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The coherent propagation of elastic waves in a solid filled with a random distribution of pinned
dislocation segments is studied to all orders in perturbation theory. It is shown that, within the
independent scattering approximation, the perturbation series that generates the mass operator
is a geometric series that can thus be formally summed. A divergent quantity is shown to be
renormalizable to zero at low frequencies. At higher frequencies said quantity can be expressed in
terms of a cut-off with dimensions of length, related to the dislocation length, and physical quantities
can be computed in terms of two parameters, to be determined by experiment. The approach used
in this problem is compared and contrasted with the scattering of de Broglie waves by delta-function
potentials as described by the Schrödinger equation.

I. INTRODUCTION

In recent years, the interaction of an elastic wave with
a dislocation has been studied within the context of con-
tinuum elasticity1 (hereafter I). These results have been
further used to obtain results, using multiple scattering
theory, for the coherent propagation of elastic waves in
the presence of many, randomly distributed, dislocations2

(hereafter II). Leading order perturbation theory was
used to obtain formulae relating change in the speed
of wave propagation to dislocation density. These for-
mulae have been used to show that ultrasound—more
specifically resonant ultrasound spectroscopy (RUS)—
can be used as a quantitative probe of dislocation density
in aluminum3, with comparative advantages over X-ray
diffraction (XRD) and transmission electron microscopy
(TEM)4.

The advent of a new, quantitative, nonintrusive, tool to
probe dislocation density raises hope for progress in solv-
ing long-standing challenges involving the plastic behav-
ior of materials, such as fatigue5, or the brittle-to-ductile6

transition. More specifically, there are a number of ap-
plications that stand to benefit from a nonintrusive mea-
surement of dislocation density. For example the plastic
deformation in torsion of ice single crystals has been stud-
ied using hard X-ray diffraction7 in order to ascertain the
role of geometrically necesary dislocations, and size ef-
fects have been unraveled through creep measurements8.
Also, high resolution extensometry experiments carried
out on copper single crystals in tension have uncovered a
rich spatiotemporal structure9. Distinct scales of plastic
processes have been found in austenitic FeMnC steel, also
using extensometry10. Finally, the Portevin-Le Chate-
lier effect11—in which plastic instabilities generate local-
ized bands—seriously hampers the use of some alloys12

and remains, to a large extent, a mystery. Recent at-
tempts at developing a conceptual framewok to under-
stand the formation of patterns by dislocations include
those of Sethna and collaborators13, Limkumnerd and
van der Giessen14, and Rickman, Haataja and Le Sar15.

Ultrasonic waves penetrate deep into a material and
appear to be the ideal tool to probe the effects described
in the previous paragraph. However, in order to probe
structure, the probing wavelength must be comparable to
the structure length scale. The results reported by Mu-
jica et al.3 are an average over a whole sample, and rely
on leading order results in a long wavelength approxi-
mation of the theory1,2. Although these leading order
results, obtained using perturbation theory in a multi-
ple scattering framework, do provide precise and useful
formulas, higher order approximations will be needed to
probe shorter length scales. But, as discussed below,
higher order results can diverge at high frequency be-
cause of the zero thickness of the strings used to model
dislocations. This paper is devoted to the elucidation of
this state of affairs.

II. INTERACTION OF ELASTIC WAVES WITH
DISLOCATION SEGMENTS.

We shall use the notation of I and II: An homogeneous
and isotropic, linearly elastic, medium of mass density ρ
is described by displacements ~u(~x, t) away from an equi-
librium position ~x at time t. In the absence of disloca-
tions the dynamics is governed by the wave equation

ρ
∂2ui
∂t2

− cijkl
∂2uk
∂xj∂xl

= 0 (1)

where the elastic constants tensor is given by cijkl =
λδijδkl + µ(δikδjl + δilδjk) with (λ, µ) the Lamé con-
stants. Longitudinal (L) and transverse (T ) waves prop-

agate with speeds cL ≡
√

(λ+ 2µ)/ρ and cT ≡
√
µ/ρ,

respectively. We shall call their ratio γ ≡ cL/cT > 1.
A pinned dislocation segment is described by its po-

sition ~X(s, t) as a function of a Lagrangian parameter s
and time, with orientation provided by the unit tangent

τ̂ ≡ ~X ′/| ~X ′|, where a prime denotes derivation with re-
spect to s. We shall consider unbiased edge dislocations

of length L and Burgers vector ~b, that is, their position

ar
X

iv
:1

50
5.

