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Abstract 8 

Si is a prime candidate for manufacturing water-splitting photoelectrochemical cells, however, the 9 

stability of this material remains a serious bottleneck. This is particularly true for the photoanode, 10 

subject to severe deactivation mechanisms. So far, thin film homogeneity has been the paradigm in the 11 

quest for stable and efficient Si-based photoanodes, which involved the use of vapor deposition 12 

methods to produce conformal thin films ensuring Si protection and efficient catalysis during 13 

operation. Recent reports on n-Si/metal thin film junctions have highlighted the benefits of the 14 

junction heterogeneity, generated in situ. In addition, results obtained from n-Si photoanodes partially 15 

covered with discontinuous films of Co and Ni nanoparticles lately suggested that homogeneity is not 16 

a prerequisite to reach efficiency and stability. Such findings may open new protection routes for Si-17 

based photoanodes, breaking with classical strategies and allowing the use of liquid phase 18 

modification methods such as electrodeposition. 19 
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1-Introduction 1 

Although the integration of solar and wind energies in electrical grids is considerably growing 2 

worldwide, a major concern in employing these energy sources to a much larger extent is their 3 

intermittency and their diffuse geographic distribution. A solution to solve these two issues is the 4 

conversion of renewables into a carbon-free energy carrier that would allow the storage of energy and 5 

its distribution on site and on demand.[1] Hydrogen (H2) has long been considered as a highly 6 

promising energy carrier to fulfill this challenge in a carbon-neutral system, so-called the “hydrogen 7 

economy”.[2] In this view, solar and wind energies can be converted in H2, which would ensure in a 8 

perfect manner: energy storage as well as distribution and conversion in fuel cells, devices that readily 9 

convert H2 into electricity with water being the only by-product.[3] To this goal, H2 needs to be 10 

generated by the conversion of renewable energies through a zero-emission process. This is possible 11 

by coupling water electrolysis to a renewable source of energy to yield a completely clean and scalable 12 

process that generates highly pure H2 only from water, as described by the overall reaction (1).[4] 13 

  14 

overall water splitting reaction 2 H2O (l)  2 H2 (g) + O2 (g) E = -1.23 V (1) 

hydrogen evolution reaction (HER) 2 H+ (aq) + 2 e-  H2 (g)       
  = 0.00 V vs SHE (2) 

oxygen evolution reaction (OER) 2 H2O (l) + 4 h+ O2 (g) + 4 H+ (aq)        
  = 1.23 V vs SHE (3) 

 15 

In water electrolysis, the electrical current that is applied between two electrodes, immersed in water, 16 

breaks the chemical bonds of the water molecule, thus generating H2 at the cathode (reaction (2)) and 17 

O2 at the anode (reaction (3)). The latter reaction, referred to as oxygen evolution reaction (OER), 18 

requires the transfer of four charge carriers (photogenerated holes when an n-type photoanode is used) 19 

and four protons and is often considered the bottleneck of water electrolysis as it requires a 20 

considerable amount of energy to be triggered. In the specific case of solar energy conversion, the 21 

transformation of sunlight energy via the electrolysis of water can be achieved by two strategies. First, 22 

conversion and electrolysis can be performed by two independent and separated commercial devices, 23 

i.e., a photovoltaic panel and an electrolyzer.[5,6] The second strategy combines both aspects on a 24 

single device, which can be done by interfacing sunlight-absorbing semiconductors (SCs) with an 25 

aqueous phase.[7–10] These systems are referred to as photoelectrochemical cells (PECs; Fig.1a) and 26 

have the advantage of being based on a simpler design that induces less potential losses and no power 27 

conditioning. Under sunlight irradiation the SC absorbs photons and convert them into charge carriers 28 

that are driven at the solid-liquid interface to react with water, generating pure H2 (reaction (2)) and O2 29 

(reaction (3)). If the operation of relatively efficient PECs has been already demonstrated by different 30 

research groups,[11] several key challenges, such as their cost and their stability, need to be tackled to 31 

enable their practical use.[12] 32 
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 1 

Fig.1. a) Scheme showing a PEC made of a SC photoanode and a SC photocathode connected by an ohmic 2 
contact. b) Scheme showing the deleterious mechanisms commonly occurring on Si photoelectrodes. c) Scheme 3 
of a conventional Si photoanode in the Si/protection layer/co-catalyst (Si/p/c) configuration. d) Scheme of an 4 
inhomogeneous MIS photoanode. 5 

