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SRT2
2 DOES NOT IMPLY RT2

2 IN ω-MODELS

BENOIT MONIN AND LUDOVIC PATEY

Abstract. We complete a 40-year old program on the computability-theoretic analysis of
Ramsey’s theorem, starting with Jockusch in 1972, and improving a result of Chong, Slaman
and Yang in 2014. Given a set X, let [X]n be the collection of all n-element subsets of X.
Ramsey’s theorem for n-tuples asserts the existence, for every finite coloring of [ω]n, of an
infinite set X ⊆ ω such that [X]n is monochromatic. The meta-mathematical study of Ramsey
has a rich history, with several long-standing open problems and seminal theorems, including
Seetapun’s theorem in 1995 and Liu’s theorem in 2012 about Ramsey’s theorem for pairs. The
remaining question about the study of Ramsey’s theorem from a computational viewpoint was
the relation between Ramsey’s theorem for pairs (RT2

2) and its restriction to stable colorings
(SRT2

2), that is, colorings admitting a limit behavior. Chong, Slaman and Yang first proved
that SRT2

2 does not formally imply RT2
2 in a proof-theoretic sense, using non-standard models of

reverse mathematics. In this article, we answer the open question whether this non-implication
also holds within the framework of computability theory. More precisely, we construct a ω-
model of SRT2

2 which is not a model of RT2
2. For this, we design a new notion of effective forcing

refining Mathias forcing using the notion of largeness classes.

1. Introduction

In this article, we prove that the restriction of Ramsey’s theorem for pairs to stable colorings
is not equivalent to its full version over ω-models1. This answers a major open question of
modern reverse mathematics, asked by Cholak, Jockusch and Slaman [2] and Chong, Slaman
and Yang [4] and completes the 40-years old program started by Jockusch in 1972 about the
analysis of Ramsey’s theorem from a computability-theoretic viewpoint.

1.1. Reverse mathematics and Ramsey’s theorem

Reverse mathematics is a foundational program started by Harvey Friedman in 1975, whose
goal is to find the weakest axioms needed to prove ordinary theorems. It uses the framework of
second-order arithmetics, with a base theory, RCA0, capturing “computable mathematics”. The
early study of reverse mathematics revealed the existence of four linearly ordered big systems
WKL, ACA, ATR, and Π1

1CA (in increasing order), such that, given an ordinary theorem, it is
very likely either to be provable in RCA0, or provably equivalent to one of the four systems in
RCA0. These systems together with RCA0 are known as the “Big Five”. By its success in finding
the exact axioms needed for the large majority of theorems and its foundational consequences,
in particular its partial answer to Hilbert’s program of finitistic reductionnism [25], reverse
mathematics is cited among the 100 key breakthroughs in mathematics [10]. Among the Big
Five, WKL stands for “weak König’s lemma”, and asserts that every infinite binary tree admits
an infinite path, while ACA is the comprehension axiom restricted to arithmetical formulas.
WKL can be thought of as capturing compactness arguments, and ACA is equivalent to the
existence, for every set X, of the halting set relative to X. See Simpson [26] for an introduction
to reverse mathematics.

Among the theorems studied in reverse mathematics, Ramsey’s theorem received a special
attention from the community, since Ramsey’s theorem for pairs historically was the first theo-
rem known to escape the Big Five phenomenon. Given a set of integers X, [X]n denotes the set
of all n-element subsets over X. For a coloring f : [ω]n → k, a set of integers H is homogeneous
if f is constant over [H]n.

1The authors are thankful to Damir Dzhafarov for insightful comments and discussions.
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Statement (Ramsey’s theorem). RTnk : “Every k-coloring of [ω]n admits an infinite homoge-
neous set”.

In particular, RT1
k is the infinite pigeonhole principle for k-partitions. Ramsey’s theorem

and its consequences are notoriously hard to analyse from a computability-theoretic viewpoint.
Jockusch [14] proved that RTnk is equivalent to ACA whenever n ≥ 3, thereby showing that
RTnk satisfies the Big Five phenomenon. The question of whether RT2

k implies ACA was a
longstanding open question, until Seetapun [24] proved that RT2

k is strictly weaker than ACA.
Later, Jockusch [14, 15] and Liu [17] showed that RT2

k is incomparable with WKL, and therefore
that RT2

k is not even linearly ordered with the Big Five. See Hirschfeldt [11] for an introduction
to the reverse mathematics of Ramsey’s theorem.

1.2. Stable Ramsey’s theorem for pairs and cohesiveness

In order to understand better the computational and proof-theoretic content of Ramsey’s
theorem for pairs, Cholak, Jockusch and Slaman [2] decomposed it into two statements, namely,
stable Ramsey’s theorem for pairs, and cohesiveness. A coloring of pairs f : [ω]2 → k is stable
if for every x ∈ ω, limy f({x, y}) exists. An infinite set C is cohesive for a countable sequence

of sets R0, R1, . . . if C ⊆∗ Ri or C ⊆∗ Ri for every i ∈ ω, where ⊆∗ means inclusion but for
finitely many elements.

Statement (Stable Ramsey’s theorem for pairs). SRT2
k: “Every stable k-coloring of [ω]2 admits

an infinite homogeneous set”.

Statement (Cohesiveness). COH: “Every countable sequence of sets has a cohesive set”.

Cholak, Jockusch and Slaman [2] and Mileti [19] proved the equivalence over RCA0 between
RT2

k and SRT2
k ∧COH. They naturally wondered whether this decomposition is non-trivial,

in the sense that both statements SRT2
k and COH are strictly weaker than RT2

k. Hirschfeldt,
Jockusch, Kjoss-Hanssen, Lempp and Slaman [13] partially answered the question by proving
that COH is strictly weaker than RT2

2 over RCA0. The question of whether SRT2
2 implies RT2

2

over RCA0 remained a long-standing open question. Since RT2
2 is equivalent to SRT2

2 ∧COH,
this is equivalent to the question of whether SRT2

2 implies COH over RCA0.
From a computability-theoretic viewpoint, stable Ramsey’s theorem for pairs and two k colors

is equivalent to combinatorially simpler statement called D2
k.

Statement. Dnk : “For every ∆0
n k-partition of ω, there is an infinite subset of one of the parts”.

Chong, Lempp and Yang [3], proved that the computable equivalence between RT2
k and D2

k
also holds over RCA0. The cohesiveness principle also admits a nice computability-theoretic
characterization. Jockusch and Stephan [16] proved that the sequence of all primitive recursive
sets is a maximally difficult computable instance of COH. The cohesive sets for this sequence
are called p-cohesive and their Turing degrees are precisely the ones whose jump is PA over ∅′,
that is, the degrees whose jump can compute a path through any ∆0

2 infinite binary tree. The
following computability-theoretic question is therefore closely related to the previous question.

Question 1.1. Does every ∆0
2 set have an infinite subset in it or its complement whose jump is

not of PA degree over ∅′?

One natural approach to separate SRT2
2 from RT2

2 would be to prove that every ∆0
2 set admits

an infinite subset G in it or its complement of low degree, that is, G′ ≤T ∅′. However, Downey,
Hirschfeldt, Lempp and Solomon [6] constructed a ∆0

2 set with no low infinite subset of it or
its complement. Very surprisingly, Chong, Slaman and Yang [4] answered the SRT2

2 vs RT2
2

question by constructing a model of RCA0 +SRT2
2 with only low sets, which is not a model

of RT2
2. The solution to this apparent paradox was the use of a non-standard model of RCA0

in which Σ0
2 induction fails. The sets of this model are low within the model, but not low in

the meta-theory. The construction of Downey, Hirschfeldt, Lempp and Solomon [6] requires Σ0
2

induction to be carried out.
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Although the proof of Chong, Slaman and Yang [4] formally separated SRT2
2 from RT2

2 over
RCA0, the separation was not fully satisfactory, for two reasons. First, it leaves open the question
of whether (∀k) SRT2

k implies RT2
2 which as also asked by Cholak, Jockusch and Slaman [2].

Indeed, (∀k) SRT2
k implies Σ0

2 induction, and therefore cannot have any models with only low
sets. The second reasons is that the separations of Chong, Slaman and Yang [4] exploits the
failure of a property which is known to hold in standard models. A structure in second-order
arithmetics is a tuple (M,S, 0, 1,+,×, <) where M denotes the set of integers, together with
some constants 0 and 1, some binary operations + and × and an order relation <. S is a
collection of subsets of M representing the second-order part. Among these structures, we are
particularly interested in those whose first-order part consists of the standard integers, together
with their natural operations. These structures are called ω-structures, and are fully specified by
their second-order part S. Chong, Slaman and Yang [4] naturally asked the following question:

Question 1.2. Is every ω-model of RCA0 ∧SRT2
2 a model of RT2

2?

This question had an important impact in the development of reverse mathematics, and
computability theory in general, not only by its self interest, but also by range of related
questions, new techniques and intellectual emulation it generated in the community. Several
articles are dedicated to this question [1, 3, 5, 8, 7, 9, 12, 20, 21, 22] and led to the rediscovery
of Weihrauch degrees by Dorais, Dzhafarov, Hirst, Mileti and Shafer [5], and the design of
the computable reduction by Dzhafarov [8]. Dzhafarov [8, 9] obtained partial separations by
proving that COH is neither Weihrauch reducible, nor strongly computably reducible to SRT2

2.
The most recent improvement is a proof by Dzhafarov and Patey [7] proving that COH is not
Weihrauch reducible to SRT2

2 even when finitely many Turing functionals are allowed.
In this article, we answer the question by separating RCA0 ∧SRT2

2 from RT2
2 on ω-models.

For this, we prove the following main theorem.

Theorem 1.3 For every set Z whose jump is not of PA degree over ∅′ and every ∆0,Z
2 set A,

there is an infinite subset G ⊆ A or G ⊆ A such that (G⊕ Z)′ is not of PA degree over ∅′.

This theorem is based on a second-jump control initially developed by Cholak, Jockusch and
Slaman [2], and then successively refined by Wang [27], Patey [22] and Monin and Patey [20].
The techniques are combined with combinatorial ideas of Liu [17, 18]. Theorem 1.3 can be
iterated to construct an ω-model of RCA0 ∧SRT2

2 containing no set whose jump is of PA degree
over ∅′, from which we deduce the following theorem.

Theorem 1.4 There is an ω-model of RCA0 ∧SRT2
2 which is not a model of RT2

2.

This answers a question of Chong, Slaman and Yang [4], but also of Cholak, Jockusch and
Slaman [2] since any ω-model of SRT2

2 is a model of (∀k) SRT2
k.

By being an adaptation and generalization of the first and second-jump control of Cholak,
Jockusch and Slaman, the nature of the proof of Theorem 1.3 supports the idea that this
framework is the appropriate one for the computable and proof-theoretic analysis of Ramsey-
like theorems. This gives a reasonable hope to prove general decidability theorems on Ramsey’s
theorem, in the spirit of [23]

1.3. Definitions and notation

A binary string is an ordered tuple of bits a0, . . . , an−1 ∈ {0, 1}. The empty string is written
ε. A binary sequence (or a real) is an infinite listing of bits a0, a1, . . . . Given s ∈ ω, 2s is the set
of binary strings of length s and 2<s is the set of binary strings of length < s. As well, 2<ω is
the set of binary strings and 2ω is the set of binary sequences. Given a string σ ∈ 2<ω, we use
|σ| to denote its length. Given two strings σ, τ ∈ 2<ω, σ is a prefix of τ (written σ � τ) if there
exists a string ρ ∈ 2<ω such that σρ = τ . Given a sequence X, we write σ ≺ X if σ = X�n for
some n ∈ ω. A binary string σ can be interpreted as a finite set Fσ = {x < |σ| : σ(x) = 1}. We
write σ ⊆ τ for Fσ ⊆ Fτ . We write #σ for the size of Fσ.
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Figure 1. Summary diagram of implications between statements over RCA0,
and over ω-models. All the implications are strict, and the missing implications
are separations.

