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Sensitivity to losses and defects 
of the symmetry‑induced 
transmission enhancement 
through diffusive slabs
Élie Chéron*, Simon Félix & Vincent Pagneux

We inspect the robustness to absorption and to symmetry defects of the symmetry-induced 
broadband enhancement through opaque barriers in disordered slabs. The sensitivity of this 
phenomenon to symmetry defects is found to be strongly related to the distance from to barrier to 
the nearest defect, and, following, we propose a probabilistic model to estimate the conductance 
of a medium with an arbitrary number of randomly distributed defects. Also, the conductance 
enhancement is shown to be robust to absorption in the disordered medium, though being of course 
weakened. For sufficiently opaque barriers, the conditions of an optimal enhancement are mainly 
driven by the absorption length of the medium.

Although the diffusion model is well fitted to describe wave propagation in disordered media, it neglects that 
waves, which follow numberless trajectories, can return to the same coherent volume, giving rise to important 
interference effects, such as conductance fluctuations, enhanced backscattering or Anderson localization1–4. 
Remarkable consequences of multiple interferences can also be observed in complex media when the scattering 
region displays symmetries5–11, and the authors recently reported on a significant broadband enhancement of 
the transmission through an a opaque barrier in a waveguide, when placed between symmetric diffusive slabs12.

The question then naturally arises as to the robustness of this transmission enhancement to absorption and 
to symmetry defects. The last point was partially answered in12, showing a strong sensitivity when moving an 
increasing number of randomly chosen scatterers in the slabs on either side of the barrier. This is further inves-
tigated in the present paper, linking the degree of sensitivity to symmetry defects to the position of these defects. 
We numerically show that the distance from the barrier to the nearest defect is the determining parameter, rather 
than the amount of defects. From this observation, we propose a probabilistic model to estimate the conductance 
of a medium with a number of randomly distributed defects.

As for absorption, ubiquitous in all acoustical or optical media where we would expect to observe the sym-
metry-induced transmission enhancement, it is all the more important to characterize its influence as it often 
complicates, if not compromises, the chance of experimental evidence of certain wave-based phenomena13–15. 
Typically, absorption (even weak16) can strongly alter the open channels, hence the transmission, through a 
disordered medium17,18. The robustness of the transmission enhancement to losses is investigated in a second 
part of this paper by introducing absorption in the disordered slabs on either sides of the opaque barrier. We 
show that the enhancement, while being of course a little bit weakened, still occurs, and it is then mainly driven 
by the absorption length of the medium.

The system under study is a quasi-one-dimensional waveguide that supports N propagating modes. The 
refractive index of a given region in the waveguide is perturbed to account for the presence of randomly dis-
tributed scatterers, and a thin opaque barrier splits this region into two equal-length slabs. Besides, in order to 
observe the transmission enhancement, one imposes the spatial perturbation δn(x, y) of the refractive index to 
obey a left-right mirror symmetry with respect to the barrier (Fig. 1a). In each slab the propagation is governed 
by the heterogeneous Helmholtz equation

(1)�ψ(x, y)+ k2
[

1+ δn(x, y)
]2
ψ(x, y) = 0,
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and, beside the wavelength � = 2π/k , the relevant length scales are the length L of the disordered region and 
the mean free path ℓ . Let s ≡ L/ℓ be the length of the scattering region in mean free path unit; we assume that 
1 ≪ s ≪ N , so that the incident flux is diffusively transmitted through the slabs. The conductance of the “slab-
barrier-slab” (SBS) system within the waveguide is computed as given by the Landauer formula g = Tr(TT†) , 
T the transmission matrix of the propagating modes19. Note that, in the absence of a barrier and under the 
assumption of diffusive transport, the conductance fulfills the classical Ohm’s law g = N/(1+ s)1,20,21, allowing 
thus a direct determination of the mean free path ℓ from the numerical computations.