To be employed in PECs, SC absorbers must have: a short band gap to absorb a considerable part of 6 

the sunlight and a high minority carrier lifetime. In this regard, silicon (Si) is particularly appealing 7 

because it meets these standards. Moreover, it is very abundant (the 2
nd

 element in the earth crust) and 8 

widely used in the microelectronics and photovoltaic industries, which would be a great advantage for 9 

technology transfer.[13] However, using Si as a photoelectrode, and particularly as a photoanode is 10 

very challenging, because of i) its slow charge transfer kinetics for OER (reaction (3)) and ii) its 11 

instability. The first problem is usually solved by integrating a high-efficiency co-catalyst (cocat) on 12 

the Si surface which collects the photogenerated holes and improves OER kinetics. In this frame, a 13 

particular interest is currently given to water electrolysis in alkaline medium because it allows 14 

employing highly efficient OER cocats, based on cheap and abundant materials such as Fe, Mn, Co, 15 

and Ni.[14] The latter issue (stability) has been the bottleneck for PEC manufacturing for long and is 16 

still the subject of intense research.[15–17] As shown in Fig.1b, Si is subject to two main deleterious 17 

mechanisms. The first one is the thermodynamic instability of Si, which passivates upon immersion in 18 
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aqueous solutions or when exposed to air with the spontaneous formation of an insulating native 1 

surface oxide. The anodic polarization of Si in aqueous medium intensifies this phenomenon which 2 

strictly prohibits the use of bare Si surface for OER.[18] The second degradation mechanism is Si 3 

etching, which happens readily at high pH, and prevents its use in alkaline solutions.[18] Over the last 4 

decades, tremendous progress has been made on developing modification strategies to fabricate 5 

efficient and stable Si-based photoanodes.[15,16] In this short review, we will first briefly present the 6 

classical protection strategies based on the use of conformal layers and we will then focus on an 7 

emerging type of Si-based photoanodes, referred to as inhomogeneous metal-insulator-semiconductor 8 

(MIS). We will present the recent research on that topic and discuss the advantages and drawbacks of 9 

such systems. 10 

 11 

2- Conformally coated Si photoanodes 12 

2-1- One layer for stability, the other one for activity 13 

The protection of Si-based photoanodes implies, in most cases, the introduction of a conformal 14 

protection layer between the SC and the cocat,[15,16] deposited by means of chemical vapor 15 

deposition, physical vapor deposition or atomic layer deposition (ALD).[19] In order to design an 16 

efficient protection layer, drastic considerations must be taken into account. First, the coating should 17 

allow a charge flow by means of its intrinsic conductivity or by tunneling, it should not deteriorate the 18 

energetics of the interface and it should not impede light absorption. It is worth noting that several 19 

interesting examples of Si-based tandem photoanodes operating with a wide band gap SC acting as the 20 

same time as an absorber and as a Si protection coating have been reported but fall outside our 21 

scope.[20–23] In contrast, this short review focuses on the most commonly-employed Si protection 22 

strategies, implying oxide layers that absorb a minimal portion of the incident light but ensure 23 

protection and promote charge transfer from Si to the cocat. We herein refer to this construct as the 24 

Si/protection layer/co-catalyst (Si/p/c) configuration (Fig.1C). Note that in most of the cases, a thin 25 

(<2 nm) interfacial SiOx layer is also present at the Si surface. So far, TiO2 has been the most 26 

employed material for Si protection. Several types of TiO2, prepared by different techniques and 27 

operating through different mechanisms, have been reported to be effective. Thick (up to 140 nm) 28 

layers of amorphous[24] and crystalline[25] TiO2, deposited by ALD on n-Si and interfaced with Ni-29 

based cocats exhibit typical photovoltages of ~400 mV and could achieve OER with an unprecedented 30 

stability of 2,200 h.[26] In these systems, the solid Si/TiO2 interface forms a buried junction[27] which 31 

controls the photovoltage and photogenerated holes are efficiently promoted through the “leaky” TiO2 32 

via electronic defects to the Ni which forms an ohmic contact with TiO2 (Fig.2a).[24] Conversely, 33 

sputter-deposited crystalline Ti(5 nm)/TiO2(100 nm) protection layers were reported to only conduct 34 

electrons and to form ohmic contacts with np
+
-Si homojunction.[28] Furthermore, thin (~1-2 nm) 35 
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ALD-deposited TiO2 conformal coatings can behave as tunnel layers, allowing an efficient transfer of 1 

photogenerated charges when interfaced with an Ir cocat layer in a MIS configuration (Fig.2b).[29,30] 2 

