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ABSTRACT

The mineralization potential of arc magmas depends, among other factors, on the timing of sulfide melt satura-
tion relative to magma differentiation and to exsolution of a magmatic fluid phase. In fossil mineralized or barren
systems, understanding the evolution of metals along the magma differentiation path is often hindered by late
magmatic processes and hydrothermal alteration. To better understand the process of metal evolution “caught
in the act” in crustal reservoirs, we analyzed magmatic sulfides and melt inclusions found within eruptive prod-
ucts from the active arc volcano, La Fossa (Vulcano Island, Italy), for the basalt to rhyolite compositional spec-
trum. We found that, in case of sulfide-undersaturated and volatile-rich arc basalts, metals are scarcely
subtracted by degassing during ascent to shallow crustal reservoirs and reach the highest abundances in interme-
diate magmas (250 ppm Cu). At sulfide saturation the sulfide melt has 34-66 wt% Cu, leading to a dramatic de-
crease in chalcophile metals dissolved in the silicate melt. After fractionation of only 0.2-0.3 wt% of sulfide in the
solid assemblage, the exsolved sulfide is a monosulfide solid solution (pyrrhotite) containing <3 wt% Cu. Metals
that do not partition in sulfides (Pb, Zn) increase their concentrations during magmatic evolution until they are
sequestered by a Cl-rich aqueous fluid phase exsolved at the rhyolitic stage. The absolute and Cu-normalized con-
centrations of metals in sulfide inclusions are similar to sulfide accessories in magmatic rocks associated with
world-class porphyry Cu systems. Our results demonstrate that the mechanisms governing metal evolution in-
ferred for the magmatic stage in porphyry Cu environments can be also tracked at an active arc volcano, using
eruptive products as snapshots of the magmatic evolution. Arc volcanoes can thus be viewed as ideal active

analogues when studying these crucial processes for the formation of porphyry Cu deposits.

1. Introduction

Metal evolution in arc magmas is difficult to constrain due to the loss
of volatiles and the loss of metals during crystallization and because, in
most cases, magmas become saturated in sulfides at some stage during
their evolution (Audétat and Simon, 2012). Indeed, due to the strong
affinity of chalcophile and siderophile elements (e.g., Platinum-Group
Elements, Cu, Au, and Ag) for the sulfide phase, sulfides exsolved from
silicate magmas lead to severe metal depletion in the residual silicate
melt (Park et al,, 2015).

A primary control on metal evolution in arc magmas is exerted by:
1) the timing of sulfide saturation relative to magmatic differentiation
and volatile exsolution; 2) the amount of metal segregated into mag-
matic sulfides; 3) the amount of sulfide formed; 4) and whether sulfides
are ‘irretrievably lost’ or may instead release metals again at later stages
(Bai et al,, 2020; Chang and Audétat, 2018; Halter et al., 2005; Hao et al.,

2019; Mungall et al., 2015; Park et al., 2015, 2019; Wilkinson, 2013;
Zhang and Audétat, 2017). The combined role of these factors
has proven difficult to resolve, largely because of the complexity in
measuring the metal content of the magmas during their evolution
(Park et al.,, 2019). Information mostly derives from the roots - sulfide-
bearing cumulates - of their plumbing system or from the mineralized
bodies (Chang and Audétat, 2018; Chen et al., 2020). As magmatic-
hydrothermal ore deposits can be considered the extinct equivalent of
active magmatic systems (Hedenquist and Lowenstern, 1994), the in-
vestigation of these processes in the products of active arc volcanoes,
particularly with the support of data from silicate melt inclusions, can
provide pivotal information on metal budget and ore genetic models as-
sociated with arc-related magmas. A significant advantage in studying
active volcanic systems is the lack of hydrothermal alteration or miner-
alization overprints, as shown by recent works for magmatic sulfide sat-
uration studies (Fulignati et al., 2018; Georgatou et al., 2018; Georgatou
and Chiaradia, 2020; Nadeau et al., 2010; Zelenski et al., 2018). Despite
that, very few works have tackled the investigation of metal evolution
through the processes of magma differentiation, sulfide exsolution



and fluid exsolution at active volcanoes or across the wide composi-
tional spectra of magma types (Cox et al., 2019; Park et al., 2013,
2015; Timm et al., 2012).

La Fossa volcano (Italy) is an ideal site to study mineralizing
processes beneath arc volcanoes, being characterized by an active
magmatic-hydrothermal system (Boyce et al., 2007; Fulignati et al.,
1998) and providing evidence of sulfide melt-silicate melt immiscibility
(Fulignati et al., 2018). Here we use melt inclusions, magmatic sulfides
and host minerals to track the evolution of metals for the entire
basalt to rhyolite compositional spectrum. The suite belongs to a
shoshonitic to potassic series in a subduction setting, similar to part of
the magma types found in association with porphyry Cu deposits
(Audétat and Simon, 2012; Sillitoe, 2010). Moreover, we compare our
results to metal contents in sulfides from magmatic systems associated
with ore deposits, showing that strong analogies exist between metal
evolution in active arc volcanoes and those reported for porphyry Cu
environments.

