,Σ) where M is a
finite-dimensional K-vector space and Σ is an additive endomorphism of M
such that Σ(λY ) = ρ(λ)Σ(Y ) for every Y ∈M and λ ∈ K.

Let A ∈ GLn(K). The K-difference moduleMA attached to the system
ρ(Y ) = AY is MA = (Kn,ΣA), where ΣA(Y ) = A−1ρ(Y ). Given a monic
linear difference operator L = a0y + a1ρ(y) + · · · + ρn(y) with coefficients
ai in K and a0 6= 0, one can consider the corresponding linear difference
system ρ(Y ) = ALY , where AL is the companion matrix of L. If K contains
a nonperiodic element with respect to ρ, then [HS99, Theorem B.2] asserts
that any K-difference module M is isomorphic to MAL for some monic
linear difference operator L. This is equivalent to the existence of a so-called
cyclic vector inM, that is, a nonzero element e ∈ M such that the vectors
e,Σ(e), . . . ,Σn−1(e) form a K-basis of M .

The next lemma characterizes linear difference systems whose difference
Galois group is reducible.
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Lemma 4.4. Let G ⊂ GLn(k) be the difference Galois group of (4.1) over
K and let r be an integer with 0 < r < n. The following statements are
equivalent.

• There exists a G-submodule of kn ¶ of dimension r over k.
• There exists a difference submodule of dimension r in the K-
difference moduleMA associated with (4.1).
• There exists T ∈ GLn(K) such that

ρ(T )AT−1 =

(
B1 B2

0 B3

)
with B1 ∈ GLr(K).

In particular, G is reducible if and only if the statements above hold for some
r, with 0 < r < n. Furthermore, if the matrix A in (4.1) is the companion
matrix of a difference operator L, then L admits a nontrivial right factor if
and only if G is reducible.

Proof. Since the category of K-difference modules is a Tannakian category,
the first two statements are nothing else than the usual Tannakian equiv-
alence, see [And01, Théorème 3.2.1.1]. Completing a K-basis of a differ-
ence submodule M in MA of dimension r, 0 < r < n, to a K-basis
e = (e1, . . . , en) ofKn, shows that the matrix of Σ in the basis e is of the form

B =

(
B1 B2

0 B3

)
, with B1 ∈ GLr(K). Let T ∈ GLn(K) denote the matrix

associated with the change of basis from the canonical basis f = (f1, . . . , fn)
to e. Then

BTf = Be = Σ(e) = Σ(Tf) = ρ(T )Af.

This proves the equivalence between the second and the third statements.
Now, let us assume that A is the companion matrix of some difference op-

erator L and that there exists a nontrivial difference submodule N ofMA.
Let e be a cyclic vector ofMA such that L is the minimal monic linear dif-
ference operator annihilating e. Since N is a nontrivial difference submodule
of MA, then dimKMA/N < n and there exists a nontrivial monic linear
difference operator L1 of order smaller than or equal to dimKMA/N such
that L1e ∈ N . The element L1e is nonzero by minimality of L. Since N is a
difference submodule ofMA there exists a monic linear difference operator
L2 of order smaller than or equal to dimKN such that L2L1(e) = 0. By
minimality of L, this proves that L = L2L1, where L1 has order smaller
than n. Conversely, if there is a nontrivial factorization L = L2L1, then the
difference module corresponding to L1 is a nontrivial difference submodule
ofM. Hence G is reducible. �

4.2. Going up and down. In this section, we let K,F0, ρ be defined as
in Section 1.1, and we let K̃ be defined as in Section 3. The two following
lemmas compare the difference Galois groups over K and over K̃.

We recall that a connected linear algebraic group G is said to be semisim-
ple if it is of positive dimension and its only solvable (or, equivalently,
Abelian) connected closed normal subgroup is the trivial group.

¶kn is a G-module via G ⊂ GLn(k).



HYPERTRANSCENDENCE AND LINEAR DIFFERENCE EQUATIONS 17

Lemma 4.5. Let A ∈ GLn(K) and let G (resp. G̃) be the Galois group of
ρ(Y ) = AY over K (resp. K̃). The following properties hold.

• In Cases S0, S∞, and Q, we have G̃ = G(C̃).
• In Case M, if G is semisimple, then G̃ = G(C̃).

Proof. In Cases S0, S∞, and Q, the field extension K̃ of K is obtained by
extension of the field of constants C to C̃. Then, [CHS08, Corollary 2.5]
gives that the difference Galois group over K̃ is just the extension of G to
the C̃-points.

Let us deal with Case M. Let G denote the difference Galois group over
K(log). As previously, we infer from [CHS08, Corollary 2.5] that G̃ = G(C̃).
Thus, it remains to prove that G = G when G is semisimple. By [DHR18,
Proposition 1.6], we can see G as a subgroup of G such that one of the
following two situations occurs.