A binary tree is a set of binary strings T ⊆ 2<ω which is closed downward under the prefix
relation. A path through T is a binary sequence P ∈ 2ω such that every initial segment belongs
to T .

A Turing ideal I is a non-empty collection of sets which is closed downward under the
Turing reduction and closed under the effective join, that is, (∀X ∈ I)(∀Y ≤T X)Y ∈ I and
(∀X,Y ∈ I)X⊕Y ∈ I, where X⊕Y = {2n : n ∈ X}∪{2n+1 : n ∈ Y }. A Scott set is a Turing
ideal I such that every infinite binary tree T ∈ I has a path in I. In other words, a Scott set
is the second-order part of an ω-model of RCA0 +WKL. A countable Turing ideal M is coded
by a set X if M = {Xn : n ∈ ω} with X =

⊕
nXn. A formula is Σ0

1(M) (resp. Π0
1(M)) if it is

Σ0
1(X) (resp. Π0

1(X)) for some X ∈M.
Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈ B)[x < y]. We

write A ⊆∗ B to mean that A − B is finite, that is, (∃n)(∀a ∈ A)(a 6∈ B → a < n). A k-cover
of a set X is a sequence of sets Y0, . . . , Yk−1 such that X ⊆ Y0 ∪ · · · ∪ Yk−1.

2. Background and sketch of the proof

In this section, we give a sketch of the proof that every ∆0
2 set A admits an infinite subset in

it or its complement, whose jump is not of PA degree relative to ∅′. Many claims are formally
proven in their full generality in Section 3. The proof is done by a variant of Mathias forcing
with an effective second-jump control, that is, a notion of forcing whose forcing relation for Σ0

2

and Π0
2 formulas is Σ0

2 and Π0
2, respectively. In the remainder of this section, fix a ∆0

2 set A and
let A0 = A and A1 = A.

2.1. First-jump control

Cholak, Jockusch and Slaman [2] designed a notion of forcing for constructing subsets of A0 or
A1, with a good first-jump control. This notion of forcing is a variant of Mathias forcing whose
conditions are tuples (σ0, σ1, X) where σ0 ⊆ A0 and σ1 ⊆ A1 are finite strings representing the
stem of the two sets G0 ⊆ A0 and G1 ⊆ A1 that we are building. The set X ⊆ ω is an infinite
set belonging to some fixed Scott set M, and serves as a reservoir of elements to add to the
stems σ0 and σ1. For example, by the low basis theorem, X can be chosen to be of low degree.
We furthermore require that minX > max(σ0, σ1). According to the intuition, a condition
d = (τ0, τ1, Y ) extends a condition c = (σ0, σ1, X) (written d ≤ c) if the reservoir gets more
restrictive, that is, Y ⊆ X, and if the stems are extended only with elements coming from the
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reservoir X, that is, σi � τ i and τ i − σi ⊆ X ∩Ai. The combinatorics of CJS provide a way to
decide Σ0

1 formulas without referring to the set A which is computationally too complex for the
question.

Definition 2.1. Let c = (σ0, σ1, X) be a condition, i < 2 and Φe(G, x) be a ∆0 formula.

(a) c 
i (∃x)Φe(G, x) if there is some x ∈ ω such that Φe(σ
i, x) holds.

(b) c 
i (∀x)¬Φe(G, x) if for every x ∈ ω and every ρ ⊆ X, ¬Φe(σ
i ∪ ρ, x) holds.

Note that the set A does not appear in the definition of the forcing relation for Π0
1 formulas.

The forcing relation for Σ0
1 and Π0

1 formulas is therefore Σ0
1(X) and Π0

1(X), respectively, where
X is the reservoir of the condition. There is no reason to consider that either a Σ0

1 formula or
its negation can be forced on each side of a condition. However, the following forcing question
which is at the heart of the CJS combinatorics ensures that this can be achieved on at least one
side.

Definition 2.2. Given a condition c = (σ0, σ1, X) and two ∆0 formulas Φe0(G, x) and Φe1(G, x),
define c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x) to hold if for every 2-cover Z0 ∪ Z1 = X, there is
some side i < 2, some x ∈ ω and some finite set ρ ⊆ Zi such that Φei(σ

i ∪ ρ, x) holds.

The forcing question for Σ0
1 formulas is also Σ0

1(X), and satisfies the following property.

Lemma 2.3 (Cholak, Jockusch and Slaman [2]) Let c be a condition, and Φe0(G, x) and
Φe1(G, x) be two ∆0 formulas.

(a) If c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x), then there is some d ≤ c and some i < 2 such
that d 
i (∃x)Φei(G, x).

(b) If c ?0(∃x)Φe0(G0) ∨ (∃x)Φe1(G1), then there is some d ≤ c and some i < 2 such that
d 
i (∀x)¬Φei(G, x).

Proof. Suppose c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x) holds. Then letting Z0 = X ∩ A0 and
Z1 = X ∩ A1, there is some side i < 2, some x ∈ ω and some finite set ρ ⊆ X ∩ Ai such that
Φei(σ

i ∪ ρ) holds. The condition d = (σi ∪ ρ, σ1−i, X ∩ (max ρ,∞)) is an extension of c such
that d 
i (∃x)Φei(G, x).

Suppose now that c ?0(∃x)Φe0(G0, x)∨ (∃x)Φe1(G1, x). Let P be the collection of all the sets
Z0 ⊕ Z1 with Z0 ∪ Z1 = X such that for every i < 2, every x ∈ ω and every finite set ρ ⊆ Zi,

Φei(σ
i ∪ ρ, x) does not hold. By assumption, P is a non-empty Π0,X

1 class, so since X belongs
to the Scott set M, there is some 2-cover Z0 ∪ Z1 = X such that Z0 ⊕ Z1 ∈ P ∩M. Let i < 2
be such that Zi is infinite. Then the condition d = (σ0, σ1, Zi) is an extension of c such that
d 
i (∀x)¬Φei(G, x). �

By a pairing argument (if for every pair m,n ∈ ω, m ∈ A or n ∈ B, then A = ω or B = ω), if
a filter F is sufficiently generic, there is some side i such that for every Σ0

1 formula ϕ(G), there
is some c ∈ F such that c 
i ϕ(G) or c 
i ¬ϕ(G). Note that in the proof of Lemma 2.3, the
new reservoir refining X is either X truncated by finitely many elements, or in the form X ∩Z0

or X ∩ Z1 for some 2-cover Z0 ∪ Z1 = ω such that Z0 ⊕ Z1 ∈M.

2.2. Second-jump control

The forcing relation for Σ0
2 formulas can be defined inductively by stating that c 
i (∃x)(∀y)Φe

(G, x, y) if c 
i (∀y)Φe(G, x, y) for some x ∈ ω. The relation c 
i (∀y)Φe(G, x, y) is Π0
1(X)

where X is the reservoir of c. In particular, whenever X is low, then the relation c 
i

(∃x)(∀y)Φe(G, x, y) is Σ0
2.

The definition of a forcing relation for Π0
2 formulas is more problematic. A Π0

2 formula
(∀x)(∃y)¬Φe(G, x, y) can bee seen as a collection of Σ0

1 properties 〈(∃y)¬Φe(G, x, y) : x ∈ ω〉
which all need to be forced. It is usually impossible to force infinitely many Σ0

1 properties
simultaneously, and one has to satisfy them one by one, by proving that for every x ∈ ω,
the set of collections forcing (∃y)¬Φe(G, x, y) is dense below c. The forcing relation c 
i

(∀x)(∃y)¬Φe(G, x, y) is therefore naturally defined by the statement

(∀x ∈ ω)(∀c1 ≤ c)(∃c2 ≤ c1)c2 
i (∃y)¬Φe(G, x, y)
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This definition of the forcing relation for Π0
2 formulas is however too complex from a computa-

tional viewpoint. The main complexity comes from the description of the reservoir refinement,
saying “there exists an infinite set Y ∈M such that Y ⊆ X.”

Cholak, Jockusch and Slaman [2] went around this problem by observing that the only
operations needed on the reservoirs to provide a good first-jump control were truncation and
splitting. In some sense, the notion of forcing should not be considered as a variant of Mathias
forcing since the refinement operation of the reservoirs does not need to be the arbitrary subset
relation. The relation c = (σ0, σ1, X) 
i (∀x)(∃y)¬Φe(G, x, y) is then translated into the
sentence “For every x ∈ ω, every τ0 and τ1 extending σ0 and σ1 with elements from X ∩ A0

and X ∩ A1, respectively, the collection of reservoirs Y such that (τ0, τ1, Y ) 6
 (∀y)Φe(G, x, y)
is large”, for some notion of largeness which enables truncation and splitting. We now give a
modern presentation of the notion of forcing designed by Cholak, Jockusch and Slaman with a
good second-jump control.

Definition 2.4. A class A ⊆ 2ω is a largeness class if it satisfies the following properties:

(1) For every X ∈ A and Y ⊇ X, Y ∈ A
(2) For every k ∈ ω and every X0 ∪ · · · ∪Xk−1 ⊇ ω, there is some j < k such that Xj ∈ A

Fix a countable Scott set M = {X0, X1, . . . } coded by a set M of low degree, that is,
M =

⊕
iXi and M ′ ≤T ∅′. Such a Scott set exists by the Low Basis theorem [15]. Fix a

uniformly M -computable enumeration U0,U1, . . . of all the upward-closed Σ0,X
1 sub-classes of 2ω

for every X ∈M. We are particularly interested in largeness classes in the form UC =
⋂
e∈C Ue

for some ∆0
2 set of indices C ⊆ ω. Given an infinite set X ∈ M, we let LX be the largeness

class of all Z ⊆ ω such that Z ∩X is infinite.
Let us enrich the previous notion of forcing with a ∆0

2 set of indices C ⊆ ω representing a
largeness class of the form UC and to which the reservoir must belong. A forcing condition is
therefore a tuple (σ0, σ1, X,C) where σ0 ⊆ A0, σ1 ⊆ A1, X is an infinite set belonging to M
(in particular of low degree), C ⊆ ω is a ∆0

2 set such that UC is a largeness class, and UC ⊆ LX .

Remark 2.5. Instead of asking X ∈ UC , we require the stronger fact that UC ⊆ LX . Since X is
of low degree, LX can be put in the form UC for some ∆0

2 set C ⊆ ω. The requirement X ∈ UC
is not strong enough, as there might be some cover Y0 ∪ . . . Yk−1 ⊇ X such that Yj 6∈ UC for
every j < k. There might also be some D ⊇ C such that UD is a largeness sub-class of UC , but
X 6∈ UD. By requiring that UC ⊆ LX , we ensure that every largeness subclass UD ⊆ UC is a
largeness class within X, that is, for every k and every k-cover Y0 ∪ · · · ∪ Yk−1 ⊇ X, there is
some j < k such that Yj ∈ UD. In particular X ∈ UD.

A condition (τ0, τ1, Y,D) extends (σ0, σ1, X,C) if (τ0, τ1, Y ) extends (σ0, σ1, X) as before,
except that D ⊇ C, which means that UD ⊆ UC . The forcing relation for Σ0

1 and Π0
1 formulas

is left unchanged. In particular, it does not depend on the largeness class UC .