2. Geological background

La Fossa is the active volcanic center of Vulcano Island, in the Aeolian
archipelago, a continental volcanic arc located in southern Tyrrhenian
Sea (Fig. 1a, b). The volcanic activity of the island started at 130 ka
with high-K calcalkaline (HKCA), shoshonitic (SHO) and, recently, po-
tassic (KS) magmas (De Astis et al., 2000), showing the entire range in
composition from basalt to rhyolite (Fig. 1c, d). The plumbing system
of La Fossa is polybaric, dominated by fractional crystallization, crustal
assimilation and magma mixing processes (Costa et al., 2020; De Astis
et al,, 2013; Peccerillo et al., 2006). These occur in a shoshonitic to latitic
magma chamber at about 15 km deep, fed by shoshonitic basaltic
magmas, and in shallower and smaller trachytic to rhyolitic reservoirs
at 5-2 km deep (Costa et al., 2020; De Astis et al., 2013; Fulignati
et al., 2018). Basaltic magmas have been only erupted at about 50 ka.
They are H,O-rich (water up to 5 wt%; Le Voyer et al., 2014) and oxi-
dized. La Fossa has been quiescent since 1890 CE, with a high tempera-
ture fumarolic field fed by magmatic and hydrothermal fluids (Paonita
et al,, 2013). A similar hydrothermal system was active in the past, as
testified by hydrothermally altered lithics found in the eruptive prod-
ucts of recent (post-1000 CE) eruptions (e.g. Breccia di Commenda
eruption; Fulignati et al., 1998; Gurioli et al., 2012; Rosi et al., 2018).

3. Materials and analytical methods

Samples were selected to ensure that the entire range of magma
types, from basalt to rhyolite, was included in this study. They were an-
alyzed for the composition of their sulfide (SIs) and melt (MIs) inclu-
sions hosted within phenocrysts. Samples were preferentially selected
from explosive eruptions, targeted to ensure quenching of melt inclu-
sions to a glass with the eruption. This minimizes the potential for
post-entrapment crystallization of microlites in the trapped melt or
crystallization of the host mineral on the inclusion walls. They include
scoriaceous lapilli of La Sommata and Vulcanello, of basaltic and
shoshonitic composition, respectively. The latitic, trachytic and rhyolitic
samples are represented by the Palizzi eruptive period of La Fossa and
consist of dark grey coarse ash of Pal A (latite) and Pal C (latite, tra-
chyte), pumiceous lapilli of Pal D (trachyte) and Pal B (rhyolite), and
the Palizzi lava flow (trachyte) (see De Astis et al., 2013 and Di Traglia
et al,, 2013 for further information on volcanic stratigraphy). Lapilli
were crushed and crystals were hand-picked under a stereomicroscope,
embedded in epoxy resin mounts and polished. Slices of the Palizzi lava
flow sample were also prepared in epoxy resin mounts for petrographic
investigations and microanalyses. The polished resin mounts were first
studied under reflected light with a petrographic microscope at the
Dipartimento di Scienze della Terra at the Universita di Pisa. Melt and
sulfide inclusions were identified for the analytical follow-up. To avoid
post-entrapment modifications of the melt composition due to melt

crystallization or leakage, the selected melt inclusions are entirely glassy
(no microlites) and lack large vapor bubbles or other evidence of only
partial enclosing by the host crystal. Shrinkage bubbles are absent or
small in Vulcanello MIs while they are common in La Sommata basalt
and in Palizzi trachyte; bubbles may host traces of volatile elements es-
caped from melt, but the observation that they are apparently empty
means that we can consider their metal content negligible. Based on
the inspection of MlIs under back-scattered electron (BSE) microscopy
and on their major element composition, post-entrapment crystalliza-
tion of the host on the inclusion walls can also be considered negligible
with respect to chalcophile metals. This is in agreement with previous
estimates (<2 wt%) of olivine host crystallization for Vulcanello Mls
(Fusillo et al., 2015), corresponding to a variation of the Cu content
within analytical uncertainty.

After carbon-coating, backscattered electron images and the major
element chemical composition of sulfide and melt inclusions were ob-
tained with a Quanta 450 Field Emission-Scanning Electron Microscope
(FE-SEM) (15 kV accelerating voltage, 10 mm working distance and
0.1 nA) equipped with Bruker microanalytical EDS system QUANTAX
installed at the Centro Interdipartimentale di Scienza e Ingegneria dei
Materiali (CISIM) at the Universita di Pisa. Major and minor element
compositions for each melt inclusion were also characterized using an
electron probe microanalyzer (EPMA) JEOL JXA-8200, operating in
wavelength dispersive mode with a defocused beam of 5 um (15 kV ac-
celerating voltage and 5 nA beam current) at the Dipartimento di
Scienze della Terra at the Universita di Milano.