(1) G = G.
(2) G is a normal subgroup of G and G/G ' Gm the multiplicative group

(C∗, .).
By [Mil17, Corollary 21.50], a semisimple algebraic group is perfect, that is
equal to its derived subgroup, see [Mil17, Definition 12.45]. Thus, a semisim-
ple algebraic group has no nontrivial abelian quotient. Hence, (2) cannot
occur. We deduce that G = G, which ends the proof. �

Lemma 4.6. Let A ∈ GLn(K) and let G (resp. G̃) be the Galois group of
ρ(Y ) = AY over K (resp. K̃). The group G is irreducible if and only if the
group G̃ is irreducible.

Proof. In Cases S0, S∞, and Q, Lemma 4.5 ensures that G̃ = G(C̃) and the
result follows directly.

Let us deal with Case M. We infer from [CHS08, Corollary 2.5] that
G̃ = G(C̃), where we let G denote the Galois group of the system over
K(log). Thus, it remains to prove that G is irreducible if and only if G is
irreducible. As seen in the proof of Lemma 4.5, G is a subgroup of G. Thus,
G is reducible as soon as G is reducible. Conversely, let us assume that G is
reducible. By the cyclic vector lemma over K, the linear difference system
(4.1) is equivalent to an equation

L := ρn + an−1ρ
n−1 + · · ·+ a0 = 0 ,

with ai ∈ K and a0 6= 0. Since G is reducible, Lemma 4.4 gives that L
admits a factorization overK(log). Multiplying L by some nonzero element if
necessary, we can get rid of the denominators. Then, there exists α ∈ K[log]
such that

αL = (bkρ
k + bk−1ρ

k−1 + · · ·+ b0)(cn−kρ
n−k + cn−k−1ρ

n−k−1 + · · ·+ c0) ,

where bi, ci ∈ K[log], bkb0cn−kc0 6= 0, and 0 < k < n. Rewriting the equation
in terms of powers of log, one finds

∑
i≥i0

logi(αiL) =

∑
κ≥κ0

logκ Lκ

∑
j≥j0

logj Dj

 ,
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where Lκ,Dj are linear difference operators over K, αi ∈ K, αi0 ∈ K∗,
and Lκ0 :=

∑t
r=0 γrρ

r and Dj0 are nonzero. Using the fact that log is
transcendental over K and ρ log = p log ρ, we deduce that i0 = κ0 + j0.
Considering the terms in logi0 in both sides of the factorization, we deduce
that L = 1

αi0
MDj0 where M =

∑t
r=0 γrp

j0rρr, leading to a nontrivial fac-
torization of L over K. By Lemma 4.4, we obtain that G is reducible, as
wanted. �

Now, we prove the following descent lemma.

Lemma 4.7. For F0,K and K̃ defined as in Section 3, we have

F0 ∩ K̃ = K.

Proof. Let us first consider Case Q. Let a ∈ F0 ∩ C̃(x1/∗). There exists a
positive integer r such that a ∈ C((x1/r)) ∩ C̃(x1/r). It follows that there
exists a positive integer N such that xNa ∈ C[[x1/r]]. Thus, xNa is a for-
mal power series in x1/r with complex coefficients that represents a rational
fraction with coefficients in C̃. This property can be characterized by the
vanishing of its associated Kronecker-Hankel determinants (see, for instance,
[Sal63, p. 5]). This condition does not depend on the field of coefficients, so
we deduce that xNa ∈ C(x1/r). Hence, a ∈ K.

The proof of Case S∞ is entirely similar. For Case M, if a ∈ C((x1/∗)) ∩
C̃(x1/∗)(log), we use the fact that the logarithm is transcendental over
C((x1/∗)) to conclude that a ∈ C((x1/∗)) ∩ C̃(x1/∗). Arguing as above, we
can show that a ∈ K.

Now, let us deal with Case S0. Let a ∈ F0 ∩ C̃(x). Since F0 ⊂ Mer(C),
one can find x0 ∈ C such that a ∈ C[[x−x0]]. Once again, using Kronecker-
Hankel determinants, one can deduce that a ∈ K. �

4.3. Iterating the difference operator. For every positive integer `, let
us set

A[`] := ρ`−1(A)× · · · ×A ∈ GLn(K) .

Note that if U is a fundamental matrix of ρ(Y ) = AY , then it is also a fun-
damental matrix of ρ`(Y ) = A[`]Y . In other words, a vector solution to the
system ρ(Y ) = AY is also a solution to the iterated system ρ`(Y ) = A[`]Y .
In this section, we show that, replacing the original system by a suitable
iteration, we can reduce the situation to the more convenient case where the
corresponding Galois group is connected and the Picard-Vessiot extension is
a field.

This iteration process might introduce some new constants. The follow-
ing lemma shows that this cannot happen when the field of ρ-constants is
algebraically closed.

Lemma 4.8. Let L be a ρ-field such that Lρ = k, and r be a positive integer.
Then, any ρr-constant of L is algebraic of degree less than or equal to r over
k. In particular, if k is algebraically closed then Lρr = k.

Proof. Let a ∈ L be a ρr-constant. Then the polynomial P (X) = (X −
a) . . . (X−ρr−1(a)) belongs to Lρ[X] = k[X]. This proves that a is algebraic
over k of degree less than or equal to r. �
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One of the main difficulty of difference algebra is the control of the al-
gebraic difference field extensions. This is the source of many technical
difficulties and connected to the fact that the theory ACFA is unstable (see
[CH99]). The difference fields (K, ρ) introduced in Section 1.1 have the fol-
lowing very strong property with respect to finite difference field extensions,
which will allow us to bypass these difficulties.