Symmetry breaking
The initial configuration we consider is the optimal configuration, in which the maximum conductance enhance-
ment is reached. In this configuration the length of the symmetric SBS is, in mean free path unit,

where τ is the reduced transmittance of the barrier, defined such that a perfectly opaque barrier has a transmit-
tance τ = 0 and a perfectly transparent barrier has a reduced transmittance τ = 1 corresponding to a perfect 
transmission. The formula above, however, is valid in a narrower range, since a threshold strength is required 
to achieve a conductance enhancement, namely τ < τc . This threshold value, deduced as Eq. (2) from a scaling 
model (cf. “A scaling model for the scattering with absorption”) and numerical data, is found to be τc ≃ 0.4 . In 
this optimal configuration, the conductance reaches a maximum value gopt , and any symmetry defect, due to a 
shift of the barrier position22 or to a change in the spatial distribution of the scatterers, will result in a decrease of 
the conductance. To get insight of the sensitivity to symmetry breaking, let us see how it is related to the distance 
from the barrier to the nearest defect.

Throughout the paper, unless otherwise stated, the scattering by the diffusive slabs on either side of the bar-
rier is solved using random matrices, as this approach has proven to be relevant and effective12,23. Each slab is 
considered as being composed of M layers whose length is the mean free path ℓ . The scattering matrix of each 
layer is modeled by elements of the Dyson circular orthogonal ensemble (COE), to fulfill the properties of 
reciprocity (symmetry) and energy conservation (unitarity), and the scattering matrix of the slab is then con-
structed iteratively from the M layer matrices. Finally, once one slab has been “built,” the scattering matrix of its 
symmetric counterpart is straightforwardly deduced from this first operation. To account for symmetry defects, 
the scattering matrix of n among the M layers of one slab are replaced by new randomly generated matrices, and 
the distance (in mean free path unit) from the barrier to the nearest defect is denoted as d ∈ [0,M − 1] (Fig. 1).

Figure 2 shows the dependence of the conductance of the SBS with d and the number of modified layers, 
n. It clearly reveals that the limiting factor for a conductance enhancement is the distance from the barrier to 
the nearest defect, rather than the “amount” of defects, as could suggest our first observations12. Whatever the 
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Figure 1.   Sketches of the studied scattering system with a symmetry defect. (a) The original system is a 
symmetric “slab-barrier-slab” (SBS) system, and the diffusive slabs are made of a random distribution of 
scatterers. (b) The scattering by the SBS within a waveguide is solved using the random matrix theory (RMT), 
and the slab are then considered as being composed as M ℓ-length layers ( ℓ the mean free path), the scattering 
matrix of which is a COE random matrix. Then, from the fully symmetric configuration shown in (b), the 
symmetry is broken by modifying one layer (in red), which can be either (c) close to or (d) far from the barrier.
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number of defects, if the nearest one is directly adjacent to the barrier ( d = 0 ), then there is no enhancement: 
the conductance value is the one of a fully non-symmetrical system, slightly smaller than Nτ , the transmittance 
of the barrier (red dashed line). Conversely, the transmission through the system is only slightly perturbed if the 
nearest defect is far enough from the barrier, and the observed conductance is close to its optimal value (blue 
dashed line). More generally, the evolution of the average conductance with d can be described with a function 
G(d) independent of n, given, for example, by computing the case with a single defect ( n = 1).

These results are confirmed and illustrated in Fig. 3, which shows full wave numerical computations24–26 of the 
wave field in three cases: (a) a fully symmetrical system, (b) the same configuration, with symmetry defects far 
from the barrier, and (c) the same configuration, with symmetry defects close to the barrier. While the wavefield 
is only slightly perturbed in case (b), the overall level behind the barrier is much lower in case (c), denoting a 
strong decrease of the conductance.

0 2 4 6 8 10 12 14 16
0

1

2

3

4

gopt

Nτ

d (distance from the barrier to the nearest defect)