07
72

1v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  2
8 

M
ay

 2
01

5



2

at equilibrium are straight lines. In the absence of exter-
nal loading the dislocation dynamics is given by a linear
string model

mẌk(s, t) +BẊk(s, t)− ΓX ′′k (s, t) = 0 (2)

where overdots denote derivation with respect to time,
and the associated boundary conditions of pinned ends
are Xk(±L/2, t) = 0. In Eqn. (2) the coefficient

m ≡ ρb2

4π
(1 + γ−4) ln(δ/δ0), (3)

defines a mass per unit length (with δ and δ0 the long-
and short-distance cut-off lengths, respectively),

Γ ≡ µb2

2π
(1− γ−2) ln(δ/δ0) (4)

is a line tension, and B is a phenomenological viscous
drag coefficient.

When a wave propagates in the presence of disloca-
tions, there is an interaction. The behavior of the wave
in this case is given, in the frequency domain, by the
following equation2 for the velocity vi(~x, ω):

− ρω2vi(~x, ω)− cijkl
∂2

∂xj∂xl
vk(~x, ω) = Vikvk(~x, ω) (5)

where

Vik = A Mij
∂

∂xj
δ(~x− ~X0) Mlk

∂

∂xl

∣∣∣∣
~x= ~X0

, (6)

A ≡ 8

π2

(µb)2

m

S(ω)

ω2
L , (7)

Mij ≡ tinj + tjni , (8)

with n̂ ≡ τ̂ × t̂ and t̂ ≡ ~b/|~b| is the unit Burgers vector
that indicates the direction of glide. In addition,

S(ω)

ω2
≡

∑
N odd

1

N2 (ω2 − ω2
N + iωB/m)

(9)

where

ωN ≡
Nπ

L

√
Γ

m
(10)

are the eigenfrequencies of a vibrating string of length L,
mass density m and line tension Γ. Only glide motion,
that is, along t̂, is allowed. The potential (6) is a sim-
plified expression that captures the dislocation dynamics
for frequencies smaller than the first resonance frequency
ω1, thus accordingly we shall use the approximation

S(ω)

ω2
≈ 1

(ω2 − ω2
1 + iωB/m)

. (11)

When a single dislocation is present (see Fig. 1), stan-
dard scattering theory can be used to turn Eqn. (5)

into an integral equation that involves the Green func-
tion (impulse response function) for the medium under
consideration and it can be solved, for example using a
Born approximation scheme. This has been done previ-
ously for a whole space1 and for a half space with a free
surface16.
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FIG. 1: The basic scattering mechanism of an elastic wave
by one oscillating line dislocation: an elastic wave of wave

vector ~ki is incident upon a dislocation segment of length L
that oscillates in response. As it does, it re-emits waves with

scattered wave vector ~ks.

A. Perturbation approach to multiple scattering

k  , kL TvL
inc

vT
inc

x3

x2

x1

FIG. 2: Configuration for the study of multiple scattering: the
incident wave has transverse (T) and longitudinal (L) polar-
izations and propagates through an ensemble of randomly dis-
tributed and oriented dislocation segments with pinned ends.
Each segment is of variable length L. Reproduced from Ref.2

When many dislocations randomly distributed are
present, as in Figure 2, one studies the average (over all
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possible configurations with prescribed probability distri-
butions) displacement of the elastic medium rather than
the displacement itself. The problem to be solved is to
find effective plane wave solutions, with a dispersion rela-
tion between frequency and effective wave number. Said
dispersion relation is obtained from the poles of 〈G〉 (the
brackets denote ensemble averaging) in Fourier space,
where G is the impulse response (Green’s) function of
the dislocation-filled medium, the solution of

ρω2Gim(~x, ω) + cijkl
∂2

∂xj∂xl
Gkm(~x, ω) =

−
∑

disloc. lines

VikGkm(~x, ω)− δimδ(~x) . (12)

To this end the average Green’s function is written as
(“Dyson equation”)

〈G〉−1 = (G0)−1 − Σ (13)

where G0 is the Green’s function of the medium without
dislocations (i.e., “free”). For an infinite, homogeneous
and isotropic medium it is, in Fourier space,

[(G0)−1]ik(~k, ω) = (−ρω2 + µk2)δik + (λ+ µ)kikk (14)

or

G0
ik(~k, ω) =

1

ρc2T (k2 − k2
T )

(δik−k̂ik̂k)+
1

ρc2L(k2 − k2
L)
k̂ik̂k .