Lemma 4.9. Let r be a positive integer. In each of the cases S0, S∞, Q,
and M, there are no proper ρr-field extension of K of finite degree.

Proof. The results in [Hen97, Hen98, Roq18] cover all cases. �

We are now ready to prove the following result.

Proposition 4.10. Let (K, ρ) be defined as in Section 1.1 and let L be a ρ-
field extension of K such that Lρ = C. Let (f1, . . . , fn)> ∈ Ln be a nonzero
solution to (4.1). Let G be the difference Galois group of (4.1) over K.
There exists a positive integer r such that the following properties hold.
(a) There exists a Picard-Vessiot field extension Q for ρr(Y ) = A[r]Y over
(K, ρr), with a fundamental solution matrix U having (f1, . . . , fn)> as first
column.
(b) The difference Galois group Gr := Gal(Q/K) of ρr(Y ) = A[r]Y over
(K, ρr) coincides with the identity component of G and is therefore connected.

Though this result can be easily deduced from the proof of [DHR16, Propo-
sition 4.6] in the particular case where the parametric operator is the identity,
we find it more convenient for the reader to include the proof below.

Proof. (a) Since K(f1, . . . , fn)ρ ⊂ Lρ = C, there exists a Picard-Vessiot ring
R0 for ρ(Y ) = AY over K(f1, . . . , fn). Since f1, . . . , fn ∈ R0, there exists a
fundamental matrix U for R0 having (f1, . . . , fn)> as first column. Let Q0

be the total quotient ring of R0. By Proposition 2.2, we find Qρ0 = C.
Set R := K[U, 1/det(U)]. The difference ring (R, ρ) is a subring of the

Picard-Vessiot ring (R0, ρ). Since any element of R that is a zero divisor
in R0 is a zero divisor in R, see for instance [Roq18, Lemma 5], the total
quotient ring Q of R embeds in Q0 and consequently is a pseudofield (see
[Wib10, Lemma 1.3.4]). Consequently C ⊂ Qρ ⊂ Qρ0 = C. Then Qρ = C,
and (Q, ρ) is a Picard-Vessiot extension for ρ(Y ) = AY over (K, ρ). Since
Kρ = C is algebraically closed, the uniqueness of Picard-Vessiot extensions
above K allows to conclude that Gal(Q/K) = G. We have proved that we
can embed any solution in L in a Picard-Vessiot extension above K.

By Proposition 2.2, R is a Picard-Vessiot ring for ρ(Y ) = AY over (K, ρ).
Let e0, . . . , er−1 denote the orthogonal idempotent relative to its ring struc-
ture. Note that K[f1, . . . , fn] is an integral domain that is closed under ρ.
For i = 0, . . . , r − 1, let φi : R → eiR denote the projection from R to eiR.
Note that φi(x) = xei. Let us prove that the restriction to K[f1, . . . , fn] of
this projection is injective for all i ∈ {0, . . . , r− 1}. Suppose to the contrary
that there exist a nonzero element x ∈ K[f1, . . . , fn] and i ∈ {0, . . . , r − 1}
such that φi(x) = 0. Since ρ permutes the integral domains eiR, we find that
xρ(x) · · · ρr−1(x) = 0. The latter equality provides a contradiction with the
fact that K[f1, . . . , fn] is an integral domain which is closed under the injec-
tive morphism ρ. Thus, eiK[f1, . . . , fn] ⊂ eiR is a copy of K[f1, . . . , fn] in
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eiR. Since Kρ = C is algebraically closed, Lemma 4.8 implies that Kρr = C.
By [vdPS97, Lemma 1.26], (eiR, ρ

r) is a Picard-Vessiot ring for the ρr-system
ρr(Y ) = A[r]Y and eiR is an integral domain. Its total quotient ring Q1 is
a field and, since Kρr is algebraically closed, Q1 is a Picard-Vessiot field ex-
tension by Proposition 2.2. By construction, Q1 contains f1, . . . , fn, and we
can thus choose a fundamental matrix having (f1, . . . , fn)> as first column.

(b) By [Roq18, Theorem 12], Gr = Gal(Q1/K) is a normal algebraic sub-
group of G and the quotient G/Gr is finite. To conclude, it remains to prove
that Gr is connected. Let G◦r denote its identity component. The Galois
correspondence, see Theorem 2.3, gives that the ρr-field Q1

G◦r is a finite ex-
tension of K. Lemma 4.9 implies that Q1

G◦r = K and, applying the Galois
correspondence again, we deduce that G◦r = Gr. �

Remark 4.11. The proof of (b) shows that, if G is connected, then, for every
positive integer `, the Galois group of ρ`(Y ) = A[`]Y over K coincides with
G.

In the parametrized framework, we have the following similar result.