Annealing these junctions with forming gas reduces the trap states density at the Si interface, which 3 

considerably increases the photovoltage.[31] In addition, a recent report revealed that integrating an 4 

np
+
-Si buried junction in such a MIS system allows to maintain a high interfacial hole density and to 5 

achieve an unprecedented photovoltage value of 630 mV.[32] Besides, thin (~2 nm) conformal 6 

dielectric films of ALD-deposited HfO2[33] and Al2O3[31,34] have also been employed as dielectric 7 

layers in MIS photoanodes. In particular, Al2O3, in contact with an Ir cocat film, behaves as a tunnel 8 

oxide, implying an exponential increase of the device resistance as a function of its thickness.[31] In 9 

another recent study, the introduction of a high work function metal layer between the Al2O3 tunnel 10 

layer and the Ni film allowed a considerable improvement of the barrier height, which resulted in 11 

photovoltages of ~530 mV for optimized photoanodes.[35] In this case, the authors found that the 12 

maximum photovoltage was not obtained for the thinnest dielectric layer and did not exclude the 13 

possibility of defect-mediated carrier transport through the Al2O3 film.[35] Finally, transparent 14 

conducting oxides (TCOs) have also been employed in the Si/p/c configuration. Only one example of a 15 

p-type TCO, NiCo2O4, has been reported in the Si/p/c configuration. This TCO was combined with an 16 

np
+
-Si buried junction and a NiFe-based OER cocat to perform OER for 72 h.[36] Mainly, classical n-17 

type TCOs such as indium tin oxide (ITO)[37] or fluorine-doped SnO2 (FTO)[38] have been used for 18 

Si photoanode protection. In most of these reports, the TCOs have been employed with the aim of 19 

making non-rectifying electrical contact with a Si homojunction such as npp
+
-Si,[37,38] np

+
-Si [39] or 20 

with Si heterojunction cells,[40] in order to maintain the high photovoltage produced in the Si 21 

(Fig.2c). Thick (in the range of 100 nm) layers of sputtered ITO and FTO deposited by spray pyrolysis 22 

can protect the underlying Si when interfaced with OER cocats. These reports have however 23 

highlighted the disadvantages of this approach which are: i) the downward band bending at the ITO/Si 24 

interface that needs to be circumvented by employing a highly doped p
+
-Si layer at the interface in 25 

order to ensure an efficient hole collection,[37] ii) the low hole conductivity of these n-type oxides[39] 26 

and iii) the low stability of ITO at harsh pH.[41] A recent very interesting report demonstrates that 27 

thick (~100 nm) layers of spray-deposited SnOx on n-Si produces a high barrier heterojunction that can 28 

be employed for promoting OER with a photovoltage of ~620 mV for 100 h when interfaced with 29 

highly-active OER cocats.[42] 30 
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 1 

Fig.2. Schematic band diagrams showing the charge transfer mechanisms occurring for the three main Si/p/c 2 
configuration reported, after equilibration in the dark (top row) and in photoelectrochemical operation (bottom 3 
row), the Fermi level (EF) of each component, as well as the hole (EF,p) and electron (EF,n) quasi-Fermi levels are 4 
represented by dashed lines. a) The barrier height is imposed by the heterojunction formed between n-Si and the 5 
thick oxide protecting layer, the cocat forms an ohmic contact with the oxide. The charge transfer from Si to the 6 
cocat is achieved by charge conduction through the oxide layer (here, by hole conduction through defect bands). 7 
b) The barrier height is imposed by the Schottky junction between n-Si and the metal cocat. This configuration is 8 
referred to as MIS junction when the charge transfer from Si to the cocat occurs via tunneling through a thin 9 
dielectric film. c)  The barrier height is controlled by the buried np

+
-Si homojunction. Efficient charge transfer at 10 

the Si/TCO interface is usually promoted by employing a highly doped Si interfacial layer to reduce the thickness 11 
of the interfacial space charge layer. 12 

2-2- Combining protection and activity in a single layer 13 

An alternative and highly beneficial strategy that has also been employed to decrease the 14 

manufacturing costs consists in employing a coating material that acts as a Si protection layer and, as 15 

the same time, as a cocat. We refer here to this configuration as Si/co-catalytic protection layer (Si/pc). 16 

Note that in such a configuration, even though only one layer is deposited over the Si surface, an 17 

additional conditioning step of the surface is often required to generate catalytic species on that layer, 18 

sometimes that step is spontaneously occurring during OER. Therefore, if the Si/pc is more attractive 19 

than the Si/p/c configuration in terms of fabrication, these systems are, in fine, relatively identical from 20 

a structural point of view. Interestingly, only one recent report has described a Si/pc photoanode 21 

operating at low pH (employing an Ir-based film on np
+
-Si).[43] In contrast, the use of the Si/pc 22 

configuration for photoanodes operating at high pH has been lately investigated by several groups. If 23 

this may first seem unexpected considering the fact that alkaline media are harsher for Si (Fig.1b) it 24 

can be explained by the fact that these conditions allow employing abundant OER-active materials 25 