〈g
(d
,n
)〉

n= 1
n= 2
n= 3
n= 4
n= 5
n= 10

Figure 2.   Conductance (averaged over 100 iterations) of the “slab-barrier-slab” (SBS) system as a function 
of the distance from the barrier to the nearest defect, and for several values of n, the number of modified, 
asymmetric, layers. Each slab is composed of M = 25 layers. Red dashed line: transmittance Nτ of the barrier. 
Blue dashed line: optimal conductance gopt of a fully symmetrical system, with each slab having a length sopt , 
see Eq. (2).
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Figure 3.   Typical wavefield (full wave numerical computation) in the SBS, when impinged by incident unit 
fluxes on each of the N propagating modes in the left lead ( N = 50 , ℓ = 0.46 , L = 6 ). (a) Fully symmetrical 
system. (b) Same as (a), with symmetry defects far from the barrier. (c) Same as (a), with symmetry defects close 
to the barrier.
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Let us now take a look at the decrease of the average conductance when an increasing number of randomly 
chosen scatterers are shifted inside the slab, no matter their distance from the barrier12. A full wave numerical 
computation shows the rapid decrease in conductance with the ratio of shifted scatterers, that is, the amount 
of symmetry defects (Fig. 4). Given the result above (Fig. 2), this observation may be simply recovered, hence 
explained. As before, we start from a left-right symmetric distribution of 2M layers, with the barrier as symmetry 
axis. Then we randomly choose n among the M layers of one slab, and change their scattering matrix to a new 
one, to break the symmetry. M and n being known, the probability of finding a modified layer at a distance d 
from the barrier can be calculated. It reads

In particular, a single defect has an evenly distributed probability of being at a distance d from the barrier: 
P(1, d) = 1/M.

Finally, when averaging over a large number, the conductance, as a function of the number of defects, can be 
deduced from P(n, d) and the position-dependent conductance G(d) as

This simple counting (P), once the dependency to d is known for, e.g., a single defect (G), allows us to recover 
accurately the result shown in Fig. 4 from the full wave numerics.

The function P(n, d) is a non-zero function if M ≥ n+ d . Consequently, increasing the number n of defects 
in a M-layer slab decreases the variance of the averaged conductance. In Fig. 4 inset we show that the variance 
var(g) decreases monotonically when increasing the number of shifted scatterers. Note that the universal con-
ductance fluctuation var(g) = 2/15 , given by the DMPK equation in diffusive regime, is raised by a factor two 
in there is a perfect left-right symmetry6,9,27.

Enhanced transmission through absorbing symmetric slabs
Absorption, ubiquitous in either acoustical or optical systems, must not only be taken into account to accurately 
describe and interpret experiments, but also because, more fundamentally, it may significantly affect the transport 
properties, starting with the regimes of transport themselves28. Thus, regarding the effect of symmetry we are 

(3)P(n, d) =







(M − 1− d)!(M − n)!n
(M − n− d)!M!

ifM ≥ n+ d,

0 otherwise.

(4)g(n) =
M−1
∑

d=0

P(n, d)G(d).

0 20 40 60 80 100
0

1

2

3

4

N�

gopt

ratio of shifted scatterers (%)

av
er
ag
ed

co
nd
uc
ta
nc
e
〈g
〉

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

4/15

ratio of shifted scatterers (%)

va
r(
g)

Figure 4.   Decrease of the averaged conductance when shifting an increasing number of scatterers from the 
initially symmetric configuration. Plain circles: full wave numerics, solid line, Eq. (4). The red horizontal 
dashed line shows the barrier transmittance Nτ , while the blue dashed line shows the conductance provided the 
perfectly symmetrical configuration. The frequency is such that N = 300 . The mean free path in the diffusive 
slabs is ℓ = 0.14 in waveguide width unit, the length of the SBS is L = 5 and the sizes of defect layers are ℓ/5.6 . 
Inset: variance of the conductance. It decreases monotonically when increasing the number of shifted scatterers. 
Highlighted by the blue dashed line is the universal conductance fluctuation in disorder slabs, raised by a factor 
of two due to the mirror symmetry6,9,27.
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interested in, we may wonder about the fate of the observed enhancement when absorption occurs. The following 
section shows how absorption modifies, and may even predominantly drive, the level of enhancement. First, we 
give reminders on absorbing diffusive transport in a slab. Then a scaling model is proposed for the symmetric 
SBS, that generalizes the model that what proposed in Ref.12 and inspired by Ref.29.

Transmission through absorbing diffusive slabs.  Let us consider first the disordered waveguide with-
out opaque barrier. To account for a loss mechanism in the disordered slabs, we simply add an imaginary part to 
the refractive index the Helmholtz equation (1):

In practice, the absorption could result from different loss mechanisms, in the scatterers, in the background 
medium, or at the waveguide walls. It would require a heterogeneous imaginary part γ (x, y) , inducing additional 
scattering. For the sake of simplicity, we consider γ as being uniform in the slab, thus simply inducing a damping 
of the wave, noting that a more complex case with heterogeneous absorption leads to the same conclusions (see 
Supplemental Material).