Definition 2.6. Given a ∆0 formula Φe(G, x, y), a finite set σ ∈ 2<ω and some integer x ∈ ω,
let ζ(e, σ, x) be an index of the Σ0

1 class

Uζ(e,σ,x) = {X : (∃ρ ⊆ X)(∃y ∈ ω)¬Φe(σ ∪ ρ, x, y)}

In other words, Uζ(e,σ,x) is the collection of all reservoirs X such that the Mathias condition

(σ,X) does not force (∀y)Φe(G, x, y). We can now define a forcing relation for Σ0
2 and Π0

2

formulas whose complexities are Σ0
2 and Π0

2, respectively.

Definition 2.7. Let c = (σ0, σ1, X,C) be a condition, i < 2 and Φe(G, x, y) be a ∆0 formula.

(a) c 
i (∃x)(∀y)Φe(G, x, y) if there is some x ∈ ω such that c 
i (∀y)Φe(G, x, y) holds.
(b) c 
i (∀x)(∃y)¬Φe(G, x, y) if for every x ∈ ω and every ρ ⊆ X ∩Ai, ζ(e, σi ∪ ρ, x) ∈ C.

The interpretation of the forcing relation for Σ0
2 formulas is immediate. The forcing relation

for a Π0
2 formula (∀x)(∃y)¬Φe(G, x, y) ensures that for every x ∈ ω and every extension d ≤ c,

d 6
i (∀y)Φe(G, x, y). Indeed, if d = (τ0, τ1, Y,D), then for every x ∈ ω, Y ∈ UD ⊆ UC ⊆
Uζ(e,τ i,x).



SRT2
2 DOES NOT IMPLY RT2

2 IN ω-MODELS 7

Remark 2.8. Note that if a condition c forces a Σ0
2 formula on a side i < 2, then the formula

will hold on Gi =
⋃
{σi : (σ0, σ1, X,C) ∈ F} for every filter F containing c. On the other

hand, if c forces a Π0
2 formula on side i, then the filter F must be sufficiently generic for the

property to hold on Gi. More precisely, the forcing relation for a formula (∀x)(∃y)¬Φe(G, x, y)
states that for every x ∈ ω, the formula (∀y)Φe(G, x, y) will never be forced. One can deduce
that (∃y)¬Φe(G

i, x, y) whenever the side i is 1-generic, meaning that every Σ0
1 formula or its

negation is forced on side i. However, the disjunctive nature of the first-jump control guarantees
only that at least one of the sides will be 1-generic. Therefore, one can ensure only on one side
that the forced Π0

2 formulas will actually hold.

Because of the assumption that A is ∆0
2, we can design a non-disjunctive forcing question for

Σ0
2 formulas, which will be Σ0

2. This enables us to prove that for each side, the set of conditions
forcing a Σ0

2 formula or its negation is dense. However, by the previous remark, the forced
properties are only guaranteed to hold on one side.

Definition 2.9. Let c = (σ0, σ1, X,C) be a condition, i < 2 and Φe(G, x, y) be a ∆0 formula.
Let c ?`i(∃x)(∀y)Φe(G, x, y) hold if

UC ∩
⋂
{Uζ(e,σi∪ρ,x) : x ∈ ω, ρ ⊆ X ∩Ai}

is not a largeness class.

As we will see in Lemma 3.2, the forcing question holds if and only if there is a finite set
F ⊆ X and some n ∈ ω such that the class UF ∩

⋂
{Uζ(e,σi∪ρ,x) : x < n, ρ ⊆ X ∩ Ai�n} is not

a largeness class. Note that the class is Σ0,Z
1 for some Z ∈ M. A complexity analysis for the

forcing question shows that not being a largeness class for a Σ0,Z
1 class is Σ0,Z

2 (see Lemma 3.3),
hence Σ0

2 whenever Z is low. The forcing relation enjoys the following lemma, which shows in
particular that every Σ0

2 formula or its complement can be forced in each side.

Lemma 2.10 Let c be a condition, i < 2 and Φe(G, x, y) be a ∆0 formula.

(1) If c ?`i(∃x)(∀y)Φe(G, x, y), then there is a d ≤ c such that d 
i (∃x)(∀y)Φe(G, x, y).
(2) If c ?0i(∃x)(∀y)Φe(G, x, y), then there is a d ≤ c such that d 
i (∀x)(∃y)¬Φe(G, x, y).

Proof. Say c = (σ0, σ1, X,C).
Case 1: c ?`i(∃x)(∀y)Φe(G, x, y). Then there is a finite set F ⊆ C and some n ∈ ω such that

the class UF ∩
⋂
{Uζ(e,σi∪ρ,x) : x < n, ρ ⊆ X ∩ Ai�n} is not a largeness class. Since the class is

Σ0,Z
1 for some Z belonging to the Scott setM, there is a k-cover Y0 ∪ · · · ∪ Yk−1 = ω belonging

to M such that for every j < k, Yj 6∈ UF ∩
⋂
{Uζ(e,σi∪ρ,x) : x < n, ρ ⊆ X ∩Ai�n}. Let j < k be

such that UC ∩ LX∩Yj is a largeness class (see Lemma 3.7). In particular, there is some x ∈ ω
and some ρ ⊆ X ∩Ai such that Yj 6∈ Uζ(e,σi∪ρ,x), hence (σi∪ρ, x) 
 (∀y)Φe(G, x, y). Let D ⊇ C
be a ∆0

2 set such that UD = UC ∩LX∩Yj . The condition (σi∪ρ, σ1−i, X∩Yj−{0, . . . ,max ρ}, D)
is the desired extension.

Case 2: c ?0i(∃x)(∀y)Φe(G, x, y). Then let D = C ∪
⋃
{ζ(e, σi ∪ ρ, x) : x ∈ ω, ρ ⊆ X ∩ Ai}.

The condition (σ0, σ1, X,D) is the desired extension. �

One can use the combinatorics of largeness classes to provide a more direct proof that all the
forced Π0

2 formulas must hold on one of the sides for every sufficiently generic filter. We say
that a condition c = (σ0, σ1, X,C) is i-valid for some i < 2 if X ∩Ai ∈ UC . Since either X ∩A0

or X ∩ A1 belongs to UC , every condition is i-valid for at least one i < 2. Moreover, i-validity
is upward-closed under the extension relation, that is, if a condition d is i-valid and d ≤ c, then
c is i-valid as well. Therefore, for every filter F , there is at least one side i < 2 such that every
condition is i-valid. When a condition c is i-valid, one can make some progress on Σ0

1 formulas
on the i-th side, as states the following lemma.

Lemma 2.11 For every i-valid condition c = (σ0, σ1, X,C) and every ζ(e, σi, x) ∈ C, there is
an extension d ≤ c such that d 
i (∃y)¬Φe(G, x, y).
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Proof. Since c is i-valid, then X ∩Ai ∈ UC ⊆ Uζ(e,σi,x). Thus there is some y ∈ ω and some ρ ⊆
X ∩Ai such that ¬Φe(σ

i∪ρ, x, y) holds. The condition d = (σi∪ρ, σ1−i, X−{0, . . . ,max ρ}, C)
is the desired extension. �

2.3. Forcing a jump of non-PA degree over ∅′

Now the main combinatorics of the second-jump control have been introduced, let us explain
the core argument of forcing the jump of a solution not to be of PA degree over ∅′. A degree is
PA over ∅′ if and only if it computes a {0, 1}-valued completion of n 7→ Φ∅

′
n (n).

Suppose we want to prove that for every ∆0
2 set A, there is an infinite set G ⊆ A or G ⊆ A

such that G′ does not compute a {0, 1}-valued completion of n 7→ Φ∅
′
n (n). We need the following

notion of valuation.

Definition 2.12. A valuation is a partial function p :⊆ ω → 2. A valuation is ∅′-correct if
p(n) = Φ∅

′
n (n) for all n ∈ dom(p). Two valuations p, q are incompatible if there is an n ∈

dom(p) ∩ dom(q) such that p(n) 6= q(n).

Fix condition c, a side i < 2 and a Turing functional Γ. In order to force ΓG
′

not to be
a completion of n 7→ Φ∅

′
n (n), it is sufficient to find an extension d ≤ c such that one of the

following holds:

(1) d 
i ΓG
′ 6⊆ p for some ∅′-correct valuation p

(2) d 
i ΓG
′ ⊆ p0 and d 
i ΓG

′ ⊆ p1 for two incompatible valuations p0 and p1

where ΓG
′ 6⊆ p is the Σ0

2 formula (∃n ∈ dom p)ΓG
′
(n) ↓6= p(n), and ΓG

′ ⊆ p is the Π0
2 formula

(∀n ∈ dom p)ΓG
′
(n) ↑ ∨ ΓG

′
(n) ↓= p(n). In particular, forcing the Σ0

2 formula for a ∅′-correct

valuation ensures that ΓG
′
(n) ↓6= Φ∅

′
n (n) ↓, while forcing the Π0

2 formula for two incompatible

valuations forces the partiality of ΓG
′
. In both cases, we force ΓG

′
not to be a completion

of n 7→ Φ∅
′
n (n). The following lemma is adapted from a combinatorial lemma proven by Liu

(Lemma 6.6 in [17]) and will be proven in Lemma 3.12.

Lemma 2.13 (Liu [17]) Let W be a ∅′-c.e. set of valuations. Either W contains a ∅′-correct
valuation, or for every k, there are k pairwise incompatible valuations outside of W .

Let us apply Lemma 2.13 to the following ∅′-c.e. set of valuations

W = {p : c ?`i ΓG
′ 6⊆ p}

Case 1: p ∈ W for some ∅′-correct valuation p. Then c ?`i ΓG
′ 6⊆ p. By Lemma 2.10, there is

an extension d ≤ c such that d 
i ΓG
′
(n) 6⊆ p.

Case 2: W ∩ {p0, p1, p2} = ∅ for three pairwise incompatible valuations p0, p1 and p2. Say

c = (σ0, σ1, X,C). By definition of W , c ?0i ΓG
′ 6⊆ pj for every j < 3. Unfolding the definition

of the forcing question, for every j < 3, the class

UC ∩
⋂
{Uζ(ej ,σi∪ρ,x) : x ∈ ω, ρ ⊆ X ∩Ai}

is a largeness class, where ej ∈ ω is an index of the Σ0
2 formula (∃x)(∀y)Φej (G, x, y) which

holds if ΓG
′ 6⊆ pj . Let Cj = C ∪ {〈ζ(ej , σ

i ∪ ρ, x), 0〉 : x ∈ ω, ρ ⊆ X ∩ Ai}. Although UCj is a
largeness class for every j < 3, in general, it is not true that there are j0 < j1 < 3 such that
UCj0 ∩ UCj1 is a largeness class. However, the product UCj0 × UCj1 is a largeness class in the
following generalized sense:

Definition 2.14. A class A ⊆ 2ω × 2ω is a largeness class if

(1) For every 〈X0, X1〉 ∈ A and Y0 ⊇ X0 and Y1 ⊇ X1, 〈Y0, Y1〉 ∈ A
(2) For every k, ` ∈ ω and every X0 ∪ · · · ∪Xk−1 ⊇ ω, and Y0 ∪ · · · ∪Y`−1 ⊇ ω, there is some

r < k and s < ` such that 〈Xs, Y`〉 ∈ A.
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Note that by taking the common refinement of the two covers, one can replace item (2) by “For
every k ∈ ω and every X0 ∪ · · · ∪Xk−1 ⊇ ω, there is some j0, j1 < k such that 〈Xj0 , Xj1〉 ∈ A.”
Again, given some pair 〈X0, X1〉, we let L〈X0,X1〉 be the class of all pairs 〈Y0, Y1〉 such that
Y0 ∩X0 and Y1 ∩X1 are both infinite. The notion of largeness class over an arbitrary product
and the L notation is defined accordingly.