(based on Fe, Mn, Co, and Ni).[14] So far, very little has been reported on FeOx[44] and MnOx[45] 26 

layers, which, when employed as films in the range of ~10 nm on n-Si, are known to promote OER 27 
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with photovoltages partially controlled by the liquid phase. [44,45] More work has been focused on 1 

CoOx layers, for instance, thin (~2-5 nm) CoOx layers deposited by plasma-enhanced ALD or 2 

sputtering have been employed to protect crystalline[46] or amorphous Si homojunctions.[47] In 3 

particular, annealing these films allowed to generate a catalytically-active Co(OH)2 outer layer on the 4 

top of a dense and highly impermeable Co3O4 which was very efficient on np
+
-Si.[48] Thicker (~50 5 

nm), ALD-deposited CoOx coatings have been also employed on n-Si with which they form a 6 

heterojunction affording a ~570 mV photovoltage and can protect the system for 100 days of 7 

continuous electrolysis.[49] Most of the Si/pc systems are based on Ni layers. If it has been reported 8 

that ~75 nm-thick transparent and antireflective NiOx layers (deposited by reactive sputtering) 9 

generate a rather low barrier heterojunction with n-Si (and can only afford a ~200 mV photovoltage 10 

for OER),[50] it can be considerably improved by incorporating a CoOx interlayer.[51] Such NiOx 11 

coatings can be employed as conductive, protective and catalytic layers for crystalline[50] and 12 

amorphous[52] Si homojunctions as well as Si heterojunctions.[52] In addition, sputtered, ~50 nm-13 

thick NiO[53] and NiCoOx[54] have been used as p-type conductive catalytic layers to protect np
+
- 14 

and back-illuminated n
+
pp

+
-Si homojunctions. It has been clearly shown that the electrochemical 15 

performance of these layers is affected by the presence of Fe in solution and have been employed for 16 

300[53] and 72 h[54] of operation, respectively. It is worth noting that the deliberate or unintentional 17 

doping of Ni-based coatings with Fe atoms (that can originate from the materials employed during 18 

water electrolysis experiments) is quite important as Fe is known to strongly affect the catalytic 19 

performance of Ni-based catalysts, for instance, it integrates into the highly-active OER phase NiOOH 20 

to produce Ni(Fe)OOH, that can lead to an improvement or a degradation of the OER thermodynamics 21 

and kinetics, depending on the Fe content.[77] Thin Ni metal layers, deposited by e-beam or thermal 22 

evaporation on n-Si, have also been employed for manufacturing Si/pc photoanodes. The first 23 

publication on this system reported the considerable effect of the layer thickness on the 24 

photoelectrochemical properties as well as the importance of the interfacial SiOx layer.[55] Optimal 25 

performance was obtained for 2 nm-thick films which afforded ~500 mV photovoltage and 12 h 26 

stability at pH 14. This photovoltage value is much higher than the one expected for a classical n-27 

Si/SiOx/Ni Schottky barrier and this striking behavior, obtained for such a simple system, has triggered 28 

a broad interest. In particular, it has been recently shown that the failure is caused by the thickening of 29 

the SiOx,[56] associated with the permeation of the Ni/NiOx during operation. The n-Si/SiOx/Ni 30 

photoanodes have been first described as a classical MIS device (Fig.2b) where the partially oxidized 31 

Ni layer homogeneously coat Si, but, with a particular case for ultrathin layers (2 nm) where n-Si 32 

equilibrates with both the Ni and the liquid phase, affording the higher built-in potential.[55] If this 33 

description has been confirmed for thick Ni layer,[57,58] a recent study employing the dual working 34 

electrode technique (which allows decoupling the electrochemical activity of the coating from the 35 

overall photoanode response) allowed to get more insights on the operating mechanism of n-Si 36 

photoanodes coated with ultrathin Ni layers.[58] First, it revealed that the junction controlling the 37 
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photovoltage is buried and dynamic as it is not influenced by the solution potential but evolves during 1 

electrochemical conditioning. However, it clearly pointed out that the activity of this system was not 2 

entirely controlled by the chemical transformation of Ni to a more active cocat phase during 3 

conditioning, but is mostly due to a structural change at the solid/solid interface.[58] It was proposed 4 

that during activation the majority of the Ni
0
 layer was converted into Ni(OH)2 which is OER active, 5 

but, more importantly, permeable to the electrolyte, causing the anodization of Si to insulating SiOx in 6 

the regions of contact with the electrolyte. Besides, X-ray photoelectron spectroscopy revealed the 7 

presence of Ni
0
 remaining in the film. These elements allowed a better understanding of this surface, 8 

considered now as an inhomogeneous buried junction operating in the pinch-off regime, as shown in 9 

