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We observe a broadband and subwavelength sensitivity of the recently reported enhanced transmission
through symmetric diffusive slabs [Chéron et al., Phys. Rev. Lett. 122, 125501 (2019)]. From a perfectly
symmetric distribution of scatterers on both sides of an opaque barrier within a waveguide, a shift as small
as λ/200 significantly alters the multiple interferences giving rise to the transmission enhancement, and this
subwavelength sensitivity appears on a very broad frequency range and without averaging. Analyses, from
either full wave numerics or random matrix theory, show how the minimum shifting distance to suppress the
transmission enhancement scales with the wavelength and the strength of the barrier.

DOI: 10.1103/PhysRevB.102.134201

A recent paper by the authors reported on a significant
and broadband enhancement of the transmission through
an opaque barrier when placed between symmetric diffu-
sive disordered slabs [1]. This intriguing phenomenon is
induced by multiple scattering interferences, which are in-
herent to the diffusive transport of waves, and which lead
to well-known phenomena such as universal conductance
fluctuations, enhanced back of forward scattering, or the An-
derson localization [2–5]. Though the wavelength is naturally
a characteristic length of such coherent effects, together with,
typically, the mean-free path, subwavelength-sensitive behav-
iors may also occur [6,7].

In this article we show a broadband and deeply subwave-
length sensitivity to the barrier position of the symmetry-
induced transmission enhancement. Numerical simulations
using a direct solution of the wave equation or the random
matrix theory shows that a subwavelength shift of the barrier
from the symmetry axis alters significantly the transmission
enhancement. In addition, we observe a scaling of the distance
requires one to reduce significantly the enhanced transmission
regarding the strength of the barrier and the frequency.

To begin, let us first recall the basic result of Ref. [1].
In a quasi-one-dimensional waveguide supporting N propa-
gating modes, a thin opaque barrier with transmittance Nτ ,
τ � 1, splits a L-length disorder slab in two halves. We as-
sume a diffusive transport of waves through the slabs, hence
an energy transmission described by the Ohmic conductance
gD = N�/(L + �) [8–10], which allows for a direct determi-
nation of the mean-free path, �. For nonsymmetrical slabs
(ordinary disorder), their effect on the transmission simply
“cumulates” with that of the barrier to give a more opaque
overall system (see the black and red curves in Fig. 1). Here
the transmission is measured by the Landauer conductance
g = Tr(TT†), with T the transmission matrix of the propagat-
ing modes [11]. If the spatial distribution of scatterers now
obeys a left-right mirror symmetry with respect to the barrier
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(symmetric disorder), then induced coherent effects lead to a
significant increase in conductance (dark blue curve). Though
this effect is broadband and can be observed from a single
realization of the slab disorder, one may wonder about its
robustness to, e.g., symmetry breaking or losses [12], or when
shifting the position of the barrier from the symmetry axis.
The last case reveals an unexpectedly strong, subwavelength,
sensitivity, as shown in Fig. 1 (light blue curve). While the
barrier is shifted only by δx = λ/200, the typical level of
conductance is now less than one half of its original value.
This effect, beside being deeply subwavelength, is at the same
time very broadband, occurring over the whole frequency
range. Note that, to avoid possible overlapping between the
scatterers and the barrier while moving the latter, a small
gap (with width w � 1.2λ) has been introduced between the
two slabs, without incidence on the observed enhancement
phenomenon. Figure 2 illustrates the effect on the wavefield
of a small displacement of the barrier, showing, at the right,
a much smaller average amplitude of the field. It is relevant
to mention that Whitney et al. also report on such a deeply
subwavelength sensitivity to the barrier position in the chaotic
transport through symmetric double quantum dots [13].