Proposition 4.12. Let L be a (ρ, δ)-field extension of K̃ with Lρ = C̃, and
let (f1, . . . , fn)> ∈ Ln be a nonzero solution to (4.1). Then there exist a
positive integer r and a parametrized Picard-Vessiot field extension Q̃ for
ρr(Y ) = A[r]Y over K̃, with a fundamental matrix U having (f1, . . . , fn)>

as first column.

Proof. The proof is similar to Proposition 4.10 and [DHR18, Lemma 3.7],
just noting that, by Lemma 4.8, K̃ρr = C̃ for C̃ is algebraically closed. �

The following result is obtained by combining the two previous proposi-
tions.

Corollary 4.13. Let (f1, . . . , fn)> ∈ Fn0 be a nonzero solution to (4.1) and
let G be the difference Galois group of (4.1). Then, there exists a positive
integer r such that

(a) There exists a (ρr, δ)-Picard-Vessiot field extension Q̃ for
ρr(Y ) = A[r]Y with a fundamental matrix U having (f1, . . . , fn)> as
first column over K̃ (where K̃ = C̃sh(x) for some positive integer s
dividing r in Case S0).

(b) The difference Galois group of ρr(Y ) = A[r]Y over K coincides with
the identity component of G.

Proof. By Proposition 4.10, there exists a positive integer s such that the
difference Galois group of ρs(Y ) = A[s]Y is equal to the identity component
of G. In order to apply Proposition 4.12 to the system ρs(Y ) = A[s]Y , we
need to embed F0 into a (ρs, δ)-field extension L of K̃ with Lρ

s
= C̃. We

proceed as follows.
• Case S0. We let F1 denote the smallest (ρs, δ)-subfield of Mer(C)
containing F0 and Csh. SinceMer(C)ρ

s
= Csh, we find that F1

ρs =

Csh. Let C̃ denote a δ-closure of Csh, considered as a constant ρs-
field. The field extensions C̃ and F1 are linearly disjoint above Csh
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(see [Wib10, Lemma 1.1.6]). Thereby, their compositum L is the
fraction field of C̃ ⊗Csh

F1 (see [Bou90, A.V.13]). Arguing as in the
proof of [DHR18, Lemma 2.3], we obtain that L has the required
properties.
• Cases S∞ and Q. We let L be the fraction field of F0 ⊗C C̃.
• Case M. We let L be the field C̃((x1/∗))(log).

Applying Proposition 4.12 to the system ρs(Y ) = A[s]Y over K̃, one can
perform a second iteration to obtain a system ρsl(Y ) = A[sl]Y satisfying (a).
By Remark 4.11, the difference Galois group of ρsl(Y ) = A[sl]Y over K is
the identity component of G. This ends the proof. �

5. Proof of Theorem 1.2

This section is devoted to the proof of our main result. Before proving
Theorem 1.2 in full generality, we first consider the following two particular
cases.

- The function f is solution to an inhomogeneous equation of order
one.

- The difference Galois group of the equation associated with f is both
connected and irreducible.

All along this section, we keep on with the notation of Sections 1.1 and 3.

5.1. Affine order one equations. Various hypertranscendence criteria for
solutions to inhomogeneous order one equations have already been obtained,
see for instance [Ran92, Ish98, HS08, Ngu12]. We first deduce from these
criteria the following result.

Proposition 5.1. If f ∈ F0 is solution to an equation of the form
ρ(f) = af + b, with a, b ∈ K, then either f is ∂-transcendental over K or f
belongs to K.

Proof of Proposition 5.1. Let us first note that if a = 0, then f = ρ−1(b) ∈
K. We can thus assume that a 6= 0. Furthermore, we observe that, in Cases
Q and M, we can use a change of variable of the form z = x1/` to reduce
the situation to the case where K = C(x). From now on, we thus assume
that K = C(x). Let us also assume that f is ∂-algebraic over K. It remains
to prove that f ∈ K.

We first note that Case M corresponds to [Ran92, Théorème 5.2]. Now,
let us consider Cases S0, S∞, and Q, which are partially covered by [HS08].
We recall the following definition from [HS08, §6.1] (see also [vdPS97, §2]).
We say that α ∈ K is standard if, for all positive integers `, α and ρ`(α)
have no common zero or pole. By [HS08, Lemma 6.2], there exists a standard
element a∗ and a nonzero e ∈ K such that a = a∗ρ(e)/e. It follows that f/e
is solution to the equation

ρ(f/e) = a∗f/e+ b/ρ(e) .

Set g = f/e and b̃ = b/ρ(e). Since e ∈ K, it suffices to prove that g ∈ K.
Let us note that g = f/e is ∂-algebraic over K.

The same argument as in [ADR18, Lemma 3.6] shows that there exists a
nonzero δ-algebraic solution of ρ(y) = a∗y+ b/ρ(e) in a (ρ, δ)-Picard-Vessiot
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field extension of K̃. In Case S0, [HS08, Proposition 3.9] implies that a∗ ∈ C
and there exists h ∈ K such that b̃ = ρ(h) − a∗h. In Case S∞, the same
argument as in the proof of [HS08, Proposition 3.9] also yields the same
conclusion. We obtain that

ρ(g) = a∗g + b̃

= a∗g + ρ(h)− a∗h .