Fig.3c (note that pinch-off will be described in section 3-2).  10 

  11 

3- Inhomogeneously coated Si photoanodes 12 

3-1- Inhomogeneous photoanodes not in the pinch-off regime 13 

3-1-1- Photoanodes patterned by vapor deposition 14 

Using arrays of micrometer-sized cocat patterns in contact with Si instead of conformal films can be 15 

advantageous for reducing optical losses and improving light absorption by the SC. Furthermore, the 16 

protection of the uncoated surface can be addressed quite conveniently by oxidizing the uncovered Si 17 

to generate a passive SiOx layer. Several interesting examples of inhomogeneous Si photoanodes 18 

patterned with arrays of micrometer-sized cocat patches (larger than the SCL, thus not exhibiting 19 

pinch-off, see section 3-2), fabricated by a combination of clean room and physical vapor deposition 20 

techniques have been reported. For instance, Ni deposited directly on n- or np
+
-Si(111), can be 21 

employed as micro-sized catalytic patches to promote OER for durations exceeding 100 h at pH 22 

14.[59] In this case, the anodic SiOx generated in situ protects the uncoated Si during operation. This 23 

design has been employed for monitoring the local O2 production and identifying the photoanode 24 

failure modes. Another strategy consists in patterning a Si surface that is initially passivated with a 25 

thick SiO2 thermal oxide layer to ensure a long-term stability. This concept has been employed with 26 

arrays of Pt and Ti/Ni planar disks[60] as well as nanostructured Au/Ni and Au/NiFe micro-sized 27 

islands[61] on np
+
-Si for OER at alkaline pH. In these cases, however, the use of reactive ion etching 28 

is required to regioselectively remove the SiO2 before metal deposition. An attractive and original 29 

method based on localized dielectric breakdown can be employed to circumvent this technical issue. It 30 

has been shown that micrometer-sized islands of a NiFe-based cocat, deposited by e-beam evaporation 31 

directly on a 30 nm-thick thermally grown SiO2, can be electrically contacted to the underlying n-Si by 32 

exceeding the breakdown voltage. Such a procedure allows creating a conducting filament between the 33 

cocat island and the SC that promotes the conduction of photogenerated holes through the 34 

dielectric.[62] 35 
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3-1-2- Photoanodes prepared by electrochemical methods 1 

Almost all photoanode designs discussed in the previous sections require high vacuum deposition 2 

techniques. Alternative solution-based methods would not be only attractive from a financial point of 3 

view but also because they may offer new possibilities in terms of coating composition or 4 

morphology. Pioneer research has been carried out in that direction using sol-gel processes to protect 5 

n-Si but resulted in limited stability.[63] Modification techniques based on electrochemistry, such as 6 

electrodeposition, seems particularly attractive because they are usually low-cost, can be employed to 7 

deposit a wide variety of materials on conductors or SCs and they usually allow a precise control over 8 

the film thickness. Even though electrochemical techniques such as electrodeposition and anodization 9 

were early suggested to prepare Si-based photoanodes,[64] they have been scarcely employed so far, 10 

probably due to the well-established instability of Si surfaces in liquid electrolytes and the fear of 11 

generating a fully-insulating SiOx layer during surface modification (section 1). In addition, high 12 

vacuum techniques are usually preferred as they typically produce high density and pinhole-free 13 

coatings, which is not always the case for electrodeposited layers, at the expense of long-term stability. 14 

However, in view of the recent knowledge on the Si/electrolyte interface and the interest given on the 15 

pinch-off effect (see section 3-2), it does not seem worthless to explore the use of electrochemical 16 

processes applied to the manufacturing of Si-based photoanodes, and experimental works readily 17 

revealed that such methods could lead to photoanodes with remarkable performance. In the following, 18 

we will first describe the very few examples using electrochemical methods (mostly electrodeposition) 19 

to fabricate Si-based photoanodes that are not operating in the pinch-off regime and we then will 20 

discuss the fabrication of pinched-off photoanodes (next section). Recently, electrodeposition of 21 

inhomogeneous metal layers has been employed to produce photoanodes in the Si/pc configuration to 22 

protect Si buried homojunctions. Thin (~6 nm) and discontinuous NiFe metal films exhibited great 23 

performance on np
+
-Si, which afforded a photovoltage of 620 mV and a stability >12 h at pH 14.[65] 24 

In addition, the scalability of electrochemical processes applied to Si-based materials has been 25 

demonstrated by a recent publication that reported the electrodeposition of large and flexible NiFe 26 

films and their subsequent anodization via a continuous roll-to-roll process to form a highly active 27 