Let us now look more precisely at how the conductance
varies with the position of the barrier. For this we consider,
at a given frequency, the two, asymmetric and symmetric,
configurations shown in Fig. 1, and, from this starting point,
we vary the shifting distance of the barrier position, δx, in the
range [−λ/2, λ/2]; see Fig. 3(a). The same is also done at
other values of the frequency (N = 100) and barrier transmit-
tance (τ = 0.006); see Fig. 3(b). First, the “ordinary disorder”
configuration, which displays no symmetry, is insensitive to
the barrier position within the gap: when varying δx, the con-
ductance slightly fluctuates around a value that corresponds to
a simple sum of series resistances, 〈g〉 � (2/gD + 1/Nτ )−1.
This purely diffusive interpretation explains why the position
of the barrier is indifferent. Note that, τ being very small
(∼10−3), this mean value is close to the transmittance of
the barrier alone, Nτ . The symmetric case shows, however,
a much stronger dependence on the shifting distance δx, in
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FIG. 1. Transmission through diffusive disordered slabs, sepa-
rated, in the in-between gap, by a thin opaque barrier, in a waveguide
of unit width. The conductance is plotted over the frequency range
in which N = 300 modes are propagating in the left and right ho-
mogeneous leads. Black: conductance Nτ of the barrier alone (see
Ref. [1] for more details). Red: the barrier separates two different
slabs with length L/2 = 2.5 and mean-free path � = 0.140. Dark
blue: same as red, but with the two slabs obeying a left-right mirror
symmetry. Light blue: same symmetric disorder as the preceding
configuration (dark blue) but with the barrier shifted by δx � λ/200
from the symmetry axis (to avoid an overlap between the barrier and
the scatterers, a very thin gap is left between the slabs in the three
configurations). In each configurations the conductance is obtained
from a full wave numerical computation and comes from a single
realization of the disorder (no averaging). The vertical dashed line
indicates the configuration used to get Fig. 3.

particular near the position of perfect symmetry of the sys-
tem, δx = 0. When increasing |δx| from zero, the averaged
conductance drops so rapidly that, from |δx| ∼ λ/50 (λ/30 for
N = 100; see inset), it has reached the level of the asymmetric
case, meaning that the symmetry-induced enhancement com-
pletely vanishes.

Furthermore, it keeps decreasing and stays below the
“asymmetric” level until δx is approximately one quarter of
the wavelength. Work is in progress to further investigate this
behavior, which, though robust, is not yet explained. For larger
shifting distances, the asymmetric and the symmetric configu-
rations give similar levels of conductance. No symmetry effect
can be evidenced anymore.

To get further insight of the observed sensitivity, let us
consider the conductance fluctuations in this specific slab-
barrier-slab system. For the ordinary and the symmetrical
configuration, the conductance can be written as the sum
of its averaged value and a fluctuation: g(δx) = 〈g(δx)〉 +
εg(δx). From the configuration shown in Fig. 3(a), we plot in
Fig. 4 the normalized averaged fluctuation function 〈ε(δx)〉 =
〈εg(δx)εg(0)〉/〈ε2

g (0)〉, averaged over 50 realizations of

0−60
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0 x

1

(b) symmetric disorder shifted barrier

L

FIG. 2. Typical wavefield (magnitude, in log-scale) in two sym-
metric disordered slabs separated by a thin opaque barrier in the
in-between gap, when impinged by incident unit fluxes on each of
the N propagating modes in the left lead. (a) The barrier lies on
the symmetry axis, in the middle of the gap. (b) The barrier if
shifted a distance δx � λ/10 � 0.004 from the symmetry axis. In
both cases the frequency is such that N = 50, the total length of the
slabs is L = 6, and the mean-free path is � = 0.47. The wavefield is
obtained from full wave numerical computation, and the plots show
its modulus in log scale.

disorder. The peak around δx = 0 (see inset) gives the fluc-
tuations of g a characteristic subwavelength scale, λ/200,
regardless of the symmetry of the disorder. This scale is
comparable to that observed in Fig. 3(a). Though this sub-
wavelength property does not by itself rely on symmetry,
it strongly influences the symmetry-induced conductance
enhancement, making it subwavelength sensitive and, impor-
tantly, at any frequency and without averaging.