The bulk major element compositions of the texturally non-
homogeneous sulfide inclusions were reconstructed using spot analyses
on the various sulfide phases present within each exposed sulfide inclu-
sion. The reconstructed bulk composition was calculated dependent on
the relative area percent of each sulfide phase, in the BSE images. Area
percentages were determined using the image processing software
package Image] (Image Processing and Analysis in Java, http://rsb.info.
nih.gov/ij/) and the 2D images were segmented by manual thres-
holding. The uncertainty on the reconstructed bulk composition, involv-
ing both instrumental analytical error and manual image thresholding
error, was evaluated to be <10%.

Trace element analyses of melt and sulfide inclusions and of host
minerals were performed in situ by laser ablation inductively coupled
plasma mass spectrometry (LA-ICPMS) at Géosciences Montpellier
(Université de Montpellier, AETE-ISO regional facility of the OSU
OREME), with a pulsed 193 nm ArF excimer laser (Analyte G2 from
Teledyne) coupled to a Thermofinnigan Element XR mass spectrometer.
For the analyses of host minerals, the laser was operated at a repetition
rate of 8 Hz using spot sizes of 85 and 110 um and a 6 /cm? energy den-
sity. Total analysis time was 120 s with the first 80 s used for the back-
ground measurement and the last 40 s for sample ablation. Synthetic
glass NIST 612 was used for external calibration. For melt inclusions,
the laser was operated at a repetition rate of 6 Hz using spot sizes of
10 to 20 um and a 6 J/cm? energy density. Total analysis time was
120 s with the first 80 s used for background measurement and the
last 40 s for sample ablation. Synthetic glass NIST 610 was used for ex-
ternal calibration. For minerals and glass inclusions the accuracy of the
analyses was monitored using the standard glass BIR-1 and SiO; of
each mineral/glass, used as internal standard. For sulfide inclusions,
only those where their exposed diameter was >15 um were analyzed.
The beam spot sizes were 5 to 10 um. Only two non-homogeneous
(polymineralic) sulfide inclusions were sufficiently large to be ana-
lyzed; the laser spot was tuned to approximate the “bulk” composition
of the sulfide inclusion, without distinguishing among the single sulfide
phases. The laser was operated at a repetition rate of 6 Hz using and a
6]/cm? energy density with a total analysis time of 240 's (200 s for back-
ground measurement and 40 s of sample analysis). The Synthetic stan-
dard MASS-1 was used for external calibration. FeO (measured FeO, in
the case of homogeneous sulfide inclusions, and FeO reconstructed
with the above described procedure, in the case of non-homogeneous



polymineralic sulfide inclusions) was used as an internal standard. Data
reduction for the mineral, melt and sulfide inclusion was performed
with the software package Glitter (http://www.glitter-gemoc.com).
Detection limits, results of reference materials and control standard
analysis are provided in the Supplementary Material S1.

4. Results
4.1. Sulfide inclusions

Based on their textures (polymineralic and homogeneous), two
types of sulfide inclusions (Type 1 SIs, polymineralic and Type 2 SIs, ho-
mogeneous) were identified in the Vulcano products. Both types are
spherical when found in glass, and spherical or ovoid to elongated in
shape when enclosed in host phenocrysts, with shape partially defined
by surrounding crystal growth (Fig. 2a).

Type 1 SIs (17 inclusions) are between 1 and 20 um in diameter
(mostly <10 pm) and consist of two or three Cu-rich sulfide phases

each (Fig. 2a). These Sls are hosted in clinopyroxene, magnetite
and feldspars (Fig. 2b). The composition of Type 1 sulfides
(Table 1), when plotted in a Cu-Fe-S diagram at 1000 °C (Fig. 2c¢),
spans from bornite solid solution (bnss) to the sulfide liquid field
(SL). The reconstructed bulk composition of these unmixed Sls
ranges from 66 wt% to 34 wt% Cu in the Cu-Fe-S diagram (Fig. 2c).
Trace elements were measured up to 493 ppm Ni, 131 ppm Co,
1145 ppm Zn, 397 ppm As, 208 ppm Se, 354 ppm Ag and 2020 ppm
Pb (Table 2) within the two Type 1 SIs analyzed (which contained
65 and 46 wt% Cu).