The strength of absorption, whether strong or weak, will result in different transport regimes. In the very 
strong absorbing regime, the wave is rapidly damped before it experiences significant scattering. The conduct-
ance of a slab with length L is then g = N exp (−L/ℓa) , with ℓa ≡ 1/2kγ the ballistic absorption length. For 
weaker absorption such that ℓa ≫ ℓ , multiple scattering will occur, allowing diffusive transport or transition to 
localization30. The impact on diffusion and localization of an absorbing medium has been extensively studied 
by Brouwer31, who generalized the Dorokhov–Mello–Pereyra–Kumar (DMPK) equation21,32 and derived the 
conductance

where sa ≡ ξa/ℓ , with ξa =
√
ℓℓa/2 the diffusive absorption length. In the weakly absorbing diffusive regime 

( s ≪ sa ≪ N , see Fig. 5), the conductance follows the Ohmic behavior predicted by the DMPK theory in con-
servative systems:

For stronger absorption, the absorbing diffusive regime ( sa ≪ s ≪ N ) is characterized by an exponential decay 
of the conductance as

This absorption-induced exponential decrease makes it difficult to establish a clear threshold between diffusive 
and localized regimes. Other criteria based on the relative variations of the conductance are necessary14.

A scaling model for the scattering with absorption.  Now we consider the complete symmetric SBS. 
A scaling model is proposed in12 to compute the average conductance of the symmetric system in the lossless 
case. It is written as a series resistance model,

that involves the diffusive conductance of the slab, gD(s) = N/(s + 1) , and an “enhancement” conductance, 
gE(s, τ) , which encapsulates the combined effects of the barrier and symmetry. From the known limit cases, 
namely, �g(s, 1)� = gD(s) and �g(0, τ)� = Nτ , and a numerical analysis, we can write the latter as

(5)�ψ(x, y)+ k2
[

1+ δn(x, y)+ iγ
]2
ψ(x, y) = 0.

(6)
gB(s, sa) =

N

sa sinh

(

s

sa

)

+ 1

,

(7)gB(s, sa) ≃ gD(s) =
N

s + 1
.

(8)gB(s, sa) ≃
2N

sa
e−s/sa .

(9)
1

�g(s, τ)�
=

1

gD(s)
+

1

gE(s, τ)
,

(10)gE(s, τ) =
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τc

1− τc
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Figure 5.   Schematic representation of the weakly and strongly absorbing diffusive regimes with length scales s 
and sa . s = N denotes the usual transition to localization in a lossless medium.
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where τc ≃ 0.4 is a threshold value for the reduced transmittance of the barrier, above which no enhancement 
is observed. Eqs. (9, 10) accurately describe the symmetry-induced increase of the conductance, providing that 
the medium is lossless. This solution can be improved to take into account the absorption in the slabs.

At first glance, it may seem sufficient to substitute gD for gB in Eq. (9). In fact it proves inaccurate. Indeed, 
such a simple resistance series model would imply that, at large s , g−1

B  dominates over g−1
E  and the overall con-

ductance then tends towards a limit that is independent of the strength barrier τ . This is what is observed in the 
lossless case (see Fig. 4 of Ref.12 and Fig. 6 below), but not when absorption is taken into account (Fig. 6). Thus 
we introduce an empirical corrective factor α and write the overall average conductance such that

Numerical computations show that this factor is independent of s and may be simply written as

This solution also ensures the consistency of Eq. (11) with Eq. (9) in the lossless limit sa → ∞.
Comparisons of this scaling model with RMT simulations, for various values of the diffusion length scale, sa , 

and barrier strength, τ , shows a very good agreement (see examples in Fig. 6 for a strong absorption, sa = 3.87 . 
The computation of absorbing transport with RMT and the determination of sa are explained in the Supplemental 
Material). As absorption occurs only in the slabs, the starting point of the curves at s = 0 is the transmittance Nτ 
of the barrier, as in the lossless case (dotted lines). Then the curves deviate from this limit case to rapidly drop 
when s > sa . The asymptotic behaviour at large s is given by the Brouwer’s conductance Eq. (6) (black solid line) 
and the corrective factor α(sa, τ) gives the shift between the asymptotics of each curve (see inset).

Despite the very significant effect of losses, the symmetry-induced enhancement of the transmission is still 
observed (Fig. 7), and the evolution of conductance with s shows that we can still expect an optimal length sopt 
of the system for which the ratio 〈g〉/Nτ reaches a maximum value.