(15)
with an implied small imaginary part in the denominator
to insure causality. It will be explicitely considered later
on. The corresponding expression in coordinate space
is defined by

G0
ik(~x− ~x′) =

1

(2π)3

∫
d~ke−i

~k·~xG0
ik(~k)ei

~k·~x′
, (16)

and we shall omit the frequency argument ω in what
follows. In the independent and weak scattering
approximation17 Σ = n〈T 〉, with T the scattering T -
matrix and 〈·〉 an average over the internal variables of
the dislocation segment: Length, orientation, and Burg-
ers vector. Their position has been assumed to be uni-
formly distributed with density (number per unit vol-
ume) n. In2 we investigated the properties of elastic
waves propagating in this disordered medium and ob-
tained expressions for the effective velocities and atten-
uation coefficients. These quantities were obtained from
Σ = n〈T 〉 at a leading order Born approximation for
T . We now revisit this series expansion, locate divergent
terms, and show that the full Born series for T can be
summed.

III. SCATTERING BY A SINGLE
DISLOCATION SEGMENT: BORN SERIES TO

ALL ORDERS

As usual in scattering theory, we consider Eq.(5) and
Eq.(6) as an integral equation

vi(~x) = v0
i (~x) +

∫
d~x′G0

ij(~x− ~x′)[Vjlvl](~x′) (17)

with v0
ik(~x), for instance, an incident plane wave and G0

the free space Green function whose Fourier transform is
given in Eq.(16) and Eq.(15). The T−matrix determines
the full scattering problem because it satisfies

vi(~x) = v0
i (~x) +

∫
d~x′G0

ij(~x− ~x′)[Tjlv0
l ](~x′) . (18)

We introduce the definition of the T -matrix in momen-
tum space through

Tik(~k,~k′) =

∫
d~xd~x′e−i

~k·~xTik(x, x′)ei
~k′·~x′

(19)

to obtain

Tik(~k,~k′) = T
(1)
ik (~k,~k′)+T

(2)
ik (~k,~k′)+T

(3)
ik (~k,~k′) . . . (20)

with the first Born approximation

T
(1)
ik (~k,~k′) =

∫
d~xe−i

~k·~xVik(x)ei
~k′·~x

= −AMijkjk
′
lMlk. (21)

The second Born approximation is computed in Ap-
pendix A. The result is

T
(2)
ik (~k,~k′) = A2MijkjIk

′
lMlk. (22)

where

I ≡ 1

(2π)3

∫
d~q ~q t(M ·G0(~q) ·M)~q (23)

=

∫
dqq4

(
8π

5

1

ρC2
T (q2 − k2

T )
+

16π

15

1

ρC2
L(q2 − k2

L)

)
,

with ~q t the transpose of ~q. The second line is obtained
using the properties of M:

Mmm = 0 , MikMik = MkiMik = 2 . (24)

Note that I diverges because it is the integral of a
quantity that grows ∼ q2 at high wavenumbers. This
is a consequence of the fact that we use a continuum
mechanics approach, in which there is no intrinsic cut-off
length.

The third order Born approximation to the T matrix
is worked out in Appendix B. The result is:

T
(3)
ik (~k,~k′) = −A3MijkjI

2k′lMlk (25)
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It is apparent from (25) that a power series structure
suggests itself. To pursue this possibility we consider
the p-th term in the perturbation series and write it,
symbolically, as

T
(p)
ik = (V G0V G0 · · ·V )ik (26)

where the potential V appears p times. Replacing G0 by
its Fourier transform and repeatedly using (24) as well
as the properties of the delta function, leads to

T
(p)
ik (~k,~k′) = −AMijkj (−AI)

p−1
k′lMlk , (27)

a power series, as was hoped, and formally we have

Tik = Milkl

(
−A

1 +AI

)
k′pMpk (28)

= T
(1)
ik

1

1 +AI
, (29)

With T
(1)
ik given by (21). From the T matrix it is possible

to obtain, following the standard definitions, scattering
amplitudes and scattering cross sections. For instance,
the longitudinal to longitudinal scattering amplitude is

fLL(x̂) = (x̂ ·M · x̂)

(
−A

1 +AI

)
(k̂0 ·M · k̂0) (30)

where x̂ is the scattering direction and k̂0 the incident
direction. Eqn. (30) is a simple generalization, to all
orders, of a similar expression, obtained in I to first or-
der. The only difference is the new denominator. The
scattering amplitudes for mode conversion, as well as for
transverse to transverse scattering, follow similarly, as
does the total scattering cross section using the optical
theorem.