Type 2 SIs (59 inclusions) are 5-60 pm in diameter with a mean size
of 20 um and homogeneous textures (Fig. 2a); they occur in
clinopyroxene, olivine, Ti-magnetite, plagioclase, sanidine, biotite and
glass and prevail in mafic phases and glass. Type 2 SIs plot, at 1000 °C,
in the pyrrhotite field (mss, monosulfide solid solution), with Cu content
up to 2.6 wt% (Fig. 2c; Table 1). If compared to Type 1 SIs, they show
markedly higher Ni and Co contents, up to 3495 ppm and 4248 ppm, re-
spectively, similar Zn and lower Pb (up to 385 ppm), with Ag and Se, in
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Fig. 1. (a) Location of La Fossa volcano and Vulcano island in the Aeolian Arc; (b) Panoramic view toward N of La Fossa crater and its fumarolic field; (c) TAS (total alkali vs SiO,) diagram of
Vulcano rocks. Stars are the samples selected to represent the basalt to rhyolite suite; insert in (c) shows the composition of MIs of the selected samples; (d) Fe,05 tot. vs MgO diagram of
Vulcano products. Whole rock data in (¢) and (d) are re-calculated to 100 on anhydrous basis; literature data are from De Astis et al. (2013), Fusillo et al. (2015) and Costa et al. (2020). Melt
inclusions major elements data are from Gioncada et al. (1998), Le Voyer et al. (2014), Fusillo et al. (2015), Fulignati et al. (2018) and this work. The complete data set of Mls is reported in

the supplementary material S1.
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the tens of ppm range. The only SI found in a rhyolite is pyrrhotite with
0.4 wt% Cu, characterized by very low Zn, Pb and Ag and higher Mo
contents (Tables 1 and 2).

Type 1 and Type 2 SIs are common accessories in trachytes,
whereas they are extremely rare in latites (only Type 1 SIs) and in
rhyolites (only Type 2 SIs), where just a couple of SIs were found
after the inspection of several dozens of crystals. They are absent in
basalt-shoshonite rocks. The two types of SIs never coexist in the
samples of the same eruption. The entire dataset of analyses of the
sulfides and hosts are reported in Tables 1 and 2 and Supplementary
Material S1.

Some differences can be found when comparing the host mineral
compositions for Type 1 and Type 2 Sls. Clinopyroxene (the most fre-
quent host for both types of Sls; Fig. 2b) shows higher Cu, Cr, V and Ni
contents for Type 1 sulfides compared to Type 2, for a similar Mg#
range (see Supplementary Material S1). This is confirmed also
when comparing the entire clinopyroxene analytical dataset (Sup-
plementary Material S1) for the Vulcano products hosting Type 1
and Type 2 SIs.

4.2. Melt inclusions

The composition of glassy MIs in olivine, clinopyroxene, plagioclase,
sanidine and biotite found in the products of explosive eruptions of
basaltic, shoshonitic, latitic, trachytic and rhyolitic magmas is assumed
to be representative of the magmas spanning the whole La Fossa
magmatic differentiation path (Fig. 1c, Table 3 and Supplementary Ma-
terial S1). The differentiation trend involves the fractionation of olivine,
clinopyroxene, Ti-magnetite, labradorite to andesine plagioclase and, in
evolved magmas, sanidine, minor oligoclase and biotite (Gioncada et al.,
1998). Ti-magnetite joins the fractionating assemblage early, as shown
by the decrease of Fe with Mg (Fig. 1d), while apatite joins later in inter-
mediate terms.

The Cu content of MIs reaches the highest values at intermediate
compositions (Zr around 160-200 ppm, at the latite-trachyte transi-
tion) and, when the highest Cu contents are considered, defines a
trend that increases with magmatic differentiation from basalt
(~50 ppm) to latite and trachyte (~250 ppm), and then abruptly drops
to <60 ppm (Fig. 3a). Low Cu values have also been measured in



t1.1 Table 1

t1.2 Major element composition (wt%) of Type 1 and Type 2 SIs; Ol: olivine; Cpx: clinopyroxene; Bt: biotite; Pl: plagioclase; Sa: sanidine; Ti-Mt: Ti-magnetite. Reconstructed: calculated bulk
t1.3 composition of the sulfide inclusions (see methods section for details and supplementary materials for phase proportions); bdl: below detection limit; source a: Fulignati et al. (2018),
t1.4 EPMA analyses; source b: this work, FE-SEM-EDS analyses.