Hence ρ(g − h) = a∗(g − h). If g = h, then g ∈ K and we are done.
Thus, we can assume that g 6= h. In that case, setting f̃ = g − h, we
obtain ρ(∂(f̃)) = a∗∂(f̃). It follows that ρ(∂(f̃)/f̃) = ∂(f̃)/f̃ , and thus
∂(f̃)/f̃ ∈ C ⊂ K. Since f̃ ∈ F0 satisfies both a linear ρ-equation and a
linear ∂-equation with coefficients in K, Theorem 1.3 implies that f̃ ∈ K.
Since h ∈ K, we deduce that g ∈ K, as expected.

In Case Q, the same argument as in the proof of [HS08, Proposition 3.10]
shows that a∗ = cxα for some c ∈ C∗ and α ∈ Z, and one of the following
conditions holds.

(a) a∗ = qr for some r ∈ Z, and b̃ = ρ(h) − a∗h + dxr for some h ∈ K
and d ∈ C.

(b) a∗ /∈ qZ and b̃ = ρ(h)− a∗h for some h ∈ K.
In Case (a), we deduce that

(5.1) ρ

(
g − h
xr

)
=
g − h
xr

+ dq−r ·

Since (g − h)/xr ∈ F0, we can consider its expansion in Puiseux series.
Since q is not a root of unity, we easily deduce from Equation (5.1) that
(g − h)/xr ∈ C ⊂ K. Hence g ∈ K, as wanted.

In Case (b), we have that a∗ /∈ qZ and b̃ = ρ(h) − a∗h for some h ∈ K.
It follows that ρ(g − h) = cxα(g − h), where g − h ∈ F0 is a Puiseux series.
Arguing as in Case (a), we obtain that α = 0 and g − h = c0x

r for some
r ∈ Q and c0 ∈ C. Hence g ∈ K. This ends the proof. �

For order one equations over K whose solutions do not necessarily belong
to F0, one has the following criterion for differential algebraicity.

Lemma 5.2. Let L be a (ρ, δ)-field extension of K̃ with Lρ = C̃. Let f ∈ L∗
such that ρ(f) = af with a ∈ K∗. Then, f is δ-algebraic over K̃ if and only
if a = cxα ρ(g)g for some c ∈ C∗, α ∈ Q, and g ∈ K∗. Moreover, α = 0 in
Cases S0, S∞, and M.

Proof. Cases S0, S∞, and Q can be deduced in a similar way to [HS08,
Corollary 3.4] (resp. Case M is given by [DHR18, Proposition 3.1]), com-
bined with some descent argument to go from C̃ to C. Such argument is
similar to the one given in the proof of [HS08, Corollary 3.2]. �

5.2. Connected and irreducible Galois groups. As a second step, we
consider the situation where the difference Galois group is both connected
and irreducible.
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Proposition 5.3. Let us assume that n ≥ 2. If f ∈ F0 is a nonzero solution
to Equation (1.2) and if the corresponding difference Galois group G over K
is both connected and irreducible, then f is ∂-transcendental over K.

Proposition 5.3 is obtained as a direct consequence of the following more
general result.

Proposition 5.4. Let us consider a linear system of the form (4.1) with
n ≥ 2. Let us assume that the difference Galois group G for (4.1) over K is
connected and irreducible. Let Q̃ be a (ρ, δ)-Picard-Vessiot field extension for
(4.1) over K̃, with fundamental matrix of solutions U . Then every column
of U contains at least one element that is δ-transcendental over K̃.

Proof of Proposition 5.3. We argue by contradiction, assuming that f is ∂-
algebraic over K. Then all coordinates of the vector (f, . . . , ρn−1(f))> are
also ∂-algebraic over K. This follows from the fact that ρ and ∂ almost
commute, that is ∂ρ = cρ∂ with c = 1 in Cases S0, S∞, and Q, and c = p
in Case M. We deduce from the construction of δ with respect to ∂ given in
Section 3 (and the fact that log is δ-algebraic for CaseM) that all coordinates
of the vector (f, . . . , ρn−1(f))> are also δ-algebraic over K̃.

Now, let A denote the companion matrix associated with Equation (1.2).
Since (f, . . . , ρn−1(f))> ∈ Fn0 is nonzero, Corollary 4.13 ensures the exis-
tence of a positive integer r and a (ρr, δ)-Picard-Vessiot field extension Q̃
for ρr(Y ) = A[r]Y over K̃ such that the vector (f, . . . , ρn−1(f))> is the first
column of a fundamental matrix U . Furthermore, Remark 4.11 ensures that
the Galois group of ρr(Y ) = A[r](Y ) over K is equal to G, for the latter is
connected. Thus, Proposition 5.4 applies with ρ replaced by ρr, providing a
contradiction. �

It remains to prove Proposition 5.4. As a key argument, we will use the
following result due to Arreche and Singer [AS17, Lemma 5.1]. It says that
the parametrized Galois group must be as big as possible when the difference
Galois group has an identity component that is semisimple.