IV. MASS OPERATOR

We return now to the evaluation of the mass opera-
tor Σ = n〈T 〉, where the average is over the internal
variables of the dislocation segment: Length, orientation,
and Burgers vector. Following II, we consider edge dislo-
cations, all with the same length L, with a Burgers vector
of fixed magnitude but randomly oriented. Dislocation
position has been assumed to be uniformly distributed
with density (number per unit volume) n. Thus

Σij =
−nAMij

(1 +AI)
(31)

where

Mij ≡
∫
dCMipMqjkpkq (32)

and the integration over C is the average over internal
variables. If we take a distribution of dislocations that is

isotropic on average we have2

〈Mij〉 =
1

15
(k̂ik̂j + 3δij)k

2

=
1

5
(δij − k̂ik̂j)k2 +

4

15
kikj (33)

where the brackets denote angular average. There are
two objects of interest: One is the mass operator (31)
itself. Without the density factor n and without the av-
erage indicated in (32) it corresponds to the scattering
amplitude by a single dislocation segment, the T -matrix.
Another is the Dyson equation (13), where the mass oper-
ator appears, and which provides, through the vanishing
of a determinant, an implicit relation between frequency
and wavenumber, from which (dispersive) effective phase
velocities and attenuations can be read.

Consider then the quantity

σ0 ≡ A
1 +AI

. (34)

that appears in the mass operator (31). The object of
interest is the quantity I defined by (23). Introducing
the change of variables

ΩT = cT p

ΩL = cLp , (35)

and using

lim
η→0

1

x+ iη
= P 1

x
+ iπδ(x) (36)

where P means Cauchy principal value, one has

I =
1

(2π)3ρc5T

24π

15

∫
dΩTΩ4

T

Ω2
T − ω2 − ıη

+
1

(2π)3ρc5L

16π

15

∫
dΩLΩ4

L

Ω2
L − ω2 − ıη

=
1

15π2

[
3γ5 + 2

γ5

]
1

ρc5T

∫
dΩΩ4

Ω2 − ω2 − ıη
(37)

≡ IR + iII

with

IR = I0<
∫

dΩΩ4

Ω2 − ω2 − ıη
= I0P

∫
dΩΩ4

Ω2 − ω2
(38)

II = I0=
∫

dΩΩ4

Ω2 − ω2 − ıη
= I0

ω3π

2
(39)

and

I0 ≡
1

15π2

[
3γ5 + 2

γ5

]
1

ρc5T
. (40)

We see that IR, the real part of I, diverges since its
integrand grows as Ω2 at large Ω. The imaginary part
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II is finite. Consider the divergent quantity IR, given by
(38). Let

IR = lim
Λ→∞

IR(ω,Λ) (41)

with

IR(ω,Λ) = I0P
∫ Λ

0

dΩΩ4

Ω2 − ω2
. (42)

This integral can be calculated; it is

IR(ω,Λ) = I0

(
Λω2 +

Λ3

3
− ω3Arctanh

ω

Λ

)
(43)

for Λ > ω.
Calling IR(ω1) ≡ IR1 this leads , in the limit Λ→∞,

to

IR1 − IR2

ω2
1 − ω2

2

− IR2 − IR3

ω2
2 − ω2

3

= 0 . (44)

So the difference between two weighted differences of IR,
as specified by (44), is finite, indeed it is zero, although
IR diverges. It is not unusual in physics to have a finite
effect appear as the difference of two infinite quantities;
the Casimir effect18 is a notorious example. So, it is
natural to interpret (44) as saying that it provides the
value of IR at a frequency ω3 in terms of the value of
IR at two other frequencies ω1 and ω2. These two values
must be independently established.