OER cocat layer. Its integration to an amorphous Si solar cell has allowed oxidizing water in 1 M 28 

KOH from on onset potential as low as +0.6 V vs RHE and an operation time of 12 h.[66] 29 

3-2- Pinched-off photoelectrodes 30 

The pinch-off phenomenon has been first introduced in the field of solid state physics as a way to 31 

explain the behavior of inhomogeneous Schottky junctions.[67] In such a typical system, the SC 32 

surface is brought in contact with two phases leading to an inhomogeneity of the depletion region. If 33 

these systems were previously typically considered as separated heterojunctions operating in parallel, 34 

several results revealed the non-validity of this model when the characteristic size of one junction 35 

became comparable or fell below the thickness of the space-charge layer (SCL).[68] This size effect 36 
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has been attributed to the pinch-off effect in the early eighties,[69] and was rationalized in the 1 

nineties.[70] The pinch-off effect is illustrated by Fig.3b in the case of a low-doped n-Si surface that 2 

contains two interfaces of different barrier heights: a low barrier region, spatially distributed in areas 3 

of a characteristic size smaller than the SCL and a high barrier region that covers the rest of the Si 4 

surface. In this size regime, the depletion of majority carriers required to reach equilibrium at the high 5 

barrier contact extends under the low barrier contact, affecting the local band bending (creating a 6 

“saddle point” under the high barrier-region) and increases the overall barrier height (Fig.3a vs 7 

Fig.3b).[67] The pinch-off effect has been early observed in the case of inhomogeneous n-Si/metal 8 

junction in contact with liquid phases.[71,72] Notably, a study has shown that the behavior of n-Si 9 

covered with Ni patches immersed in an organic electrolyte containing a reversible redox couple (to 10 

create a high barrier Si/electrolyte region at the Ni-free regions) behaves in good agreement with the 11 

pinch-off theoretical predictions when the Ni patch size was below 100 nm.[73] It is obvious that the 12 

pinch-off effect can be very advantageous to fabricate Si-based OER photoanodes and compensate the 13 

losses caused by Fermi-level pinning, often generated at SC/metal junctions. In addition, it combines 14 

very well with the hydrogenated Si (Si-H) surface for which surface energetics can be finely tuned by 15 

chemical surface functionalization.[74] More importantly, interfacial SiOx can be easily employed to 16 

passivate Si and generate a high barrier region with a low density of interface states. Thus, pinched-off 17 

photoelectrodes could be, in principle, easily fabricated by partially modifying Si with small particles 18 

of an appropriate metal and oxidizing the non-coated area. In addition to the high photovoltage 19 

generated by the effect, in this configuration, the photogenerated holes will mainly flow through the 20 

less resistive pathway and will be collected at the metal particles where they can be employed for 21 

OER. 22 
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 1 

Fig.3. a,b) Schematic energy diagrams, adapted from Nakato et al. (reference[72]), for a n-type SC in contact 2 
with a metal patch that produces a low barrier height (B

M
) region and a second phase that produces a high 3 

barrier height (B
E
) region (q is the elementary charge). In a) the metal patch is large and in b) the metal patch is 4 

small with respect to the depletion width. In blue are represented the energies of the Fermi level (EF dotted line), 5 
the valence band (EVB) and the conduction band (ECB) of the SC and in red is represented the EF of the metal. 6 
The full black lines represent the distribution of the potential barrier inside the SC, the dotted black line represent 7 
the potential distribution under a metal patch and the dark yellow line represent the depletion region. In Fig.3b, 8 
because of the small size of the metal patches, the surface is pinched-off and the effective barrier height (Beff) is 9 
much higher than B

M
. c) Scheme, adapted from Boettcher et al. (reference [58]), showing the interface of an n-10 

Si/SiOx/Ni, where the Ni is ultrathin. During operation, the Ni surface is partially converted in catalytic and 11 
permeable Ni(OH)2/NiOOH, allowing Si to oxidize and to form a SiOx passive layer. This surface is thought to be 12 
pinched-off (as in Fig.3b), explaining the high value of obtained photovoltages. d) Scheme showing the interface 13 
of a pinched-off inhomogeneous MIS photoanode fabricated by electrodeposition of Ni