The cartesian product of two largeness classes is again a largeness class. However, some
largeness classes over 2ω × 2ω cannot be expressed as a cartesian product of two largeness
classes over 2ω, as witnessed by the class {〈X,Y 〉 : |X ∩ Y | = ∞}. The extension of c forcing

partiality of ΓG
′

on side i is of the following type:

c = (σ0j0,j1 , σ
1
j0,j1 , X0, X1, X2, D : j0 < j1 < 3)

where σij0,j1 ⊆ Ai for every j0 < j1 < 3 and i < 2, X0, X1, X2 are sets of low degree with

max(σ0j0,j1 , σ
1
j0,j1

) < min(Xj0 , Xj1) for every j0 < j1 < 3. Moreover, D is a ∆0
2 set of indices

such that U3
D is a largeness class over 2ω × 2ω × 2ω, such that U3

D ⊆ L〈X0,X1,X2〉.

One can think of such a condition c from a partial order P as three parallel conditions c{0,1},
c{0,2} and c{1,2} from a partial order Q where

c{j0,j1} = (σ0j0,j1 , σ
1
j0,j1 , Xj0 , Xj1 , π{j0,j1}(U

3
D))

with π{j0,j1}(U3
D) = {〈Yj0 , Yj1〉 : 〈Y0, Y1, Y2〉 ∈ U3

D}. Any such Q-condition c{j0,j1} has two

reservoirs Xj0 and Xj1 , both of which σ0j0,j1 and σ1j0,j1 take elements from. The forcing relation
over Q is defined as follows:

Definition 2.15. Given a ∆0 formula Φe(G, x, y), a finite set σ ∈ 2<ω and some integer x ∈ ω,
let ζ2(e, σ, x) be an index of the Σ0

1 class

U2
ζ2(e,σ,x)

= {〈X0, X1〉 : (∃ρ ⊆ X0 ∪X1)(∃y ∈ ω)¬Φe(σ ∪ ρ, x, y)}

Definition 2.16. Let c = (σ0, σ1, X0, X1,A) be a Q-condition, i < 2 and Φe(G, x, y) be a ∆0

formula.

(a) c 
i (∃x)(∀y)Φe(G, x, y) if there is some x ∈ ω such that c 
i (∀y)Φe(G, x, y) holds.
(b) c 
i (∀x)(∃y)¬Φe(G, x, y) if for every x ∈ ω and every ρ ⊆ (X0 ∪ X1) ∩ Ai, A ⊆
U2
ζ2(e,σi∪ρ,x).

We need again to define a notion of i-validity for a Q-condition to ensure that the forced
Π0

2 formulas hold for any sufficiently generic set. A Q-condition c = (σ0, σ1, X0, X1,A) is
i-valid if 〈X0 ∩ Ai, X1 ∩ Ai〉 ∈ A. There is no reason to believe that every Q-condition
must have a valid side. However, by the pigeonhole principle, for every P-condition c =
(σ0j0,j1 , σ

1
j0,j1

, X0, X1, X2, D : j0 < j1 < 3), there is some j0 < j1 < 3 and some i < 2 such

that c{j0,j1} is an i-valid Q-condition. Indeed, since U3
C ⊆ L〈X0,X1,X2〉 is a largeness class, there

are some i0, i1, i2 < 2 such that 〈X0 ∩ Ai0 , X1 ∩ Ai1 , X2 ∩ Ai2〉 ∈ U3
C . In particular, there are

some j0 < j2 < 3 be such that ij0 = ij1 . The Q-condition c{j0,j1} is ij0-valid. The existence of
a valid side is the reason we pick three pairwise incompatible valuations.

Having made the necessary definitions, consider the P-condition

d = (σ0j0,j1 , σ
1
j0,j1 , X0, X1, X2, D : j0 < j1 < 3)

where σ0j0,j1 = σ0, σ1j0,j1 = σ1, X0 = X1 = X2 = X and D is such that U3
D = UC0 × UC1 × UC2 .

The condition d is an extension of c such that for every j0 < j1 < 3

d{j0,j1} 
i ΓG
′
(n) ⊆ pj0 and d{j0,j1} 
i ΓG

′
(n) ⊆ pj1

We need to define a new forcing question for the generalized notion of P-condition, in order
to satisfy more requirements. The new notion of P-condition admits multiple branches, namely,
the Q-conditions. Only one side of one branch is guaranteed to be valid. We therefore need to
force the requirements on each side of each branch.

Given a P-condition c and some side i < 2, we let H(c, i) be the set of branches (here the set

of pairs {j0, j1} ∈ [{0, 1, 2}]2) such that the requirement is not forced on the side i of c{j0,j1}. We
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design a forcing question parameterized by the set H(c, i) such that if c ?`iH(∃x)(∀y)Φe(G, x, y)
holds, then there is an extension d ≤ c which does not increase the number of branches,
and such that d{j0,j1} 
i (∃x)(∀y)Φe(G, x, y) for some {j0, j1} ∈ H. On the other hand, if
c ?0iH(∃x)(∀y)Φej (G, x, y) for sufficiently many ej (which depends on the number of branches),
then there is an extension d ≤ c which increases the number of branches, but such that for
every new branch ν refining a branch {j0, j1} ∈ H, there are two indices r 6= s such that

d[ν] 
i (∀x)(∃y)¬Φer(G, x, y) and d[ν] 
i (∀x)(∃y)¬Φes(G, x, y) simultaneously.
In both cases, the number of branches for which the requirement is not forced decreases. In

the first case, one more branch satisfies the Σ0
2 outcome. In the second case, all the remaining

branches satisfy the Π0
2 outcome. Each time the Π0

2 outcome occurs, then the number of branches
increases.

Definition 2.17. Let c = (σ0j0,j1 , σ
1
j0,j1

, X0, X1, X2, C : j0 < j1 < 3) be a P-condition, i < 2 and

Φe(G, x, y) be a ∆0 formula. Fix H ⊆ [{0, 1, 2}]2. Let c ?`iH(∃x)(∀y)Φe(G, x, y) hold if

U3
C ∩

⋂
{j0,j1}∈H

{〈X0, X1, X2〉 : 〈Xj0 , Xj1〉 ∈ Uζ2(e,σij0,j1∪ρ,x) : x ∈ ω, ρ ⊆ (Xj0 ∩Xj1) ∩Ai}

is not a largeness class.

The P and Q notions of forcing have to be generalized to conditions with arbitrarily many
branches and reservoirs. The general case is formally defined and proven in the next section.

Remark 2.18. One important obstacle when using a variant of Mathias forcing to separate
SRT2

2 from COH on ω-models is that every sufficiently generic filter produces a solution to SRT2
2

which is r-cohesive as a set. Indeed, given a condition (σ0, σ1, X) and a computable set R, either
X ∩R or X ∩R is infinite (or belongs to some largeness class). Then either (σ0, σ1, X ∩R) or
(σ0, σ1, X ∩ R) is an extension forcing both sets to be either almost included in R or in R. In
our situation, we overcome the problem by using increasingly many reservoirs simultaneously.
Indeed, consider a condition (σ0, σ1, X0, X1) where σ0 and σ1 take their elements from X0∪X1,
and both X0 and X1 are required to be infinite. Then if only X0 ∩ R and X1 ∩ R are infinite,
the generic sets will have an infinite intersection with R and R.

3. Jump PA avoidance

In this section, we give a formal proof of the following main theorem outlined in Section 2:

Theorem 1.3. For every set Z whose jump is not of PA degree over ∅′ and every ∆0,Z
2 set A,

there is an infinite subset G ⊆ A or G ⊆ A such that (G⊕ Z)′ is not of PA degree over ∅′.

Before proving Theorem 1.3, we prove its main consequence, namely, the separation of SRT2
2

from COH on ω-models.

Theorem 1.4. There is an ω-model of RCA0 ∧SRT2
2 which is not a model of COH.

Proof. By Theorem 1.3, there is a countable sequence of sets Z0, Z1, . . . such that for every
s ∈ ω, the jump of Z0⊕ · · ·⊕Zs is not of PA degree over ∅′, and for every ∆0

2(Z0⊕ · · ·⊕Zs) set
A, there is some t ∈ ω such that Zt ⊆ A or Zt ⊆ A. Let I = {X ∈ 2ω : (∃s)X ≤T Z0⊕· · ·⊕Zs}.
The collection I is a Turing ideal. Let M be the ω-structure whose second-order part is I.
Every instance of SRT2

2 in I has a solution in I, so M is an ω-model of SRT2
2. Moreover, I

does not contain any set whose jump is of PA degree over ∅′. By Jockusch and Stephan [16], I
does not contain any p-cohesive set, so M is not a model of COH. �

The remainder of this section is devoted to the proof of Theorem 1.3. In what follows, fix
a ∆0

2 set A, and let A0 = A and A1 = A. Fix also a countable Scott set M, coded by a low
set M , as in the previous section.
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3.1. Largeness classes

The following notion of largeness class was introduced by the authors in [20] to design a
notion of forcing controlling the second jump of solutions to the pigeonhole principle. In what
follows, given two sets A and B, we denote by A→ B the class of all functions from A to B.

Definition 3.1. Fix a finite set I ⊆ ω<ω. A largeness class is a collection of sets A ⊆ I → 2ω

such that

(a) If 〈Xν : ν ∈ I〉 ∈ A and Yν ⊇ Xν for every ν ∈ I, then 〈Yν : ν ∈ I〉 ∈ A
(b) For every k-cover Y0, . . . , Yk−1 of ω, there is some 〈jν < k : ν ∈ I〉 such that 〈Yjν : ν ∈

I〉 ∈ A.

Whenever I = {ε}, we identify the class {ε} → 2ω with the class 2ω. This yields a notion
of largeness class for subsets of 2ω. The collection of all the infinite sets is a largeness class.
Moreover, any superclass of a largeness class is again a largeness class.

Given I ⊆ 2<ω, we fix a uniformly M -computable enumeration UI0 ,UI1 , . . . of all the Σ0,Z
1

subclasses of I → 2ω, upward-closed under the superset relation, where Z ∈ M. Here, the
upward-closure means that if 〈Xν : ν ∈ I〉 ∈ UIe and Yν ⊇ Xν for every ν ∈ I, then 〈Yν : ν ∈
I〉 ∈ UIe . Given a set C ⊆ ω, we write

UIC =
⋂
e∈C
UIe

If C is ∆0
2, then UIC is Π0

2.

Lemma 3.2 Suppose A0 ⊇ A1 ⊇ . . . is a decreasing sequence of largeness classes. Then
⋂
sAs

is a largeness class.

Proof. If 〈Xν : ν ∈ I〉 ∈
⋂
sAs and Yν ⊇ Xν for every ν ∈ I, then for every s, since As is a

largeness class, 〈Yν : ν ∈ Y 〉 ∈ As, so 〈Yν : ν ∈ Y 〉 ∈
⋂
sAs. Let Y0, . . . , Yk−1 be a k-cover of

ω. For every s ∈ ω, there is some 〈jν < k : ν ∈ I〉 such that 〈Yjν : ν ∈ I〉 ∈ As. By the infinite
pigeonhole principle, there is some 〈jν < k : ν ∈ I〉 such that 〈Yjν : ν ∈ I〉 ∈ As for infinitely
many s. Since A0 ⊇ A1 ⊇ is a decreasing sequence, 〈Yjν : ν ∈ I〉 ∈

⋂
sAs. �

Lemma 3.2 has several very useful consequences. In particular, if UC is not a largeness class,
then by Lemma 3.2, there is a finite set F ⊆ C such that the class UF is not a largeness class.