t1.5 Hostrock  Unit Host mineral  Sulfide ID Sulfide type  Source  Fe S Co Mn Ni Zn Cu Total
t1.6 Trachyte Pal D sa PAL-90 sulf1 2 a 5848 3719 009 0.08 0.06 bdl 1.44 97.33
1.7 Trachyte Pal D cpx PAL-90 sulf2 2 a 59.12 3805 003 009 003 010 119 98.60
t1.8 Trachyte Pal D cpx PAL-90 sulf2 2 a 59.89 3808 007 012 005 003 042 98.65
t1.9 Trachyte PalD ol pal90solf3 2 a 5719 3724 014 018 0.07 007 162 96.52
t1.10 Trachyte Pal D gl pal90solf4 2 a 5801 3724 016 011 0.09 bdl 2.32 97.93
t1.11 Trachyte Pal D ol pal90solf5 2 a 5894 3760 010 012 0.10 bdl 1.67 98.53
t1.12 Trachyte PalD ol pal90solf5 2 a 59.19 3808 009 018 0.04 bdl 1.29 98.88
t1.13 Trachyte Pal D gl pal90sulf8 2 a 5709 3805 007 010 004 011 134 96.80
t1.14 Trachyte Pal D Ti-mt pal90sulf10 2 a 5872 3824 005 016 005 005 097 98.23
t1.15 Trachyte PalD cpx pal90sulf13 2 a 5838 3799 013 012 000 0.03 154 98.18
t1.16 Trachyte PalD cpx pal90sulf13 2 a 5825 3770 0.07 004 001 0.06 146 97.58
t1.17 Trachyte Pal D cpx pal90sulf14a 2 a 5330 3964 014 0.09 0.06 bdl 2.16 95.39
t1.18 Trachyte Pal D Ti-mt PAL90 u293sulf17 2 a 5815 3773 009 0.08 0.01 bdl 131 97.37
t1.19 Trachyte Pal D Ti-mt PAL90 u293sulf17 2 a 58.60 3826 007 012 0.09 002 139 98.54
t1.20 Trachyte Pal D pl PAL90U297 sulf18 2 a 56.63 3748 003 010 008 010 155 95.95
t1.21 Trachyte Pal D cpx PAL-15D sulf1 2 a 5633 3735 011 011 0.04 bdl 1.34 95.28
t1.22 Trachyte PalD cpx PAL-15D sulf2 2 a 5760 3753 012 013 0.05 bdl 1.32 96.75
t1.23 Trachyte Pal D Ti-mt PAL-15D sulf3 2 a 5648 3745 013 012 005 004 134 95.60
t1.24 Trachyte Pal D gl PAL-15D sulf4 2 a 5685 3761 009 011 005 011 130 96.12
t1.25 Trachyte PalD cpx sulf5 2 a 56.06 37.68 006 014 0.06 bdl 1.84 95.84
t1.26 Trachyte PalD cpx pal15sulf8.spc 2 a 5715 3763 004 013 bdl 004 1.02 96.00
t1.27 Trachyte Pal D cpx Pal 15 D sulf 6 2 a 5628 3764 008 010 005 006 251 96.71
t1.28 Trachyte PalD cpx Pal 15 D sulf 6 2 a 5635 3764 014 012 011 011 254 97.01
t1.29 Trachyte PalD cpx Pal 15 D sulf 6 2 a 5640 3767 015 001 0.07 007 272 97.09
t1.30 Trachyte Pal D Ti-mt Pal 15 D sulf 7 2 a 5799 3764 003 010 005 004 121 97.06
t1.31 Trachyte Pal D Ti-mt Pal 15 D sulf 8 2 a 5796 3757 012 011 008 004 158 97.46
t1.32 Trachyte Palizzilava  pl SC15-1_1 1 b 2405 3212  bdl bdl bdl bdl 43.83  100.00
t1.33 Trachyte Palizzilava  pl SC15-1_1 1 b 3865 3384 bdl bdl bdl bdl 27.51 100.00
t1.34 Trachyte Palizzilava  pl reconstructed *SC15-1_1 1 b 3354 3324  bdl bdl bdl bdl 33.22 100.00
t1.35 Trachyte Palizzilava  pl SC15-1_2 1 b 2184 3158  bdl bdl bdl bdl 46.58  100.00
t1.36 Trachyte Palizzilava  pl SC15-1_2 1 b 33.72 3457  bdl bdl bdl bdl 31.70  100.00
t1.37 Trachyte Palizzilava  pl reconstructed *SC15-1_2 1 b 2850 3325  bdl bdl bdl bdl 38.25 100.00
t1.38 Trachyte Palizzilava  cpx SC15-1_3 1 b 2092 28588  bdl bdl bdl bdl 50.20  100.00