The form of the interaction in Eqns. (5-6) suggests
that the Born series is a long wavelengths, or low fre-
quency, approximation. Indeed, since the interaction po-
tential as two gradients, high wave numbers will be more
strongly affected than low wave numbers. We should
then have

lim
ω→0

I(ω) = 0 (45)

a condition that is already satisfied by the imaginary part
II . So, suppose we wish to have IR(ω) at a finite fre-
quency; consider ω1, ω2 small enough that I vanishes.
Eqn. (44) provides

IR(ω) = 0 , (46)

in the sense that IR(ω) is negligible with respect to II(ω)
at low frequencies. This last point will be elucidated in
the next section, by a proper scaling through the intro-
duction of cut-off regularization (Eq. 48). Then, from
Eqs.(34,46) we have, at low frequencies,

σ0
low ω =

A
1 + iAII

. (47)

This is an expression that provides a (finite) correction,
valid at low frequencies, to the first order Born approx-
imation σ0

Born = A. In order to be more precise about
what we mean by “low frequencies” we now introduce a
cut-off dependent regularization.

A. Introduction of a high frequency cut-off

The reason IR, given by (38) diverges is that it consid-
ers all frequencies, up to infinitely high frequencies, which
means all wavelengths, down to infinitely short wave-
lengths. This is an artifact of the perturbation theory
approach, in which each term in the perturbation series
introduces an integration over an infinite frequency inter-
val. More precisely, the order n term has n− 1 integrals
that extend down to very short wavelengths. It has al-
ready been shown, in Eqn. (27), that these n−1 integrals
are the n−1 power of a single integral J . The infinite ex-
tent of the integration range, in turn, is a consequence of
using continuum mechanics that has no intrinsic length
scale, as opposed to real solids that have at least one mi-
croscopic length scale given by the interatomic distance.
In the problem we are considering in this paper, there is
an additional length scale given by the length L of the
dislocation segments, and the potential (6) has been ob-
tained for wavelengths long compared to L. Accordingly,
we now attempt replacing IR by the finite, but cut-off
dependent, quantity IR(ω,Λ) given by (43). How is Λ
to be determined? We can not fix a precise value for the
cutoff Λ, but we can provide and estimate by noticing
that the divergence of I is controlled by the behaviour of
G0(q) for |q| → ∞. Now, G0(q) appears in the expression
for the T -matrix because we use Eq.(6) for the poten-
tial. This is an approximate expression valid for waves of
wavelength longer than the dislocation segment1,16. For
short wavelengths (large wave numbers) the dislocation
dynamics can not be described by the exciting field in
a reference position [for instance the middle of the dis-
location segment as we take for long wavelength to get
Eq.(6)]. Accordingly for large wavenumbers the poten-
tial is different and that will change the behaviour of
the integrand in I for |q| → ∞. Therefore we chose an
upper cut-off Λ = dω1 that is proportional to the first
resonance frequency ω1 =

√
Γ/m(π/L), with constant of

proportionality d. Eq.(6) is expected to be valid up to
these frequencies for a real material with dislocations of
length L.

Consider then σ0, given by (34), with I evaluated us-
ing the cutoff Λ = dω1, (0 < d < 1). Using (11) and
ArctanhωΛ ≈

ω
Λ we get

σ0 =
aL

a1ω2 − a2ω2
1 + iBωm + aLI0

(
iπ2ω

3 − ω4

dω1

) (48)

with

a =
8

π2

µ2b2

m
(49)

a1 = 1 + aLI0dω1 (50)

a2 = 1− aLI0
d3

3
ω1 (51)

It is a straightforward exercise to verify that (48) leads
to (47) in the limit ω � dω1 � ω1.
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V. COMPARISON WITH THE
RENORMALIZATION OF A DIRAC DELTA

POTENTIAL IN A SCHRÖDINGER EQUATION

The algebra of the problem we are dealing with has
some similarities with the scattering of quantum (de
Broglie) waves by an isotropic point obstacle as described
by a Schrödinger equation in D dimensions:(

∇2 + k2
)
ψ(~x) = gδ(D)(~x). (52)