0 
on n-Si (section 3-3). 14 

 15 

3-3- Pinched-off photoanodes prepared by electrochemical methods 16 

Typical cathodic electrodeposition of metals occurs via a nucleation-growth mechanism which makes 17 

this method particularly relevant for the decoration of an n-Si surface with dispersed metal 18 

nanoparticles (NPs), causing a minimal light interference and inducing the pinch-off phenomenon. The 19 

first example of a rather stable (~2 h at pH 14 and 25 h at pH 9) photoanode composed of nanometer-20 

sized metal electrodeposits on n-Si was reported in 2015. Here, inhomogeneous Co islands were 21 

reported to generate high photocurrents (> 30 mA cm
-2

) and surprisingly high photovoltages, greater 22 

than the one obtained with conformal n-Si/CoSi2 and n-Si/SiOx/Co solid junctions.[75] If the authors 23 
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could not ascribe this behavior to a precise physical phenomenon, they clearly demonstrated the 1 

importance of i) the Co inhomogeneity to generate different barrier heights and ii) the SiOx layer, and, 2 

showed that the photovoltage was independent of the solution potential. In addition, they also 3 

suggested that the CoOOH catalytic layer, formed around the Co
0
 particles could play a role in the 4 

interface energetics and may improve charge extraction.[75] This report set an important landmark as 5 

it showed for the first time that electrodeposited inhomogeneous coatings can be used to fabricate 6 

photoanodes with remarkable performance without employing a buried Si homojunction and a 7 

homogeneous protection layer. Two years later, we have demonstrated that n-Si modified with 8 

dispersed hemispherical Ni NPs by cathodic electrodeposition can be employed to trigger OER in 9 

alkaline media with an onset potential more negative than the O2/H2O formal potential and a higher 10 

stability[76] than those previously reported for Co-based electrodes.[75] We have also evidenced a 11 

strong correlation between the Ni coverage and the photoelectrochemical performance. Indeed, the 12 

highest photovoltages and photocurrents were obtained for low Ni coverage while an increase of the 13 

Ni loading decreased the performances (but increased the stability). The electrodes fabricated using 14 

this method exhibit photovoltages that can exceed 400 mV and can operate for more than 10 h at pH 15 

14.[76] Actually, the behavior of these photoanodes is very similar to that reported for ultrathin 16 

conformal layers of Ni (described in section 2-2, see Fig.3c), which suggests that both of them are 17 

operating in the pinch-off regime, as shown in Fig.3d.[55] We recently reported the effect of 18 

photoelectrochemical activation, which, by producing a catalytic Ni(OH)2/NiOOH shell, doped with 19 

Fe (thus referred here as Ni(Fe)(OH)2/Ni(Fe)OOH), around the Ni
0
 particles, can considerably 20 

improve the OER kinetics.[77] In addition, a stability study revealed that the protection originates 21 

from the oxidation of the uncoated Si which readily passivates the Si exposed to the solution and 22 

protects it, in operando, from alkaline etching. Besides, unexpected stability was reported at the open 23 

circuit potential and it was found that the presence of the Ni particles on the surface slowed down 24 

electrode deactivation with a more pronounced effect under illumination.[77] After our initial report, 25 

several groups have employed the same strategy to fabricate pinched-off photoanodes. For instance, 26 

the effect of annealing was studied and the thermal oxidation of the Ni particles was found to improve 27 

the photovoltage and the photocurrent, which was attributed to the partial conversion of Ni to a p-type 28 

NiOx that increased the pinched-off barrier height underneath the Ni NPs.[78] An interesting study has 29 

reported the effect of the thickness of the Ni(OH)2 layer grown on the Si NPs. In this case, the 30 

Ni(OH)2 was electrochemically deposited over the Ni particles,[79] which produced essentially the 31 

same effect as electrochemical conditioning,[77] except that the Ni core remained unaffected during 32 

deposition. It was shown that the presence of the Ni(OH)2 coating considerably improved the open 33 

circuit photovoltage and therefore the performance for OER. Ni(OH)2 was assumed to be responsible 34 

for the increase in the overall barrier height due to a p-type nature,[79] which may be the subject of 35 

debate because Ni(OH)2 is typically insulating and electrolyte permeable.[80] Also, this 36 

electrodeposition process has been applied to microstructured n-Si.[81] Recently, we have reported the 37 
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integration of these pinched-off photoanodes in an “all Si”-based monolithic photoelectrochemical cell 1 

that quantitatively produced H2 directly under solar illumination,[82] showing that this type of 2 

photoanode can be employed for unassisted solar water splitting.  3 

Furthermore, owing to the very negative redox potential of the SiO2/Si couple, bare Si can be directly 4 

employed to reduce certain metal salts at its surface without applying an external bias. Although being 5 

of an electrochemical nature, this process, referred to as electroless deposition, is spontaneous and 6 

does not require the use of a potentiostat. It has been recently employed to spontaneously modify n-Si 7 

with Ni particles,[83] leading to photoanodes with a considerably different structure as, in this case, a 8 

submicrometer-thick porous SiO2 layer comprising conductive Ni filaments was formed between the 9 