This can be simply found from Eq. (11), and the maximum enhancement thus obtained is in very good 
agreement with the numerical simulations, RMT and full wave (Fig. 8). Expectedly, the higher the absorption, 
the lower the maximum possible enhancement. But a remarkable result shown in this figure is the saturation of 
the conductance enhancement, due to absorption. While the increase of the enhancement in the lossless case 
in only limited by the transition to localization (see Supplemental Material), it is bounded, in the lossy case, 

(11)
1
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α(s, sa, τ)
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Figure 6.   Averaged conductance of the absorbing symmetric SBS, as a function of the length of the system 
(in mean free path unit: s ≡ L/ℓ ), for various values of the barrier transmittance. Colored circles: RMT 
with N = 300 and sa = 3.87 , averaged over 100 iterations (See Supplemental Material). Solid colored lines: 
scaling model, Eq. (11). Dotted colored lines: Lossless conductance, as given by Eq. (9). Data in black (lines 
and circles) correspond to the configuration without barrier; in this case, the conductance is given by Eq. (6). 
Inset: product 〈g(s, sa, τ)〉α(sa, τ) , showing that the shift between the data for large s is given in the scaling 
model by the corrective factor α(sa, τ) . The barrier transmittances can be read at the y-intercepts of Fig. 6 as 
�g(s = 0, τ)� = Nτ.
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by a maximum enhancement driven by the strength of absorption, that is, by sa . Indeed, assuming τ ≪ 1 , the 
derivation of the optimal length from Eq. (11) gives

We recall that Eq.  (11), hence the result above, are valid under the assumption of diffusive transport 
( 1 ≪ s, sa ≪ N).

Finally, the observations made on the effect of absorption on the transport through symmetric diffusive slabs 
can be summarized as done in Fig. 9, which shows how to practically get a particular enhancement. First, the 

(13)sopt ≃ 1.28sa − 1.
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Figure 7.   Persistence of the symmetry-induced conductance enhancement in an absorbing SBS. (a) Typical 
wavefield (full wave numerical computation) in a lossless symmetric SBS ( N = 50 , ℓ = 0.46 , L = 6 ). (b) Same 
as (a), but with added background absorption in the diffusive slabs ( sa = 2.2 ). (c) Same as (b), but without the 
left-right symmetry in the scatterers distribution.
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Figure 8.   Variations of the maximum conductance enhancement as a function of the reduced barrier 
transmittance τ , for various values of the diffusive absorption length sa . Colored squares: full wave numerical 
simulations, averaged over 80 iterations of the disorder. Colored circles: RMT, averaged over 50 iterations. Solid 
lines: scaling model, Eq. (11). The saturation levels for τ ≪ 1 and finite sa are given by Eq. (14). A condition for 
achieving a transmission enhancement is that τ < τc ≃ 0.412.
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range of possible values of the barrier transmittance τ and number of propagating modes N is limited by (i) the 
threshold value τc , above which no enhancement is observed, and (ii) the transition to the localized regime (see 
Supplemental Material). Within these limits, regardless of the strength of absorption, the expected enhance-
ment is independent of the number of propagating modes (note that it was already shown in12 for the lossless 
case, and sopt in Eq. (13) already appears as being independent of N). Finally, Fig. 9 shows the saturation of the 
conductance enhancement when decreasing τ , and the maximum value is reached for τ values all the greater as 
the absorption is itself high. This maximum value, as well as the optimal length, depends only on the diffusive 
absorption length, as long as the barrier is sufficiently opaque:

Conclusion
We have shown to what extent the significant enhancement of the transmission through lossless symmetric dif-
fusive slabs is affected by defects of the symmetry in the scatterer distribution or by absorption. In the first case, 
rather than the amount of “defects” (the non-symmetrical pairs of scatterers), the distance from the barrier to 
the nearest defect appears as the limiting factor for the conductance enhancement. This could be particularly 
interesting for non-destructive testing applications, since the information on the position of a defect could 
therefore be available from a measurement of the conductance. When absorption occurs, the symmetry-induced 
enhancement, while weakened, is still observed, and this enhancement might even be a mean to experimentally 
quantify the absorption length, as its level is predominantly driven by the absorption.
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