This problem, because of its simplicity, has received some
attention in the literature and it is instructive to compare
it with our own. The interaction term in Eqn. (52) as
our own Eqn. (6), is localized at a point. The main dif-
ferences between this Schrödinger problem and our dis-
location problem are: a) the former is scalar and the lat-
ter vectorial and b) the potential in the dislocation case
Eq.(6) has two gradient operators. In the Schrödinger
problem 〈k|V |k′〉 = g/(2π)D i.e. a constant. In the

dislocation problem 〈k|V |k′〉 = −A(M~k ·M~k′) as shown
in Eq.(21). Note also that the two dimensional prob-
lem of transverse (anti-plane) waves scattered by an in-
finite straight screw dislocation is a scalar Schrödinger
problem19 with a potential 〈k|V |k′〉 proportional to k2.
The analysis we review below also holds when the point
obstacle is modelled by even derivatives of the delta
function20.

When D = 1 the scattering problem associated to
Eq.(52) poses no difficulty. When D = 2 the scat-
tered cylindrical wave (and/or G0+) diverges logarith-
mically at the origin thus creating a divergence in the
T−matrix. Similarly, when D ≥ 3 the scattered spheri-
cal wave (and/or G0+) diverges as 1/rD−1 creating also
a divergence in T . The idea that has been put forward to
deal with this divergence is that the potential strength g
in V (~x) = gδ(D)(~x) is not a measurable quantity but the
scattering cross section 〈k|T |k〉 and possible bound state
energies are21: In terms of the potential and the Green
function one has

〈k|T |k′〉 = 〈k|V |k′〉+〈k|V G0V |k′〉+〈k|V G0V G0V |k′〉−...

a quantity we already computed for the dislocation prob-
lem. Analogously, for the Schrödinger problem we find

〈k|T |k′〉 =

(
1

2π

)D (
1

g
+ J ′(k)

)−1

(53)

with

J ′(k) =

∫
dDq

(2π)D
1

q2 − k2 − iη

Since J ′(k) diverges for D ≥ 2 one introduces a regulator
Λ that cuts off the integral for |q| > Λ and the previous
equation is interpreted as

〈k|T |k′〉 =

(
1

2π

)D
lim

Λ→∞

(
1

g(Λ)
+ J ′(Λ, k)

)−1

in which the unmeasurable parameter in the strength of
the potential is turned into a function of Λ: g = g(Λ).
Its form is then determined through the requirement that
the scattering matrix be finite for some wave vector k =
k0, because T (k0) is an observable while g is not. Thus

g(Λ) ≡ g(T (k0), J ′(Λ, k0)).

To be explicit let us consider D = 5

J ′(Λ, k) =
Ω5

(2π)5

∫ Λ

0

q4dq

q2 − k2 − iη
(54)

=
Ω5

(2π)5

(
Λk2 +

Λ3

3
− k3Arctanh

k

Λ
+ i

k3π

2

)
where Ω5 is the solid angle in D = 5 dimension. Note the
similarity between the integral in J ′ with I from Eq.(38)
in our own dislocation problem.

Since it is not possible to cancel in Eq.(53) the differ-
ent diverging functions of Λ that appear in Eq.(54) with
1/g(Λ), because the former contains k dependent diverg-
ing terms and the latter not, one finds from Eq.(53) that
limΛ→∞〈k|T |k′〉 = 0. In other words, there is no scatter-
ing by a delta function potential when the interaction is
governed by the Schrödinger equation. This is the case
for all D ≥ 4. The cases D = 2 and D = 3 are different.
For instance with D = 3

J ′(Λ, k) =
Ω3

(2π)3

∫ Λ

0

q2dq

q2 − k2 − iη

=
1

2π2

(
Λ− kArctanh

k

Λ
+ ik

π

2

)
and if we measure the T -matrix at some k0 we get

lim
Λ→∞

1

g(Λ)
= [(2π)3T (k0)]−1 − lim

Λ→∞
J ′(Λ, k0)

thus it is posible to define a renormalised coupling pa-
rameter gRN such that 1/g(Λ) = 1/gRN − Λ

2π2 , i.e. the
divergence is absorbed in the unmeasurable coupling pa-
rameter, which gives in Eq.(53) as Λ→∞ a finite value
for the T -matrix

〈k|T |k′〉 =

(
1

2π

)3(
1

gRN
− ik 1

4π

)
with gRN a parameter to be determined by a measure-
ment at some given k0. Similarly in D = 2 the diverging
term of J ′ can be absorbed in the coupling parameter
g(Λ). Moreover in the case of an attractive delta poten-
tial gRN can be expressed in terms of the energy of the
bound state (which is measured). In the case of repulsive
delta potential the T -matrix (scattering cross section)
must be measured at some value of k and the computed
expression gives the value on the rest of the k axis.