t1.39 Trachyte Palizzilava  cpx SC15-1_3 1 b 5.09 22.51 bdl bdl bdl bdl 7240  100.00
t1.40 Trachyte Palizzilava  cpx SC15-1_3 1 b 20.74  30.62  bdl bdl bdl bdl 48.64  100.00
t1.41 Trachyte Palizzilava  cpx reconstructed *SC15-1_3 1 b 1557 2794  bdl bdl bdl bdl 56.48 100.00
t1.42 Trachyte Palizzilava  cpx SC15-1_3b 1 b 2160 2391 bdl bdl bdl bdl 5449  100.00
t1.43 Trachyte Palizzilava  cpx SC15-1_3b 1 b 1240 21.58  bdl bdl bdl bdl 66.02  100.00
t1.44 Trachyte Palizzilava  cpx SC15-1_4 1 b 3720 2981 bdl bdl bdl bdl 32.99 100.00
t1.45 Trachyte Palizzilava  cpx SC15-1_4 1 b 3091 3185  bdl bdl bdl bdl 37.24  100.00
t1.46 Trachyte Palizzilava  pl SC15-1_5 1 b 10.02  25.69  bdl bdl bdl bdl 64.29  100.00
t1.47 Trachyte Palizzilava  pl SC15-1_5 1 b 2246 2918  bdl bdl bdl bdl 48.36 100.00
t1.48 Trachyte Palizzilava  pl reconstructed *SC15-1_5 1 b 20.64 28.67 bdl bdl bdl bdl 50.69 100.00
t1.49 Trachyte Palizzilava  pl SC15-1_6 1 b 18.07 3059  bdl bdl bdl bdl 5135  100.00
t1.50 Trachyte Palizzilava  pl SC15-1_6 1 b 9.64 2469  bdl bdl bdl bdl 65.66 100.00
t1.51 Trachyte Palizzilava  pl reconstructed *SC15-1_6 1 b 15.62 28.88  bdl bdl bdl bdl 55.50 100.00
t1.52 Trachyte PalD sa SC_18_20c1 2 b 6238 3748  bdl bdl bdl bdl 0.14 100.00
t1.53 Trachyte Pal D sa SC_18_20c2 2 b 62.83 36.85  bdl bdl bdl bdl 0.32 100.00
t1.54 Trachyte Pal D sa SC_18_20c3 2 b 62.18 3721  bdl bdl bdl bdl 0.60 100.00
t1.55 Trachyte PalD sa SC_18_20c4 2 b 63.61 36.11  bdl bdl bdl bdl 0.28 100.00
t1.56 Trachyte PalD pl SC_18_20c5 2 b 63.70 3620  bdl bdl bdl bdl 0.10 100.00
t1.57 Trachyte Palizzilava  Ti-mt sc1824 11-12 1 b 2418 2879  bdl bdl bdl bdl 47.04 100.00
t1.58 Trachyte Palizzilava  Ti-mt sc1824 11-12 1 b 3137 2973  bdl bdl bdl bdl 38.91 100.00
t1.59 Trachyte Palizzilava  cpx sc1824 4-5-6 1 b 2042 2820  bdl bdl bdl bdl 51.38  100.00
t1.60 Trachyte Palizzilava  cpx sc1824 4-5-6 1 b 227 18.68  bdl bdl bdl bdl 79.05 100.00
t1.61 Trachyte Palizzilava  cpx reconstructed *sc1824 4-5-6 1 b 10.89 2321 bdl bdl bdl bdl 65.90  100.00
t1.62 Trachyte Palizzilava  cpx sc1824 7-8 1 b 29.89  29.63  bdl bdl bdl bdl 40.48  100.00
t1.63 Trachyte Palizzilava  cpx sc1824 7-8 1 b 2297 2830  bdl bdl bdl bdl 48.73  100.00
t1.64 Trachyte Palizzilava  cpx reconstructed *sc1824 7-8 1 b 2518 28.73 bdl bdl bdl bdl 46.09 100.00
t1.65 Latite Pal C Ti-mt sulf n4 1 b 2865 3234  bdl bdl bdl bdl 39.01  100.00
t1.66 Latite Pal C Ti-mt solf n4 1 b 1175 2537  bdl bdl bdl bdl 62.88  100.00
t1.67 Latite Pal C Ti-mt reconstructed *solfn4 1 b 18.51 28.15  bdl bdl bdl bdl 5334  100.00
t1.68 Rhyolite Pal B sa pallentiasulf1 2 a 59.58 3672 003 003 004 009 033 96.81
t1.69 Rhyolite Pal B sa pallentiasulf1 2 a 5857 3656 0.04 0.07 001 bdl 0.42 95.67