The set F being finite, the class UF is Σ0,Z
1 for some Z ∈ M, so since M is a Scott set, there

is a k-cover X0 ∪ · · · ∪Xk−1 = ω in M such that for every j < k, Xj 6∈ UF ⊇ UC . Therefore we
can always find a k-cover belonging toM, witnessing that UC is not a largeness class, whatever
the complexity of the set C. Another consequence is the following lemma.

Lemma 3.3 Let A be a Σ0
1 class. The sentence “A is a largeness class” is Π0

2.

Proof. Say A = {〈Xν : ν ∈ I〉 : (∃~σ � ~X)ϕ(~σ)} where ϕ is a Σ0
1 formula. By compactness, A

is a largeness class iff for every ~σ = 〈σν : ν ∈ I〉 and ~τ = 〈τν : ν ∈ I〉 such that σν ⊆ τν for
every ν ∈ I and ϕ(~σ) holds, ϕ(~τ) holds, and for every k, there is some n ∈ ω such that for every
σ0 ∪ · · · ∪ σk−1 = {0, . . . , n}, there is some 〈jν < k : ν ∈ I〉 such that ϕ(〈σjν : ν ∈ I〉) holds. �

Definition 3.4. Given 〈Xν : ν ∈ I〉, we let

L〈Xν :ν∈I〉 = {〈Yν : ν ∈ I〉 : (∀ν ∈ I)|Yν ∩Xν | =∞}

The following trivial lemma is very useful.

Lemma 3.5 Let 〈Xν : ν ∈ I〉 and 〈Yν : ν ∈ I〉 be such that Xν =∗ Yν for every ν ∈ I. Then
L〈Xν :ν∈I〉 = L〈Yν :ν∈I〉.

Proof. By symmetry, it suffices to prove that L〈Xν :ν∈I〉 ⊆ L〈Yν :ν∈I〉. Fix 〈Zν : ν ∈ I〉 ∈ L〈Xν :ν∈I〉.
Then for every ν ∈ I, Zν ∩ Xν is infinite. Since Xν =∗ Yν , then Zν ∩ Yν is infinite, so
〈Zν : ν ∈ I〉 ∈ L〈Yν :ν∈I〉. �
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Lemma 3.6 Let A be a largeness class. The class

L(A) = {〈Xν : ν ∈ I〉 ∈ A : A ∩ L〈Xν :ν∈I〉 is a largeness class }
is a largeness subclass of A.

Proof. The class L(A) is trivially a subclass of A. Moreover, L(A) is upward-closed. Suppose
for the sake of contradiction that L(A) is not a largeness class. Then there is a cover X0 ∪ · · · ∪
Xk−1 = ω such that for every 〈jν < k : ν ∈ I〉, 〈Xjν : ν ∈ I〉 6∈ L(A). In other words, for every
〈jν < k : ν ∈ I〉, A∩L〈Xjν :ν∈I〉 is not a largeness class. Thus for every 〈jν < k : ν ∈ I〉, there is

a cover Y0 ∪ · · · ∪ Y`−1 = ω such that for every 〈iν < ` : ν ∈ I〉, 〈Yiν : ν ∈ I〉 6∈ A ∩ L〈Xjν :ν∈I〉.
By taking the common refinement of all these covers, there is a cover Z0 ∪ · · · ∪Zn−1 = ω such
that for every 〈jν < k : ν ∈ I〉, 〈Zjν : ν ∈ I〉 6∈ A ∩ L〈Zjν :ν∈I〉. Since A is a largeness class,

there is some 〈jν < k : ν ∈ I〉 such that 〈Zjν : ν ∈ I〉 ∈ A. Then 〈Zjν : ν ∈ I〉 ∈ L〈Zjν :ν∈I〉.
Contradiction. �

Lemma 3.7 If A ∩ L〈Xν :ν∈I〉 ∩ L〈Yν :ν∈I〉 is a largeness class, then so is A ∩ L〈Xν∩Yν :ν∈I〉.

Proof. A ∩ L〈Xν∩Yν :ν∈I〉 is upward-closed. Let Z0 ∪ · · · ∪ Zk−1 = ω. By refining the covering,
we can assume that for every j < k and ν ∈ I, Zj ⊆ Xν or Zj ∩ Xν = ∅, and Zj ⊆ Yν or
Zj ∩ Yν = ∅. Since A ∩ L〈Xν :ν∈I〉 ∩ L〈Yν :ν∈I〉 is a largeness class, there is some 〈jν < k : ν ∈ I〉
such that 〈Zjν : ν ∈ I〉 ∈ A ∩ L〈Xν :ν∈I〉 ∩ L〈Yν :ν∈I〉. We claim that Zjν ⊆ Xν ∩ Yν for every
ν ∈ I. Indeed, since 〈Zjν : ν ∈ I〉 ∈ L〈Xν :ν∈I〉, Zjν ∩ Xν 6= ∅, so Zjν ⊆ Xν . Similarly, since
〈Zjν : ν ∈ I〉 ∈ L〈Yν :ν∈I〉, Zjν ⊆ Yν . Thus 〈Zjν : ν ∈ I〉 ∈ A ∩ L〈Xν∩Yν :ν∈I〉. �

Definition 3.8. Given a class A ⊆ I → 2ω and a set J ⊆ I, define the projection πJ(A) be the
set of all 〈Xν : ν ∈ J〉 such that the class

{〈Xν : ν ∈ I − J〉 : 〈Xν : ν ∈ I〉 ∈ A}
is a largeness class.

Lemma 3.9 If A ⊆ I → 2ω is a largeness class and J ⊆ I, then πJ(A) is a largeness class.

Proof. The class πJ(A) is upward-closed by upward-closure of A. Let Y0 ∪ · · · ∪ Yk−1 = ω.
Suppose for the sake of contradiction that for every 〈jν : ν ∈ J〉, 〈Yjν : ν ∈ J〉 6∈ πJ(A). Thus
for every 〈jν : ν ∈ J〉, the class

{〈Xν : ν ∈ I − J〉 : 〈Xν : ν ∈ I − J〉 ∪ 〈Yjν : ν ∈ J〉 ∈ A}
is not a largeness class. By taking the common refinement of Y0 ∪ · · · ∪ Yk−1 = ω with all
the covers of ω witnessing that the classes above are not largeness classes, we obtain a cover
Z0 ∪ · · · ∪ Z`−1 = ω witnessing that A is not a largeness class. �

Lemma 3.10 Let UIC ⊆ I → 2ω be a largeness class for some ∆0
2 set C, and A ⊆ πJ(UIC) be a

Π0
2 largeness class. Then there is a ∆0

2 set D ⊇ C such that UID ⊆ UIC is a largeness class and
πJ(UID) = A.

Proof. Let UID be the class of all 〈Xν : ν ∈ I〉 ∈ UIC such that 〈Xν : ν ∈ J〉 ∈ A. Since A is a
Π0

2 class, then so is UID, and therefore D can be chosen to be ∆0
2. Furthermore we can assume

without loss of generality that D ⊇ C. By construction, UID ⊆ UIC .
We claim that UID is a largeness class. UID is upward-closed since both UIC and A are. Let

Y0 ∪ · · · ∪ Yk−1 = ω. Since A is a largeness subclass of J → 2ω, there is some 〈jν : ν ∈ J〉 such
that 〈Yjν : ν ∈ J〉 ∈ A. Since A ⊆ πJ(UIC), the collection

{〈Xν : ν ∈ I − J〉 : 〈Xν : ν ∈ I − J〉 ∪ 〈Yjν : ν ∈ J〉 ∈ UIC}

is a largeness class. Therefore, there is some 〈jν : ν ∈ I − J〉 such that 〈Yjν : ν ∈ I〉 ∈ UIC . In
particular, 〈Yjν : ν ∈ I〉 ∈ UID. This proves that UID is a largeness class.

Last, it is immediate to see that πJ(UID) = A. �
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3.2. Valuation

The notion of valuation is a combinatorial trick of Liu [17] to obtain, whenever the Σ0
2 outcome

cannot be satisfied, arbitrarily many Π0
2 formulas such that forcing any two of them is sufficient

to force partiality of a Turing functional. We now define the notion of valuation and prove Liu’s
combinatorial lemma in its full generality (Lemma 3.12).

Definition 3.11. A valuation is a partial function p ⊆ ω → 2. A valuation is X-correct if
p(n) = ΦX

n (n) for all n ∈ dom(p). Two valuations p, q are incompatible if there is an n ∈
dom(p) ∩ dom(q) such that p(n) 6= q(n).

The following lemma is adapted from Lemma 6.6 in Liu [17].

Lemma 3.12 (Liu [17]) Fix X and Y ≥T X such that Y is not of PA degree relative to X.
Let W be a Y -c.e. set of valuations. Either W contains an X-correct valuation, or for every k,
there are k pairwise incompatible valuations outside of W .

Proof. Suppose W does not contain any X-correct valuation, otherwise we are done. Let S
be the collection of all finite sets F such that for each n 6∈ F , either ΦX

n (n) ↓ or there is a
valuation p ∈ W such that F ∪ {n} ⊆ dom p and for every m ∈ dom p r (F ∪ {n}), we have
p(m) = ΦX

m(m) ↓. If F 6∈ S, there there is at least one n 6∈ F such that the above does not hold.
We say that any such n witnesses F 6∈ S.

First suppose for the sake of contradiction that ∅ ∈ S. Then for each n, either ΦX
n (n) ↓ or

there is a valuation p ∈W such that n ∈ dom p, and for every m ∈ dom pr {n}, ΦX
m(m) ↓. We

can then define a Y -computable completion h of n 7→ ΦX
n (n) as follows. Given n, wait until

either ΦX
n (n) ↓, in which case let h(n) = ΦX

n (n), or a p as above enters W , in which case we
let h(n) = 1 − p(n). Since W does not contain any X-correct valuation, in the latter case, if
ΦX
n (n) ↓ then ΦX

n (n) 6= p(n) ↓, so h(n) = ΦX
n (n). Since Y is not of PA degree over X, this case

cannot occur, so ∅ 6∈ S.
Let n0 witness the fact that ∅ 6∈ S. Given n0, . . . , nj , if {n0, . . . , nj} 6∈ S, then let nj+1

witness this fact. Note that if nj is defined, then ΦX
nj (nj) ↑.

Suppose for the sake of contradiction that {n0, . . . , nj} ∈ S. Then {n0, . . . , nj−1} 6∈ S,
otherwise nj would not be defined. We can then define a Y -computable completion h of n 7→
ΦX
n (n) as follows. First, let h(n`) = 0 for ` ≤ j. Given n 6∈ {n0, . . . , nj}, we wait until

either ΦX
n (n) ↓, in which case we let h(n) = ΦX

n (n), or a valuation p enters W such that
{n0, . . . , nj , n} ⊆ dom p and for everym ∈ dom pr{n0, . . . , nj , n}, p(m) = ΦX

m(m) ↓. If ΦX
n (n) ↑,

then the latter case must occur, since {n0, . . . , nj} ∈ S. In this case, we cannot have p(n) =
ΦX
n (n), as then p would be a counter-example to the fact that nj witnesses {n0, . . . , nj−1} 6∈ S.

Thus we can let h(n) = 1 − p(n). We again have a contradiction since Y is not of PA degree
over X.