Let us now go back to the dislocation scattering prob-
lem. Given the similarity between (43) and (54), one is
tempted to perform the renormalisation procedure that
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will lead to the conclusion that there is no scattering, as
in the Schrödinger case for D = 5. But the key difference
is that the potential for the dislocation involves measur-
able quantities such as elastic constants, frequency and
Burgers vector. Thus we conclude that the finiteness of
the cutoff value is unavoidable in this context.

Let us finally remark that in the scattering problem of
an anti-plane elastic wave by a screw dislocation in two
dimensions the above analogy with the scattering of a
Dirac delta holds, with D = 4.

VI. DISCUSSION

The full Born series for the scattering amplitudes by a
single edge dislocation segment as described by the po-

tential Eq.(6) is a geometric series that can be summed
and expressed analytically. We have shown that apart
form a multiplicative factor, the angular dependence of
these scattering amplitudes are the same as in the lead-
ing order Born approximation. The multiplicative factor
is a frequency and cutoff dependent quantity, that di-
verges if the cutoff goes to infinity. This divergence is
an artifact of the perturbation series within a context of
continuum mechanics, where there is no intrinsic, short-
distance, length scale. At low frequencies, it has been
shown that the seemingly divergent integral can be regu-
larized to zero. As frequencies increase, the integral can
be regularized through the introduction of a cut-off. fre-
quency, proportional to the first resonant frequency of
the dislocation segment.

From an experimental point of view we can ask how the cutoff Λ can be determined. For this we note that from
Eq.(43) in the large Λ limit (where ArcTanh(ε) ≈ ε) we can get

IR(ω1,Λ)− IR(ω2,Λ)

ω2
1 − ω2

2

− IR(ω2,Λ)− IR(ω3,Λ)

ω2
3 − ω2

3

=
1

Λ

(
ω4

2 − ω4
3

ω2
2 − ω2

3

− ω4
1 − ω4

2

ω2
1 − ω2

2

)
.

Thus, weighted differences of I at different frequencies can determine Λ. The consequence then appears to be that
measuring the cross section at two different low frequencies will provide the appropriate value of Λ which is crucial
to predict the cross section at any, third, frequency. And similarly for the mass operator. It appears then that in
order to have a relation between frequency and wave vector for the coherent wave two parameters are needed, to be

determined through measurement of ω(~k) at two different points.

Acknowledgments

This work was supported by Fondecyt Grant 1130382 and ANR-CONICYT grant 38, PROCOMEDIA.

Appendix A: Second order Born approximation

The second order Born approximation is given by

T
(2)
ik (~k,~k′) =

∫
d~x d~x′e−i

~k·~xVij(x)G0
jl(x− x′)Vlk(x′)ei

~k′·~x′
(A1)

=
A2

(2π)3

∫
d~x d~x′d~qMinMmjMlpMkqe

−i~k·~x ∂

∂xn
δ(~x− ~X0)(−iqm)e−i~q·

~X0G0
jl(~q)e

i~q·~x′ ∂

∂x′p
δ(~x′ − ~X0)(ik′q)e

i~k′· ~X0

=
A2

(2π)3

∫
d~qMinMmjMlpMkqk

′
qknqmqpG

0
jl(~q)

= A2MinknIMkqk
′
q .

The second line is obtained using the expressions (6) for the potential Vij and (16) for the bare Green function G0
jl.

The third line is obtained performing the integrations over ~x and ~x′ with the aid of the delta functions. Finally, the
last line uses the definition (23) of I and gives (22).

Appendix B: Third order Born approximation

The third order Born approximation is given by

T
(3)
ik (~k,~k′) =

∫
d~x d~x′d~x′′ e−i

~k·~xVin(~x)G0
nl(~x− ~x′)Vlj(~x′)G0

jm(~x′ − ~x′′)Vmk(~x′′)ei
~k′·~x′′

. (B1)
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Proceeding in the same way as for the second order gives Eqn. (25):

T
(3)
ik (~k,~k′) = −A3MijkjI

2k′lMlk .
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