Si and the Ni cocat during the electroless deposition process. Interestingly, the reported 10 

photoelectrochemical properties of these photoanodes were very similar to those obtained by Ni 11 

cathodic electrodeposition, suggesting that the pinch-off effect might also happen at the 12 

Si/inhomogeneous Ni-SiO2 interface despite structural differences and the interface complexity. 13 

 14 

4- Concluding remarks 15 

Si-based water-splitting PECs could potentially play a role in a sustainable energy economy, however, 16 

this would be only feasible if the current bottlenecks that are: i) their cost and ii) their stability are 17 

successfully addressed. In order to overcome this challenge, considerable research effort has been 18 

made on Si-based photoanodes, that suffer from serious deleterious mechanisms, leading to their fast 19 

deactivation (section 1). So far, homogeneity has been the paradigm in the search for stable and 20 

efficient Si-based photoanodes, which involved the use of physical vapor deposition, chemical vapor 21 

deposition or ALD to produce conformal, pinhole-free, oxide thin films ensuring Si protection and 22 

efficient catalysis during operation (section 2). The recent progress in this area has been considerable, 23 

as demonstrated by several reports showing the operation of highly stable Si-based photoanodes with 24 

operation time in the range of 100 h and up to more than 2,000 h.[26]  25 

On the other hand, recent reports on photoanodes based on the MIS configuration have shown that, 26 

when properly engineered,[32,35] such interfaces can exhibit excellent OER performance, 27 

approaching the one obtained with buried Si homojunctions. The interest of these studies is twofold as 28 

they may potentially decrease the process costs related to the fabrication of Si-based photoanodes by 29 

avoiding the need for homojunctions and also because they point out principles that may be transposed 30 

to other SC materials, for which homojunctions cannot be created. A remarkable example in the frame 31 

of Si/metal junction is the n-Si/Ni junction,[55] which is prepared by coating n-Si with an ultrathin 32 

layer of Ni. Although this junction is initially homogeneous, a recent experimental study has shown 33 

that its outstanding performance originates from its inhomogeneity, which is generated during 34 

operation.[58] It is, thus, intriguing to note that considerable improvement can arise from the 35 
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transformation of a homogeneous phase to a highly inhomogeneous (and partially electrolyte-1 

permeable) phase while keeping a decent stability. Such findings should trigger the interest in novel 2 

forms of protection, breaking with the classical strategies, which could involve simpler liquid-phase 3 

fabrication methods. 4 

In this context, electrochemical modification methods may be perfect candidates for preparing 5 

efficient water-splitting photoanodes. This has been recently suggested by recent reports on randomly-6 

dispersed Co[75] and Ni[76,77] NP arrays, generated by electrodeposition on n-Si. In these systems, a 7 

large portion of the Si is exposed to the electrolyte, which induces its anodic passivation under 8 

operation and favors pinch-off (section 3-2), promoting high built-in voltages. The simplicity of Ni 9 

electrodeposition has quickly driven several research groups to employ this method successfully which 10 

has led to stability in the range of 10 h at pH ~14[76] and up to 300 h at pH 9.[79] Such a stability 11 

could first seem unexpected considering such corrosive environments for Si, and that the largest Si 12 

part is covered by nothing but its anodic oxide. If these unexpected recent reports are exciting, the 13 

performance of inhomogeneous photoanodes manufactured this way is still far from their conformal, 14 

oxide-coated, counterparts in terms of photovoltage[42] but also stability.[26] Nevertheless, it is 15 

expected that considerable progress could be obtained through a better understanding of the pinch-off 16 

effect as well as a fine characterization of the Si/metal, Si/SiOx and SiOx/metal interfaces, that all seem 17 

to play an important role for photovoltage generation and stability.[77] A detailed comprehension of 18 

each component of these complex inhomogeneous surfaces may open doors for improvement of the 19 

photoanode lifetime. It is envisioned that ameliorations are within reach by applying simple chemical 20 

treatments, for instance, improving the oxide quality or generating interfacial silicides. 21 

Electrodeposition conveniently allows triggering layer by layer modifications at the cocat level 22 

(allowing the generation of core-shell structures) and thus, is expected to quickly lead to progress in 23 

the optimization the catalytic aspect of these photoanodes.[77,79,84] In addition, progress will 24 

probably arise from studying other important considerations such as cocat geometry, adhesion, and 25 

surface distribution. Attention should also be paid to a crucial but often neglected aspect that is the 26 

photoanode stability when unbiased. Indeed, all photoanodes described in this short review are 27 

expected to be integrated into water-spitting PECs where they will be subject to dark cycles (typically 28 

overnight) which may be strongly deleterious to, especially at high pH. 29 
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