Thus {n0, . . . , nj} 6∈ S for all j. There are 2j+1 pairwise incompatible valuations with domain
{n0, . . . , nj}. None of them can be in W , as this would contradict the fact that nj witnesses
{n0, . . . , nj−1} 6∈ S. This completes the proof. �

Lemma 3.13 Let G be a set such that for every ∆0 formula Φe(G, x, y, p), where x and y
are integer variables and p is a valuation variable, either (∃x)(∀y)Φe(G, x, y, p) holds for some
∅′-correct valuation p, or (∀x)(∃y)¬Φe(G, x, y, p0) and (∀x)(∃y)¬Φe(G, x, y, p0) hold for two
incompatible valuations p0 and p1. Then G′ is not PA over ∅′.

Proof. Suppose for the sake of contradiction that G′ is of PA degree over ∅′. In particular,
there is a Turing functional Γ such that ΓG

′
is a {0, 1}-valued completion of n 7→ Φ∅

′
n (n). Given

n, s ∈ ω, we denote by ΓG
′
(n)[s] the G-computable s-approximation of ΓG

′
(n). Let Φe(G, x, y, p)

hold if there is some n ∈ dom p such that if ΓG
′
(n)[x+ y] ↓ then ΓG

′
(n)[x+ y] 6= p(n). We have

two cases:
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Case 1: (∃x)(∀y)Φe(G, x, y, p) holds for some ∅′-correct valuation p. Then there is some

n ∈ dom(p) such that ΓG
′
(n) ↑ or ΓG

′
(n) ↓6= p(n). By definition of a ∅′-correct valuation,

Φ∅
′
n (n) ↓= p(n) for every n ∈ dom(p). Thus ΓG

′
is not a completion of n 7→ Φ∅

′
n (n).

Case 2: (∀x)(∃y)¬Φe(G, x, y, p0) and (∀x)(∃y)¬Φe(G, x, y, p0) hold for two incompatible val-

uations p0 and p1. Then ΓG
′
� dom p0 ⊆ p0 and ΓG

′
� dom p1 ⊆ p1. Since p0 and p1 are

incompatible, then ΓG
′

is partial. �

3.3. Index set

We now define an ordered structure of sets of indices to simplify branches refinement whenever
the Π0

2 outcome occurs. Define the sequence of integers u0, u1, . . . inductively by u0 = 1 and

un+1 =
(
2un+1

2

)
un.

Definition 3.14. Given n ∈ ω, the n-index set is defined inductively as follows. The 0-index
set I0 is a the singleton empty string {ε}. Let In be the n-index set. The (n + 1)-index set is
the set

In+1 = (2un + 1)× In = {x_ν : x ≤ 2un, ν ∈ In}

Definition 3.15. Given n ∈ ω, an n-index is defined inductively as follows. The unique 0-
index is the singleton empty string {ε}. Given an n-index I ⊆ In, an (n + 1)-index is a set
{x_ν : ν ∈ I} ∪ {y_ν : ν ∈ I} for some x < y ≤ 2un.

Note that in particular, an n-index is a subset of In. We write I C In to say that I is an
n-index.

Lemma 3.16 For every n ∈ ω, |{I ⊆ In : I C In}| = un.

Proof. By induction over n. Case n = 0. There is only one 0-index and u0 = 1. Suppose
|{I ⊆ In : I C In}| = un. Then |{J ⊆ In+1 : J C In+1}| = |

(
2un+1

2

)
| · |{I ⊆ In : I C In}| =(

2un+1
2

)
un = un+1. �

The following lemma is the main combinatorial lemma of indices, which will be used in
Lemma 3.32 to prove that every P-condition admits a branch with a valid side.

Lemma 3.17 For every n ∈ ω and every 2-cover B0 ∪B1 = In, there is an n-index I C In and
some i < 2 such that I ⊆ Bi.

Proof. By induction on n. The case n = 0 is trivial. Assume it holds for n. We prove it for
n+ 1. For every x ≤ 2un and i < 2, let Bx,i = {ν : x_ν ∈ Bi}. By induction hypothesis, there
is some Ix C In and ix < 2 such that Ix ⊆ Bx,ix . By Lemma 3.16, |{I ⊆ In : I C In}| = un
so by the pigeonhole principle, there is some x < y ≤ 2un such that Ix = Iy and ix = iy. The
(n+ 1)-index {x_ν : ν ∈ Ix} ∪ {y_ν : ν ∈ Ix} is included in Bix . �

Definition 3.18. Fix m ≥ n, J C Im and I C In.

(1) Define a partial order J ≤ I inductively on m − n as follows: If m = n, then J ≤ I
if J = I. If m > n, then J ≤ I if K ≤ I for some K C Im−1 and there are some
x < y ≤ 2um−1 such that J = {x_ν : ν ∈ K} ∪ {y_ν : ν ∈ K}.

(2) Let J ./ I be the set of all µ ∈ ω<ω such that I = {ν : µ_ν ∈ J}.
(3) Given a class A ⊆ I → 2ω, let J ⊗A be the subclass of J → 2ω of all 〈Xµ

ν : ν ∈ I, µ ∈
J ./ I〉 such that for every µ ∈ J ./ I, 〈Xµ

ν : ν ∈ I〉 ∈ A.
(4) Given a class A ⊆ I → 2ω, let In � A be the subclass of In → 2ω of all 〈Xν : ν ∈ In〉

such that 〈Xν : ν ∈ I〉 ∈ A.
(5) Let A ⊆ I → 2ω and B ⊆ J → 2ω. We write B ≤ A if J ≤ I and B ⊆ J ⊗A.

One can easily prove that the relations J ≤ I and B ≤ A are partial orders.

Lemma 3.19 Suppose J ≤ I. Then J = {µ_ν : µ ∈ J ./ I, ν ∈ I}.
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Proof. Say J C In and I C In with m ≥ n. We prove the lemma by induction over m − n.
Suppose m = n. Then I = J , so J ./ I = {ε}. In particular, J = {ε_ν : ν ∈ I}. Suppose
m > n. By definition of J ≤ I, there is some KCIm−1 and x < y ≤ 2um−1 such that K ≤ I and
J = {x_ν : ν ∈ K}∪{y_ν : ν ∈ K}. By induction hypothesis, K = {µ_ν : µ ∈ K ./ I, ν ∈ I}.
Thus J ./ I = {x_µ : µ ∈ K ./ I} ∪ {x_µ : µ ∈ K ./ I}, and J = {x_µ_ν : µ ∈ K ./ I, ν ∈
I} ∪ {y_µ_ν : µ ∈ K ./ I, ν ∈ I} = {µ_ν : µ ∈ J ./ I, ν ∈ I}. �

3.4. Q-forcing

We now define the partial order of Q-conditions, which represent branches of P-conditions.

Definition 3.20. A Qn-condition is a tuple (σ0, σ1, Xν ,A : ν ∈ I) where

(1) σi ⊆ Ai for each i < 2 ; I is an n-index
(2) A ⊆ I → 2ω is a largeness subclass of L〈Xν :ν∈I〉
(3) Xν ∈M for each ν ∈ I and A is Π0

2

We let Q =
⋃
nQn.

Definition 3.21. The partial order on Q is defined by

(τ0, τ1, Yµ,B : µ ∈ J) ≤ (σ0, σ1, Xν ,A : ν ∈ I)

if J ≤ I, for every µ ∈ J and ν ∈ I such that ν is a suffix of µ, Yµ ⊆ Xν , B ≤ A, and for every
i < 2, σi � τ i and τ i − σi ⊆

⋃
ν∈I Xν .

Lemma 3.22 Let c = (σ0, σ1, Xν ,A : ν ∈ I) ∈ Qn and d = (τ0, τ1, Yµ,B : µ ∈ J) ∈ Qm with
m ≥ n be such that d ≤ c. Then for every i < 2, (τ i,

⋃
µ∈J Yµ) Mathias extends (σi,

⋃
ν∈I Xν).

Proof. Since J ≤ I, then by Lemma 3.19, J = {ρ_ν : ρ ∈ J ./ I, ν ∈ I}. It follows that for
every µ ∈ J , there is some ν ∈ I such that ν is a suffix of µ, and by definition of d ≤ c, Yµ ⊆ Xν .
Therefore

⋃
µ∈J Yµ ⊆

⋃
ν∈I Xν . Since τ i � σi and τ i−σi ⊆

⋃
ν∈I Xν , then (τ i,

⋃
µ∈J Yµ) Mathias

extends (σi,
⋃
ν∈I Xν). �

3.5. Forcing relation

Definition 3.23. Let (σ,X) be a Mathias condition and Φe(G, x) be a ∆0 formula with an
integer variable x.

(1) (σ,X) 
 (∃x)Φe(G, x) if there is some x ∈ ω such that Φe(σ, x) holds.
(2) (σ,X) 
 (∀x)¬Φe(G, x) if for every x ∈ ω and ρ ⊆ X, Φe(σ, x) does not hold.

Definition 3.24. Given some n-index I, let ζI be the function which takes as a paramter an
index e of a ∆0 formula Φe(G, x, y), a finite set σ ∈ 2<ω and some integer x ∈ ω, and returns a
code for the Σ0

1 class

UIζI(e,σ,x) = {〈Xν : ν ∈ I〉 : (σ,
⋃
ν∈I

Xν) 6
 (∀y)Φe(G, x, y)}

Definition 3.25. Let c = (σ0, σ1, Xν ,A : ν ∈ I) be a Qn-condition, Φe(G, x, y) be a ∆0 formula
with free integer variables x and y, and let i < 2.

(1) c 
i (∃x)(∀y)Φe(G, x, y) if there is some x ∈ ω such that (σi,
⋃
ν∈I Xν) 
 (∀y)Φe(G, x, y)

(2) c 
i (∀x)(∃y)¬Φe(G, x, y) if for every x ∈ ω, every ρ ⊆ Ai ∩
⋃
ν∈I Xν , A ⊆ UI

ζI(e,σi∪ρ,x)

Lemma 3.26 Let c, d be two Q-conditions such that d ≤ c, and Φe(G, x, y) be a ∆0 formula.

(1) If c 
i (∃x)(∀y)Φe(G, x, y) then so does d.
(2) If c 
i (∀x)(∃y)¬Φe(G, x, y) then so does d.

Proof. Say c = (σ0, σ1, Xν ,A : ν ∈ I) ∈ Qn and d = (τ0, τ1, Yµ,B : µ ∈ J) ∈ Qm with m ≥ n.
(1) Suppose c 
i (∃x)(∀y)Φe(G, x, y). Then there some x ∈ ω such that (σi,

⋃
ν∈I Xν) 


(∀y)Φe(G, x, y). By Lemma 3.22, (τ i,
⋃
µ∈J Yµ) Mathias extends (σi,

⋃
ν∈I Xν), so (τ i,

⋃
µ∈J Yµ) 


(∀y)Φe(G, x, y). Folding the definition, d 
i (∃x)(∀y)Φe(G, x, y).
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(2) Fix some x ∈ ω and some ρ ⊆ Ai ∩ (
⋃
µ∈J Yµ). Since d ≤ c, then there is some ρ0 ⊆

Ai ∩
⋃
ν∈I Xν such that τ i = σi_ρ0. Moreover, by Lemma 3.22, (τ i,

⋃
µ∈J Yµ) Mathias extends

(σi,
⋃
ν∈I Xν), so

⋃
µ∈J Yµ ⊆

⋃
ν∈I Xν . Therefore ρ0 ∪ ρ ⊆ Ai ∩

⋃
ν∈I Xν . By applying the

definition of c 
i (∀x)(∃y)¬Φe(G, x, y) to x and ρ0 ∪ ρ, A ⊆ UI
ζI(e,σi∪ρ0∪ρ,x) = UI

ζI(e,τ i∪ρ,x).