some intermediate composition MlIs. Conversely, Pb concentration in (1.25), V (3.17), Pb (1.77) to be calculated. The sulfide phase/sili-
MIs increases from basalt (5 ppm) to trachyte (35 ppm) and remains cate melt partition coefficients for the same metals in Type 1 sul-
constant in rhyolites (Fig. 3b). fides, mostly lacking coexistent melt inclusions, are determined

The average metal concentrations measured in Type 2 SIs assuming the average Cu content of latitic-trachytic melt inclusions
(Table 2) and in coexistent Mls (Table 4) allow the sulfide phase/ (Table 4) and are 1538 for Cu, 154 for Ni, 1.32 for Zn, 1.8 for V and
silicate melt partition coefficients for Cu (1184), Ni (352), Zn 76 for Pb.
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Major and trace elements (ppm) bulk composition of Type 1 and Type 2 Sls analyzed by LA-ICP-MS; Ol: olivine; Cpx: clinopyroxene; Sa: sanidine; Ti-Mt: Ti-magnetite.
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5. Discussion
5.1. Evolution of metals in the magmas

The petrographic features and the chemical compositions of Mls and
SIs found in Vulcano eruptive products allow the evolution of metals in
the magmatic system of an active arc volcano to be tracked from basalt
to rhyolite. This system is fed by sulfide-undersaturated, H,O-rich and
oxidized basaltic magmas. The first appearance of SIs indicates that sul-
fide saturation occurs late, during magma evolution, at the latite-
trachyte transition. Accordingly, the fO, value decreases from basalts
(NNO-NNO + 1) to intermediate magmas (trachyte magma ANNO -1
to —2; Fulignati et al., 2018). This is potentially due to the combined ef-
fects of lower temperatures, the fractionation of Fe-bearing minerals
and the volatile loss during differentiation (Richards, 2015; Scaillet
and MacDonald, 2006; Scaillet and Pichavant, 2005). At Vulcano island,
sulfide saturation is unrelated to the sudden onset of magnetite crystal-
lization (“magnetite crisis”, Jenner et al., 2010), because magnetite
fractionation starts early, while sulfide saturation is late.

Magmatic sulfide inclusions could be trapped either as a liquid (SL)

or as a solid, which can be either a monosulfide solid solution (mss) or
an intermediate solid solution (iss), having a composition close to pyr-
rhotite and chalcopyrite, respectively (Parat et al., 2011). For most
metals, the partition coefficient between sulfide and silicate melt
strongly depends on the nature of the sulfide phase (mss, iss, or SL; Li
and Audétat, 2015). Thus, determining the nature of the sulfide phases
at the time of trapping is important to constrain the metal budget of
the magmatic system (Rottier et al., 2019 and references therein). By
plotting both Type 1 and Type 2 SIs analyses on the ternary diagram
of the Cu-Fe-S system (at 1000 °C), the reconstructed Type 1 SIs compo-
sitions fall in the liquid field, whereas Type 2 SIs fall in the pyrrothite
(mss) field, suggesting that the latter were trapped as a solid phase.
This evidence is supported by comparing their sulfide phase-silicate
melt partition coefficients (for Cu, Ni, Pb, Zn), calculated from measured
concentrationsandpredictedaccordingtotheequationsforDg sy,
DX.ss/sm Of Li and Audétat (2015) for a trachyte melt with 950 °C, AFMQ
—0.77 and FeO 4.4 wt%. The comparison shown in Fig. 4 demonstrates a
good match for both the Type 1 and the Type 2 SIs (these elements were
selected because they could be reliably quantified in both magmatic sul-
fide and silicate melt inclusions, and because their partition coefficient
is markedly different for mss versus SL). The different partition coeffi-
cients SL/SM and mss/SM are also in agreement with the measured Ag
and Pb contents, which are considerably higher in Type 1 SIs than in
Type 2 SIs.

The Cu behavior in the silicate melt confirms late sulfide saturation
(Fig. 3a). In fact, Cu concentration in MIs increases from basalt to latite
melts, which are sulfide-undersaturated, and then rapidly decreases
within a narrow compositional interval (Zr 180-200 ppm; SiO,
58-60 wt%) once sulfide saturation is reached, due to the stripping of
Cu by Cu-rich sulfide melt. The scattered Cu concentrations, including
very low values in the intermediate composition MIs range, might sug-
gest that: (i) incipient sulfide saturation was achieved in some parts of
the reservoir (at the contact with wall rock thanks to temperature de-
crease, fractional crystallization or silica assimilation?) although not re-
vealed by sulfide trapping; (ii) Cu was episodically lost to a S-rich vapor
phase from mafic magmas. Events of refilling by Cu-poor, S-rich and sul-
fide undersaturated magma could furthermore enhance the heteroge-
neity in the Cu content of an intermediate composition reservoir. This
is particularly crucial because, in order to represent the entire basalt to
rhyolite differentiation range, we analyzed samples that do not neces-
sarily represent the evolution in a single reservoir but rather come
from multiple, possibly independent magma batches with variable age.

The evolution of Cu and Pb in the silicate melt has been modeled
with fractional crystallization, starting from a mean value of the La
Sommata basaltic Mls and including a sulfide phase in the fractionating
assemblage at the latite-trachyte stage (Fig. 3a, b). For this study, we
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Table 3

Mean composition and standard deviation (SD) for major elements (wt%) of Mls in the Vulcano products. Literature EPMA data: Gioncada et al. (1998), Le Voyer et al. (2014) for La
Sommata basalt; Fusillo et al. (2015) for Vulcanello 1 shoshonite; Fulignati et al. (2018) for Pal D trachyte. Pal C latite and Pal B rhyolite are FE-SEM-EDS analyses from this work.