Proposition 5.5. Let us consider a linear system ρ(Y ) = AY , where A ∈
GLn(C(x)) in Cases S0 and S∞, and where A ∈ GLn(C(x1/`)) for some
positive integer ` in Cases Q and M. In Cases S0, S∞, and M, we let
G ⊂ GLn(C̃) denote the difference Galois group over K̃, and H ⊂ GLn(C̃)

denote the (ρ, δ)-Galois group over K̃. In Case Q, we let G ⊂ GLn(C̃)

denote the difference Galois group over C̃(x1/`), and H ⊂ GLn(C̃) denote
the (ρ, δ)-Galois group over C̃(x1/`). As in Proposition 2.5, we see H as a
subgroup of G. If the identity component of G is semisimple, then H = G.

Proof. Cases S0 and S∞ are explicitly proved in [AS17, Lemma 5.1], since,
by Remark 3.1, the field of differential constants of C̃ is C. Cases Q and M
are not explicitly proved in [AS17, Lemma 5.1] for we consider the slightly
more general situation where A ∈ GLn(C(x1/`)). However, the result follows
easily from the argument given in the proof of [AS17, Lemma 5.1]. �

We are now ready to prove Proposition 5.4.
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Proof of Proposition 5.4. We let H denote the (ρ, δ)-Galois group of (4.1)
over K̃, that is

H = Galδ(Q̃/K̃) ⊂ GLn(C̃) .

We also let G̃ denote the Galois group of ρ(Y ) = AY over K̃. Let us argue by
contradiction, assuming the existence of one column of U whose coordinates
are all δ-algebraic over K̃.

We first show that all entries of U are δ-algebraic over K̃. Since G is ir-
reducible, Lemma 4.6 implies that G̃ is irreducible too. By Proposition 2.5,
H is Zariski dense in the irreducible group G̃. This implies that H is irre-
ducible, since otherwise, H would be conjugated to a group formed by block
upper triangular matrices, as well as its Zariski closure, contradicting the
irreducibility of G̃. Now, let S denote the C̃-vector space of solution vectors
over Q̃ whose entries are all δ-algebraic over K̃. By assumption, S is not
reduced to {0}. Furthermore, S is invariant under the action of any σ ∈ H.
Since H is irreducible, we deduce that S contains n linearly independent so-
lutions to (4.1). In other words, all columns of U belong to S, which implies
that all entries of U are δ-algebraic over K̃, as claimed.

We observe that the determinant det(U) is solution to the equation

(5.2) ρ(y) = det(A)y

and that the difference Galois group of this equation over K is the group
det(G). Since all entries of U are δ-algebraic over K̃, we obtain that det(U)

is also δ-algebraic over K̃. We first consider the particular case where
det(U) ∈ K, and then we move to the general case.

Let us first assume that det(U) belongs to K. In that case, det(G) = {1}
and therefore G ⊂ SLn(C). We recall that G is assumed to be connected and
irreducible. According to Lemma 4.2, we have that G is primitive. By [SU93,
Proposition 2.3], we finally obtain that G is semisimple. By Lemma 4.5,
G̃ = G(C̃) is semisimple too.

In Cases S0, S∞, and M, we infer from Proposition 5.5 that H = G̃.
Since all entries of U are δ-algebraic over K̃, the δ-dimension of the (ρ, δ)-
Picard-Vessiot extension is zero‖, and therefore the δ-dimension of H is zero
by [HS08, Proposition 6.26]. By a result of Kolchin [Kol73, Chap. IV,
Proposition 10], the dimension of an algebraic group G over C̃ is the same as
the δ-dimension of G viewed as a differential group over C̃. This proves that
the dimension of H equals the dimension of G(C̃) . Since C is algebraically
closed, the dimension of G(C̃) over C̃ equals the dimension of G over C.
Thus, the above equality H = G̃ = G(C̃) implies that the dimension of
the algebraic group G over C is zero. We recall that an algebraic group of
dimension zero is just a finite group, and that a finite connected group has
cardinality one. Thus, we deduce that G = {In}, where we let In denote
the identity matrix of size n. Since by assumption n ≥ 2, this provides a
contradiction with the assumption that G is irreducible. This ends the proof
in these cases.

‖We refer the reader to [HS08, P. 374] for a definition of the notion of δ-dimension of
a (ρ, δ)-Picard-Vessiot ring and of a (ρ, δ)-Galois group.
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In Case Q, the system ρ(Y ) = AY has coefficients in C(x1/`) and the
entries of U are δ-algebraic over C̃(x1/`), for some positive integer `. Let
G
K̃,`

denote the difference Galois group of ρ(Y ) = AY over C̃(x1/`). Since
K̃ is an algebraic extension of C̃(x1/`), we deduce from [Roq18, Theorem 7]
that G

K̃
and G

K̃,`
have the same identity component, which is G

K̃
since

the latter is connected. Hence the identity component of the identity of
G
K̃,`

is semisimple. By Proposition 5.5, it follows that H` = G
K̃,`

, where
H` denote the (ρ, δ)-Galois group over C̃(x1/`). Furthermore, the entries of
U are δ-algebraic over C̃(x1/`) which implies that the δ-dimension of H` is
zero. Since H` = G

K̃,`
, we get as previously that the algebraic group G

K̃,`

has dimension zero. Since G
K̃
⊂ G

K̃,`
, this proves that the dimension of G

K̃

is also zero, and we can argue as previously to get a contradiction.