We claim that B ⊆ UJ
ζJ (e,τ i∪ρ,x). Since B ≤ A, B ⊆ J ⊗ A. Fix some 〈Zµν : ν ∈ I, µ ∈

J ./ I〉 such that for every µ ∈ J ./ I, 〈Zµν : ν ∈ I〉 ∈ A. Since A ⊆ UI
ζI(e,τ i∪ρ,x), for every

µ ∈ J ./ I, (τ i,
⋃
ν∈I Z

µ
ν ) 6
 (∀y)Φe(G, x, y). Therefore (τ i,

⋃
ν∈I,µ∈J./I Z

µ
ν ) 6
 (∀y)Φe(G, x, y).

Thus 〈Zµν : ν ∈ I, µ ∈ J ./ I〉 ∈ UJ
ζJ (e,τ i∪ρ,x). So B ⊆ UJ

ζJ (e,τ i∪ρ,x). It follows that d 
i

(∀x)(∃y)¬Φe(G, x, y). �

3.6. P-forcing

Definition 3.27. A Pn-condition is a tuple (σ0I , σ
1
I , Xν , C : I C In, ν ∈ In) where

(1) σiI ⊆ Ai for each i < 2 and I C In
(2) UInC ⊆ In → 2ω is a largeness subclass of L〈Xν :ν∈In〉
(3) Xν ∈M for each ν ∈ In ; C is ∆0

2

A Pn-condition c = (σ0I , σ
1
I , Xν , C : ICIn, ν ∈ In) represents un many parallel Qn-conditions

defined for each I C In by

c[I] = (σ0I , σ
1
I , Xν , πI(UC) : ν ∈ I)

We let P =
⋃
n Pn.

Definition 3.28. The partial order on P is defined by

(τ0J , τ
1
J , Yµ, D : J C Im, µ ∈ Im) ≤ (σ0I , σ

1
I , Xν , C : I C In, ν ∈ In)

if m ≥ n, and for every J C Im and I C In such that J ≤ I
(τ0J , τ

1
J , Yµ, πJ(UD) : µ ∈ J) ≤ (σ0I , σ

1
I , Xν , πI(UC) : ν ∈ I)

Lemma 3.29 Fix a Pn-condition c and some I C In. For every Qn-condition d ≤ c[I], then
there is a Pn-condition e ≤ c such that e[I] = d.

Proof. Say c = (σ0I , σ
1
I , Xν , C : I C In, ν ∈ In) and d = (τ0I , τ

1
I , Yν ,A : ν ∈ I). By Lemma 3.10,

there is some ∆0
2 set D ⊇ C such that UInD ⊆ UInC is a largeness class and πI(UInD ) = A. For

every J C In with J 6= I, let τ0J = σ0J and τ1J = σ1J . For ν ∈ In − I, let Yν = Xν . The

Pn-condition e = (τ0J , τ
1
J , Yν , D : J C In, ν ∈ In) is an extension of c such that e[I] = d. �

3.7. Validity

As explained in Section 2, the forcing relation for Π0
2 formulas relies on the 1-genericity of

the filter for the properties to actually hold. We define the notion of validity so that the forced
Π0

2 formulas will be satisfied on the valid sides.

Definition 3.30. A Qn-condition (σ0, σ1, Xν ,A : ν ∈ I) is i-valid for i < 2 if 〈Xν ∩ Ai : ν ∈
I〉 ∈ A.

The following lemma ensures that whenever a Π0
2 formula is forced on a valid side, then seeing

the formula as a collection of Σ0
1 formulas, one can satisfy each of them independently.

Lemma 3.31 Let c be an i-valid Qn-condition, and let Φe(G, x, y) be a ∆0
1 formula. If c 
i

(∀x)(∃y)¬Φe(G, x, y) then for every x ∈ ω there is some d = (τ0, τ1, Yν ,A : ν ∈ I) ∈ Qn

extending c such that (τ i,
⋃
ν∈I Yν) 
 (∃y)¬Φe(G, x, y).

Proof. Say c = (σ0, σ1, Xν ,A : ν ∈ I) and fix x ∈ ω. Since c 
i (∀x)(∃y)¬Φe(G, x, y), then
A ⊆ UI

ζI(e,σi,x)
. Since c is i-valid, then 〈Xν ∩ Ai : ν ∈ I〉 ∈ A, then (σi, Ai ∩

⋃
ν∈I Xν) 6


(∀y)Φe(G, x, y). Therefore there is some ρ ⊆ Ai ∩
⋃
ν∈I Xν and some y ∈ ω such that ¬Φe(σ

i ∪
ρ, x, y) holds. Let τ i = σi ∪ ρ and τ1−i = σ1−i. For every ν ∈ I, let Yν = Xν − {0, . . . ,max ρ}.
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By Lemma 3.5, A ⊆ L〈Yν :ν∈I〉. The tuple d = (τ0, τ1, Yν ,A : ν ∈ I) is a Qn-condition extending

c. Moreover (τ i,
⋃
ν∈I Yν) 
 (∃y)¬Φe(G, x, y). �

The following two lemmas state that every P-filter induces as tree of valid sides.

Lemma 3.32 For every Pn-condition c, there is some I C In and some i < 2 such that c[I] is
i-valid.

Proof. Say c = (σ0I , σ
1
I , Xν , C : ICIn, ν ∈ In). Since A0∪A1 = ω and by Lemma 3.6, L(UInC ) is

a largeness class, then there is some 〈iν < 2 : ν ∈ In〉 such that 〈Aiν : ν ∈ In〉 ∈ L(UInC ). Thus

UInC ∩ L〈Xν :ν∈In〉 ∩ L〈Aiν :ν∈In〉 is a largeness class, so by Lemma 3.7, UInC ∩ L〈Xν∩Aiν :ν∈In〉 is a
largeness class.

Let B0 = {ν ∈ In : iν = 0} and B1 = {ν ∈ In : iν = 1}. Since B0 ∪B1 = In, by Lemma 3.17,

there is some I C In and some i < 2 such that I ⊆ Bi. Since UInC ∩L〈Xν∩Aiν :ν∈In〉 is a largeness

class, then 〈Xν ∩Aiν : ν ∈ I〉 ∈ πI(UInC ∩L〈Xν∩Aiν :ν∈In〉). Moreover πI(UInC ∩L〈Xν∩Aiν :ν∈In〉) ⊆
πI(UInC ), then 〈Xν ∩ Aiν : ν ∈ I〉 ∈ πI(UInC ). As I ⊆ Bi, 〈Xν ∩ Ai : ν ∈ I〉 = 〈Xν ∩ Aiν : ν ∈
I〉 ∈ πI(UInC ). Thus the Qn-condition c[I] is i-valid. �

Lemma 3.33 Let d, c ∈ Q be such that d ≤ c. If d is i-valid, then so is c.

Proof. Say c = (σ0, σ1, Xν ,A : ν ∈ I) ∈ Qn and d = (τ0, τ1, Yµ,B : µ ∈ J) ∈ Qm with m ≥ n.
Since d is i-valid, 〈Yµ ∩ Ai : µ ∈ J〉 ∈ B. Since d ≤ c, then J ≤ I and B ≤ A. By definition
of B ≤ A, B ⊆ J ⊗ A, thus letting ρ ∈ J ./ I, and Zν = Yρ_ν , 〈Zν ∩ Ai : ν ∈ I〉 ∈ A. By
upward-closure of A, 〈Xν ∩Ai : ν ∈ I〉 ∈ A. Thus c is i-valid. �

The following lemma states that the generic sets corresponding to valid sides are infinite.

Lemma 3.34 For every i-valid Qn-condition c = (σ0, σ1, Xν ,A : ν ∈ I), there is a Qn-condition
d = (τ0, τ1, Yν ,A : ν ∈ I) ≤ c such that #τ i > #σi.

Proof. By definition of i-validity of c, 〈Xν ∩ Ai : ν ∈ I〉 ∈ A ⊆ L〈Xν :ν∈I〉. So in particular,

Xν ∩ Ai is infinite. Pick any x ∈
⋃
ν∈I Xν ∩ Ai, and let Yν = Xν − {0, . . . , x}. By Lemma 3.5,

A ⊆ L〈Yν :ν∈I〉. Then d = (σi ∪ {x}, σ1−i, Yν ,A : ν ∈ I) is the desired extension. �

3.8. Forcing question

As explained in Section 2, a P-condition representing multiple parallel Q-condition, only one
of which being valid on one side, we need to force the requirements on each side of each branch.
In the following forcing question, the finite set H is intended to be the set of all branches which
have not been forced yet.

Definition 3.35. Let c = (σ0I , σ
1
I , Xν , C : I C In, ν ∈ In) ∈ Pn, let H ⊆ {I C In}, let

Φe(G, x, y) be a ∆0 formula with free variables x and y and let i < 2. Define the relation
c ?`iH(∃x)(∀y)Φe(G, x, y) to hold if

UInC ∩
⋂
{In � UIζI(e,σiI∪ρ,x) : I ∈ H,x ∈ ω, ρ ⊆ Ai ∩

⋃
ν∈I

Xν}

is not a largeness class

Lemma 3.36 Let c ∈ Pn, let H ⊆ {I C In}, let Φe(G, x, y) be a ∆0 formula with free variables

x and y, and let i < 2. The relation c ?`iH(∃x)(∀y)Φe(G, x, y) is Σ0,∅′
1 .

Proof. By Lemma 3.2, c ?`iH(∃x)(∀y)Φe(G, x, y) holds if there is a finite set F ⊆ C, and some
t ∈ ω such that the following class

UInF ∩
⋂
{In � UIζI(e,σiI∪ρ,x) : I ∈ H,x < t, ρ ⊆ Ai ∩

⋃
ν∈I

Xν�t}
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is not a largeness class. Note that this class is Σ0,Z
1 for some Z ∈ M. By Lemma 3.3, not

being a largeness class for a Σ0,Z
1 class is Σ0,Z

2 , hence Σ0
1(∅′) whenever Z is low. Thus, the whole

formula is Σ0
1(A

i ⊕ C ⊕ ∅′). Since Ai and C are ∆0
2, the formula is Σ0

1(∅′). �

The following lemma states that in the Σ0
2 outcome, one can find an extension forcing the Σ0

2

formula on one branch of H, which is the set of branches not having been satisfied yet.

Lemma 3.37 Let c ∈ Pn, let H ⊆ {I C In}, let Φe(G, x, y) be a ∆0 formula with free variables
x and y and let i < 2. Suppose

c ?`iH(∃x)(∀y)Φe(G, x, y)

then there is some d ∈ Pn with d ≤ c and some I ∈ H such that d[I] 
i (∃x)(∀y)Φe(G, x, y).

Proof. Say c = (σ0I , σ
1
I , Xν , C : I C In, ν ∈ In). Since c ?`iH(∃x)(∀y)Φe(G, x, y), then by

Lemma 3.2, there is a finite set F ⊆ C, and some t ∈ ω such that the following class

UInF ∩
⋂
{In � UIζI(e,σiI∪ρ,x) : I ∈ H,x < t, ρ ⊆ Ai ∩

⋃
ν∈I

Xν�t}

is not a largeness class. Since the class is Σ0,Y
1 for some some Y ∈M and sinceM is a Scott set,

there is a cover Z0∪· · ·∪Zk−1 = ω inM such that for every j < k, Zj 6∈ UInF ∩
⋂
{In�UIζI(e,σiI∪ρ,x) :

I ∈ H,x < n, ρ ⊆ Ai ∩
⋃
ν∈I Xν�n}.