The two examples shown in Figs. 3(a) and 3(b), obtained
at different values of both the frequency and the barrier trans-
mittance, suggest that, beyond the common behaviors, the
sensitivity, that is, typically, the width of the peak, depends
on these parameters.

To investigate quantitatively this dependence, we start from
the so-called optimal configuration, and we determine the
displacement necessary to reduce the conductance by a factor
of 2. Given the mean-free path � and barrier transmittance τ ,
the optimal configuration is the symmetric system achieving
the maximum conductance enhancement. It is obtained when
the length of the slab is

Lopt = �

[√( 1

τ
− 1

)( 1

τc
− 1

)
−

( 1

τc
− 1

)]
, (1)

with τc � 0.4 the threshold value above which no con-
ductance enhancement is observed [1]. Then the averaged
conductance reaches an optimal value gopt. Note that this
optimal configuration was defined and characterized in the ab-
sence of a gap between slabs, but we numerically checked that
a narrow gap does not significantly modify these results. Now
let us move the barrier from the symmetry axis of the system,
until the averaged conductance is gopt/2. The corresponding
shifting distance, noted δl , is plotted in Fig. 5 as a function of
τ , at various frequencies (N = 50 to 300).
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FIG. 3. Decrease in conductance when shifting the barrier a
distance δx from the symmetry axis, computed at two different fre-
quencies, such that (a) N = 300, (b) N = 100. At each frequency,
both the system with ordinary disorder (red) and the one with sym-
metric disorder (blue) are compared. In the abscissa, the shifting
distance δx is given in wavelength unit. Other parameters are (a) L =
5, � = 0.140, τ = 0.001 and (b) L = 10, � = 0.61, τ = 0.006. Note
that case (a) corresponds to the configuration shown in Fig. 1, at the
frequency denoted by the red dot. The conductance in each case is
obtained from full wave numerical computations and averaged over
50 realizations. The barrier transmittance, Nτ , is plotted for reference
(black dashed line). Inset: zoom on the peak: 0 � δx/λ � 0.03.

First, we observe that the sensitivity of the system, as
measured by δl , increases with the opacity of the barrier
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FIG. 4. Normalized averaged fluctuation as a function of the
barrier shift δx for a system with ordinary disorder (red) and with
symmetric disorder (blue). The configuration is the same as in
Fig. 3(a). Inset: zoom on the −0.03 � δx/λ � 0.03 region.
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FIG. 5. Sensitivity of the symmetric slab-barrier-slab system
with a shift of the position barrier from the symmetry axis, as a
function of the barrier reduced transmittance, τ , at various frequen-
cies. Starting from an optimal configuration, as defined in Ref. [1],
δl is the minimal distance to lower the optimal conductance by a
factor two. Computations are performed using random matrix the-
ory [1,14]. Fit: δl (τ )/λ = aτ b with a = 0.5487 ± 0.054 and b =
0.7968 ± 0.0314.
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(that is, δl decreases with τ ). Also, this shifting distance δl ,
when expressed in wavelength unit, is almost independent of
N . Then, a rough fit of the data gives δl/λ simply scaling
as τ 0.8.

In conclusion, we have shown the broadband sensitivity of
the transmission enhancement to a subwavelength shift of a
barrier position between two symmetric diffusive slabs that
can be observed without averaging. In addition, numerical
simulations have shown how the minimum shifting distance
needed to significantly lower the symmetry-induced transmis-
sion enhancement scales with the wavelength and the barrier

transmittance. This high sensitivity to a symmetry defect,
such as the sensitivity to losses [12], although it of course
challenges the experimental observation of the symmetry-
induced transmission enhancement, also opens the way to find
nondestructive evaluation of defects in complex structured
materials.
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