Now, let us consider the general case. We remind that det(U) is δ-algebraic
over K̃ and ρ(det(U)) = det(A)det(U). By Lemma 5.2, there exist some
rational number α and nonzero elements c ∈ C and g ∈ K such that det(A) =
cxαρ(g)/g. Furthermore, α = 0 in Cases S0, S∞, and M.

Let us consider the rank one linear difference system

(5.3) ρ(y) = c−1/nx−α/ny

Since Q̃ is a (ρ, δ)-field with Q̃ρ = C̃, there exists a (ρ, δ)-Picard-Vessiot
extension Q̃1 for (5.3) over Q̃. Let (λ) ∈ GL1(Q̃1) be a fundamental matrix
associated with this system. Then

ρ(λ) = c−1/nx−α/nλ

and λ is invertible in Q̃1. Using the commutativity of δ and ρ, we obtain
that

δ

(
δ(λ)

λ

)
∈ Q̃ρ1 = C̃ ,

which shows that λ is δ-algebraic over C̃. In particular, it is δ-algebraic over
K̃. Thus, all entries of the matrix λU ∈ GLn(Q̃1) are δ-algebraic over K̃.

On the other hand, we set

B = c−1/nx−α/nA ∈ GLn(K) and UB := λU.

Note that ρ(UB) = BUB. Let GB be the difference Galois group of the
system ρ(Y ) = BY over K. Our choice of B ensures that det(B) = ρ(g)/g.
Thus, the equation

ρ(y) = det(B)y

has a solution in K. It follows that its difference Galois group det(GB) is
reduced to {1}. Hence, GB ⊂ SLn(C). For k ≥ 1, we let GB[k]

denote the
difference Galois group of ρk(Y ) = B[k]Y over K. By Proposition 4.10, there
exists r ≥ 1 such that GB[r]

is connected. Furthermore, ρr(g)/g = det(B[r])

and the difference Galois group of ρr(Y ) = B[r]Y over K remains included
in SLn(C). Let us notice that

A[r] = αrB[r]

for some αr ∈ K×.
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We claim thatGB[r]
is irreducible. Let us argue by contradiction, assuming

that GB[r]
is reducible. By Lemma 4.4, there exists T ∈ GLn(K) such that

ρr(T )B[r]T
−1 is a block upper triangular matrix, and we deduce that

αrρ
r(T )B[r]T

−1 = ρr(T )A[r]T
−1 .

By Lemma 4.4, we obtain that Gr, the difference Galois group of the system
ρr(Y ) = A[r]Y over K, is conjugated to a group of block upper triangular
matrices, which implies that Gr is reducible. By Remark 4.11, Gr = G,
providing a contradiction with the assumption that G is irreducible. This
proves that GB[r]

is irreducible.
Finally by Lemma 4.2, the irreducible connected group GB[r]

is primitive.
Again, since GB[r]

⊂ SLn(C), we infer from [SU93, Proposition 2.3] that
GB[r]

is semisimple. Since Q̃1 s a pseudo δ-field that contains K̃ and all
coordinates of UB, we have K̃〈UB〉 ⊂ Q̃1 (see Section 2.2.2 for the notation).
Furthermore, since Q̃ρ1 = C̃, the pseudo δ-field K̃〈UB〉 is a (ρr, δ)-Picard-
Vessiot extension for ρr(Y ) = B[r]Y over K̃.

Since all entries of UB are δ-algebraic over K̃, we can apply Proposition 5.5
and, arguing as in the first part, we deduce that GB[r]

= {In}. Since n ≥ 2,
we obtain a contradiction with the fact that GB[r]

is irreducible. �

5.3. The general case. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We argue by induction on n. More precisely, our
induction assumption reads as follows.

(Hn) For all positive integers k and all f ∈ F0 that is solution to a ρk-linear
equation of order at most n with coefficients in K, we have either f
is ∂-transcendental over K or f ∈ K.

Proposition 5.1 implies that (H1) hold true. Let n ≥ 2 and let us assume
(Hn−1). Let f ∈ F0 be solution to a ρk-linear equation of order n with
coefficients in K. Without any loss of generality, we can assume that f 6= 0
and k = 1. Considering the companion matrix associated with this equation,
Corollary 4.13 ensures the existence of a positive integer r such that the
following properties hold.

(a) The vector (f, . . . , ρn−1(f))> is solution to the system ρr(Y ) = AY
for some A ∈ GLn(K).

(b) There exists a (ρr, δ)-Picard-Vessiot field extension Q̃ for ρr(Y ) =

AY over K̃, such that the vector (f, . . . , ρn−1(f))> is the first column
of a fundamental matrix U ∈ GLn(Q̃).

(c) The difference Galois group G of the system ρr(Y ) = AY over K is
connected.