By Lemma 3.6, L(UInC ) is a largeness class, then there is some 〈jν : ν ∈ In〉 such that 〈Zjν :

ν ∈ In〉 ∈ L(UInC ). Thus UInC ∩ L〈Xν :ν∈In〉 ∩ L〈Zjν :ν∈In〉 is a largeness class, so by Lemma 3.7,

the class UInC ∩ L〈Xν∩Zjν :ν∈In〉 is a largeness class. In particular 〈Xν ∩ Zjν : ν ∈ In〉 ∈ UInC , so

there is some I ∈ H, some x < t and some ρ ⊆ Ai ∩
⋃
ν∈I Xν�t such that

〈Xν ∩ Zjν : ν ∈ In〉 6∈ In � UIζI(e,σiI∪ρ,x)
Let D ⊇ C be such that UInD = UInC ∩ L〈Xν∩Zjν :ν∈In〉. For every ν ∈ In, let Yν : (Xν ∩ Zjν ) −
{0, . . . , t}. In particular, UInD ⊆ L〈Yν :ν∈In〉. Let τ iI = σiI ∪ ρ, and τ1−iI = σ1−iI . For every J C In
with J 6= I, let τ0J = σ0J and τ1J = σ1J . The Pn-condition d = (τ0J , τ

1
J , Yν , D : J C In, ν ∈ In) is

an extension of c such that d[I] 
i (∃x)(∀y)Φe(G, x, y) with I ∈ H. �

The following lemma states that whenever sufficiently many formulas have satisfied the Π0
2

outcome, then one can find an extension with more branches, such that any branch refining a
branch in H will force at least two of the Π0

2 formulas. Letting H be the set of branches for which
the requirement has not been forced yet, one obtain an extension on which the requirement is
forced on all branches simultaneously.

Lemma 3.38 Let c ∈ Pn, let H ⊆ {ICIn}, let Φe0(G, x, y), . . . ,Φe2un (G, x, y) be 2un+1 many
∆0 formulas with free variables x and y and let i < 2. Suppose that for every j ≤ 2un,

c ?0iH(∃x)(∀y)Φej (G, x, y)

Then there is some d ∈ Pn+1 with d ≤ c such that for every I ∈ H and J C In+1 such that
J ≤ I, there are some a < b ≤ 2un such that

d[J ] 
i (∀x)(∃y)¬Φea(G, x, y) and d[J ] 
i (∀x)(∃y)¬Φeb(G, x, y)

Proof. Say c = (σ0I , σ
1
I , Xν , C : I C In, ν ∈ In). For every j ≤ 2un, the class

Aj = UInC ∩
⋂
{In � UIζI(ej ,σiI∪ρ,x) : I ∈ H,x ∈ ω, ρ ⊆ Ai ∩

⋃
ν∈I

Xν}

is a largeness class. Let D ⊆ ω be a ∆0
2 set such that UIn+1

D is the class of all 〈Zj_ν : j ≤
2un, ν ∈ In〉 such that for every j ≤ 2un, 〈Zj_ν : ν ∈ In} ∈ Aj . In particular, UIn+1

D is a
largeness class. For every j_ν ∈ In+1, let Yj_ν = Xν . For every J C In+1, let τ0J = σ0I and
τ1J = σ1I , where I C In is the unique n-index such that J ≤ I.
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Claim 1 : UIn+1

D ⊆ L〈Yµ:µ∈In+1〉. Let 〈Zj_ν : j ≤ 2un, ν ∈ In〉 ∈ UIn+1

D . For every j ≤ 2un,
〈Zj_ν : ν ∈ In} ∈ Aj . Since Aj ⊆ L〈Xν :ν∈In〉, then |Zj_ν ∩Xν | = ∞. Since Xν = Yj_ν , then
|Zj_ν ∩ Yj_ν | =∞, so 〈Zj_ν : j ≤ 2un, ν ∈ In〉 ∈ L〈Yµ:µ∈In+1〉. This proves Claim 1.

Claim 2 : UIn+1

D ≤ UInC . We need to prove that UIn+1

D ⊆ In+1⊗UInC . Fix 〈Zj_ν : j ≤ 2un, ν ∈
In〉 ∈ UIn+1

D . Then for every j ≤ 2un, 〈Zj_ν : ν ∈ In〉 ∈ Aj ⊆ UInC . Thus UIn+1

D ⊆ In+1 ⊗ UInC .
This proves Claim 2.

Let d = (τ0J , τ
1
J , Yµ, D : J C In+1, µ ∈ In+1). In particular d is a Pn+1-condition extending c.

Fix I ∈ H and J C In+1 such that J ≤ I. In particular, there are some a < b ≤ 2un such that
J = {a_ν : ν ∈ I} ∪ {b_ν : ν ∈ I}.

Claim 3 : d[J ] 
i (∀x)(∃y)¬Φea(G, x, y) and d[J ] 
i (∀x)(∃y)¬Φeb(G, x, y). We prove that

d[J ] 
i (∀x)(∃y)¬Φea(G, x, y). The other case is symmetric. For every x ∈ ω and ρ ⊆ Ai ∩⋃
µ∈J Yµ, in particular ρ ⊆ Ai ∩

⋃
ν∈I Xν . Fix 〈Zµ : µ ∈ J〉 ∈ πJ(UIn+1

D ). In particular

〈Za_ν : ν ∈ I〉 ∈ Aa ⊆ UIζI(ea,σiI∪ρ,x). So (σiI ∪ ρ,
⋃
ν∈I Za_ν) 6
 (∀y)Φea(G, x, y). As σiI = τ iJ

and
⋃
ν∈I Za_ν ⊆

⋃
µ∈J Zµ, then (τ iJ ∪ ρ,

⋃
µ∈J Zµ) 6
 (∀y)Φea(G, x, y). So 〈Zµ : µ ∈ J〉 ∈

UJ
ζJ (ea,τ

i
J∪ρ,x)

. Thus for every x ∈ ω and ρ ⊆ Ai ∩
⋃
µ∈J Yµ, πJ(UIn+1

D ) ⊆ UJ
ζJ (ea,τ

i
J∪ρ,x)

. This is

the definition of d[J ] 
i (∀x)(∃y)¬Φea(G, x, y). This proves Claim 3 and Lemma 3.38. �

3.9. Requirements

We now define the requirements specific to our purpose, namely, obtaining a set whose jump
does not compute a {0, 1}-valued completion of the partial function n 7→ Φ∅

′
n (n).

Definition 3.39. Fix a ∆0 formula Φe(G, x, y, p) with free integer variables x and y, and free
valuation variable p.

(1) Let c ∈ Qn and i < 2. We say that c forces the e-th requirement on side i if c 
i

(∃x)(∀y)Φe(G, x, y, p) for some ∅′-correct valuation p, or c 
i (∀x)(∃y)¬Φe(G, x, y, p0)
and c 
i (∀x)(∃y)¬Φe(G, x, y, p1) for two incompatible valuations.

(2) Let c ∈ Pn and i < 2. We say that c forces the e-th requirement on side i if c[I] forces
the e-th requirement on side i for every I C In.

Given a condition c ∈ Pn, e ∈ ω and i < 2, let H(c, e, i) be the set of I C In such that c does
not force the e-th requirement on the i-th side.

Lemma 3.40 For every c ∈ Pn, i < 2 and e ∈ ω such that H(c, e, i) 6= ∅, there is P-condition
d ≤ c such that |H(d, e, i)| < |H(c, e, i)|.

Proof. LetH = H(c, e, i) andW be the set of all valuations p such that c ?`iH(∃x)(∀y)Φe(G, x, y, p).
By Lemma 3.3, the set W is ∅′-c.e, so by Lemma 3.12, we have two cases.

Case 1: p ∈W for some ∅′-correct valuation p. By definition ofW , c ?`iH(∃x)(∀y)Φe(G, x, y, p).
By Lemma 3.37, there is a Pn-condition d ≤ c such that |H(d, e, i)| < |H(c, e, i)|.

Case 2: p0, . . . , p2un 6∈W for 2un + 1 pairwise incompatible valuations. So

c ?0iH(∃x)(∀y)Φe(G, x, y, pj)

for every j ≤ 2un. By Lemma 3.38, there is a Pn+1-condition d ≤ c such that d[J ] forces the e-th
requirement on side i for every J C In such that J ≤ I for some I ∈ H = H(c, e, i). Therefore
|H(d, e, i)| = 0 < |H(c, e, i)|. �

Lemma 3.41 For every c ∈ P and e ∈ ω, there is P-condition d ≤ c forcing the e-th requirement
on both sides.

Proof. Apply iteratively Lemma 3.40 to obtain a condition d0 such that H(d0, e, 0) = ∅. Then
apply again iteratively Lemma 3.40 below d0 to obtain an extension d1 such that H(d1, e, 1) = ∅.
The condition d1 is the desired extension. �
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3.10. Construction

As explained, a P-condition represents multiple parallel Q-conditions. By Lemma 3.32, every
P-condition admits a branch with a valid side. Moreover, by Lemma 3.33, the valid sides
of Q-conditions are upward-closed under the extension relation. This motivates the following
definition.

Definition 3.42. A path through a P-filter F is a pair 〈P, i〉 where i < 2 and for every n ∈ ω,

P (n)C In is such that P (n+ 1) ≤ P (n) and for every c ∈ F ∩ Pn, c[P (n)] is i-valid.

By Lemma 3.32 and Lemma 3.33, every P-filter admits a path. We then let

F(P, i) =
⋃
{σiP (n) : (σ0I , σ

1
I , Xν , C : I C In, ν ∈ In) ∈ F}

We can prove that the forced formulas hold along any path.

Lemma 3.43 Let F be a sufficiently generic P-filter, and let 〈P, i〉 be a path through F and
let Gi = F(P, i). Let Φe(G, x, y) be a ∆0 formula and c ∈ F .

(1) If c[P (n)] 
i (∃x)(∀y)Φe(G, x, y), then (∃x)(∀y)Φe(G
i, x, y) holds.

(2) If c[P (n)] 
i (∀x)(∃y)¬Φe(G, x, y), then (∀x)(∃y)¬Φe(G
i, x, y) holds.

Proof. Say c[P (n)] = (σ0, σ1, Xν ,A : ν ∈ P (n)) ∈ Qn.

(1) By definition of c[P (n)] 
i (∃x)(∀y)Φe(G, x, y), then there is some x ∈ ω such that
(σi,

⋃
ν∈P (n)Xν) 
 (∀y)(Gi, x, y). In particular, σi ≺ Gi and Gi − σi ⊆

⋃
ν∈P (n)Xν , so for

every y ∈ ω, ¬Φ(Gi, x, y) holds.
(2) By Lemma 3.26, Lemma 3.31 and Lemma 3.29, for every x ∈ ω, there is some m ∈

ω and d ∈ F ∩ Pm such that d[P (m)] = (τ0, τ1, Yµ,B : µ ∈ P (m)) and (τ i,
⋃
µ∈P (m) Yµ) 


(∃y)¬Φe(G, x, y). In particular, τ i ≺ Gi, so (∃y)Φe(G
i, x, y) holds. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. We prove the theorem for Z = ∅, as the whole argument relativizes. Fix
a ∆0

2 set A and let A0 = A and A1 = A. Let F be a sufficiently generic P-filter. Let 〈P, i〉 be
a path through F . Let Gi = F(P, i). By definition of a P-condition, Gi ⊆ Ai. By Lemma 3.34
and Lemma 3.29, Gi is infinite.

By Lemma 3.41, for every e ∈ ω, there is some n ∈ ω and some c ∈ F ∩Pn such that c forces
the e-th requirement both sides. In particular, c[P (n)] forces the e-th requirement on side i. By
Lemma 3.43, the e-th requirement holds on Gi. By Lemma 3.13, the jump of Gi is not PA
over ∅′. This completes the proof of Theorem 1.3. �
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