IfG is irreducible, Proposition 5.3 shows that f is ∂-transcendental. Hence
(Hn) holds. From now on, we assume that G is reducible. Furthermore, we
assume that f is ∂-algebraic over K. Thus, it remains to prove that f ∈ K.
Without loss of generality, we can assume that r = 1.
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By Lemma 4.4, there exists a gauge transformation T = (ti,j) ∈ GLn(K)
such that

ρ(T )AT−1 =

(
A1 A1,2

0 A2

)
,

where Ai ∈ GLni(K), n1 + n2 = n, and n2 < n. Furthermore, let us assume
that n1 is minimal with respect to this property.

Set

(5.4) (gi)
>
i≤n := T (ρi−1(f))>i≤n ∈ Fn0 .

The vector (gi)
>
n1+1≤i≤n ∈ F

n2
0 is solution to the system ρ(Y ) = A2Y . Fur-

thermore, since f is ∂-algebraic over K, the gi are also ∂-algebraic over K.
By (Hn2) and Remark 2.1, we obtain that

(5.5) (gi)
>
n1+1≤i≤n ∈ K

n2 .

Let G1 denote the difference Galois group of the system ρ(Y ) = A1Y over K.
We claim that G1 is connected and irreducible. Indeed, if G1 were reducible,
then by Lemma 4.4, there would exist a gauge transformation changing A1

into a block upper triangular matrix, contradicting the minimality of n1.
Furthermore, the Galois group of ρ(Y ) = A1Y over K is a quotient of the
connected group G and thereby a connected group.

The main step of the proof consists in showing the following result.

Claim. One has n1 = 1.

Proof of the claim. By assumption, f is ∂-algebraic over K. Arguing as
in the proof of Proposition 5.3, we get that all coordinates of the vector
(f, . . . , ρn−1(f)) are δ-algebraic over K̃. Then, (5.4) implies that all the gi’s
are also δ-algebraic over K̃. We have to distinguish two cases.

Let us first assume that all the gi’s belong to K̃. By (5.4) and Lemma 4.7,
we obtain that

∀i ∈ {1, . . . , n}, gi ∈ F0 ∩ K̃ = K

and hence (f, . . . , ρn−1(f))> = T−1(g1, . . . , gn)> ∈ Kn. Thus the vector
(f, . . . , ρn−1(f))> is fixed by the difference Galois group G. By Lemma 4.4,
there exists P ∈ GLn(K) such that

ρ(P )AP−1 =

(
b1 B1,2

0 B2

)
,

for some matrices B1,2 and B2 with coefficients in K and a nonzero b1 ∈ K.
By minimality of n1, we obtain that n1 = 1, as wanted.

Now, let us assume that at least one the gi’s does not belong to K̃. Note
that, by assumption, the fi’s all belong to Q̃ and thus the gi’s all belong to
Q̃ too. We let H denote the (ρ, δ)-Galois group of ρ(Y ) = AY over K̃. By
the parametrized Galois correspondence [HS08, Theorem 6.20], we deduce
the existence of some σ ∈ H, such that

(σ(gi))
>
i≤n 6= (gi)

>
i≤n ,

while (5.5) implies that σ(gi) = gi for every i, n1 + 1 ≤ i ≤ n. Set

u1 := (gi)
>
i≤n1

, u2 := (gi)
>
n1+1≤i≤n and v1 := (σ(gi))

>
i≤n1

.
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Hence w := u1 − v1 is a nonzero vector. Since the coordinates of u1 are δ-
algebraic over K̃ and σ belongs to the (ρ, δ)-Galois group H, the coordinates
of v1 are also δ-algebraic over K̃. Hence the coordinates of w are δ-algebraic
over K̃. Furthermore, u1 and v1 are both solution to the system

ρ(Y ) = A1Y +A1,2u2 .

It follows that
ρ(w) = A1w .

Since we have
C̃ = K̃ρ ⊂ K̃(w)ρ ⊂ Q̃ρ = C̃ ,

Corollary 4.13 ensures the existence of a positive integer s and a (ρs, δ)-
Picard-Vessiot field extension Q̃1 for the system ρs(Y ) = (A1)[s]Y over K̃
such that w is the first column of a fundamental matrix. Furthermore, the
difference Galois group of ρs(Y ) = (A1)[s]Y is equal to G1 for the latter is
connected. The coordinates of w being δ-algebraic over K̃ and G1 being
connected and irreducible, Proposition 5.4 implies that n1 = 1. �

Now, let us prove that (g1, . . . , gn) ∈ Kn. Set

u2 := (gi)
>
2≤i≤n .

By (5.5), we have u2 ∈ Kn−1 and thus A1,2u2 ∈ K. Furthermore, g1 ∈ F0 is
solution to the inhomogeneous order one equation

ρ(Y ) = A1Y +A1,2u2 .

Since g1 is ∂-algebraic over K, Proposition 5.1 implies that g1 ∈ K, and
hence (g1, . . . , gn) ∈ Kn. By (5.4), we obtain that

(f, . . . , ρn−1(f))> = T−1(g1, . . . , gn)> .

Since the coefficients of T belong to K, it follows that f ∈ K, as wanted. �
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