Host rock composition Unit Sio, TiO, Al,03 FeOy MnO MgO Ca0 Na,O0 K,0 P05 Cl
Basalt La Sommata mean (15) 4591 0.62 10.99 8.93 0.17 8.76 1434 1.99 1.85 0.31 0.29
SD 0.80 0.06 0.40 0.49 0.02 1.36 0.49 0.17 0.28 0.20 0.05
Shoshonite Vulcanello 1 mean (33) 54.34 0.63 17.31 7.05 0.15 2.16 4.51 4.57 6.83 0.66 0.30
SD 1.44 0.09 0.63 0.90 0.04 0.59 0.89 034 0.66 0.12 0.03
Latite Pal C mean (5) 56.55 0.86 18.08 6.18 0.14 1.10 3.39 494 7.93 0.40 0.42
SD 1.09 0.15 0.80 1.59 0.13 0.24 0.77 039 1.01 0.15 0.09
Trachyte Pal D mean (22) 60.00 0.58 17.38 441 0.14 1.01 2.49 4.59 6.82 0.20 0.38
SD 0.86 0.12 0.56 0.57 0.06 0.32 0.54 0.54 1.04 0.08 0.06
Rhyolite Pal B mean (18) 70.44 0.13 14.87 2.02 0.11 0.13 0.95 453 6.64 0.06 0.51
SD 0.79 0.05 0.62 0.29 0.05 0.11 0.16 0.48 0.51 0.00 0.08

neglected crustal assimilation processes. The model employs bulk distri-
bution coefficient for Zr, Cu and Pb, calculated for each step of the differ-
entiation process using partition coefficients derived from the literature
and the relative proportions of crystallizing phases for Vulcano (Costa
et al., 2020; see Supplementary Material S1 for details of the model).
The sulfide phase/silicate melt partition coefficients for Pb and Cu
were calculated according to Li and Audétat (2015) (Supplementary
Material S1).

The models provide a robust explanation of the Cu behavior in the
silicate melt. The fractional crystallization models predict that
0.2-0.3 wt% of sulfide melt fractionated along with clinopyroxene +
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Fig. 3. Copper (a) and Pb (b) versus Zr as differentiation index for the glassy Mls
representative of the basalt to rhyolite suite at Vulcano, with quantitative fractional
crystallization model for the evolution of Cu and Pb in the silicate melt. Bulk partition
coefficients (D) for Cu, Pb and Zr have been calculated using minerals/silicate melt
partition coefficients from literature and sulfide/silicate melt partition coefficients
calculated with the model of Li and Audétat (2015). See supplementary material S1 for
additional details. 1 sigma error for each analysis is shown as error bars, which if not
visible, is smaller than the symbol. Symbols and numbers along the fractionation paths
indicate melt fraction.

plagioclase + Ti-magnetite + olivine + biotite + sanidine. This is suffi-
cient to cause a sharp drop in the Cu content of silicate melt at the latite
to trachyte transition. Because Type 1 and Type 2 SIs were never found
to coexist, we suggest that the first sulfides formed at the highest Cu
content are correspondingly Cu-rich (Type 1 SIs), whereas those
exsolved from the Cu-depleted trachytic magma are the Cu-poor Type
2 SIs (Cu-bearing mss) found in trachyte and rhyolite (Fig. 3a). This re-
construction is in agreement with the composition of clinopyroxene
crystals in the latites and trachytes. Clinopyroxene composition testifies
that, in the latite-to-trachyte transition, the Cu-depleted trachytic
magma is slightly more evolved (that is, having a lower Cr, V and Ni con-
tent in clinopyroxenes) than the Cu-rich trachyte and latite (Fig. 5). The
trachyte-rhyolite step requires a high percentage (60 vol%) of fraction-
ated solid (Costa et al., 2020), strongly increasing the final concentration
of incompatible elements and possibly explaining the large spread in Zr
values measured in rhyolites.

The evolution of Pb shows an increase with differentiation up to rhy-
olite (Fig. 3b). This agrees well with the low sulfide melt/silicate melt
partition coefficient for this element, which is orders of magnitude
lower than that of Cu (this work and Li and Audétat, 2015). The modeled
Pb trend in rhyolites (Zr > 200 ppm), despite the higher Dpy, slightly de-
viates from the measured data. This may be ascribed to the partitioning
of Pb in an exsolved Cl-bearing aqueous fluid.

5.2. The effect of fluid saturation

Tracking metal evolution in magmas cannot overlook the effect of
fluid-saturation along differentiation. While Vulcano basalts are H,0-,
S-, Cl-rich, the shoshonitic magmas have lower volatile contents
(Gioncada et al., 1998), suggesting that H,0, S and Cl may be lost to an
exsolved aqueous fluid phase at the basalt-shoshonite transition. Our
results show that, despite mafic magmas degassing during ascent, Cu
and Pb increase with differentiation (Fig. 3a, b). This suggests that the
evolution of these metals is not significantly affected by decompression
degassing of mafic magmas as they refill crustal reservoirs. Indeed, Cu
scarcely partitions into a hydrosaline fluid phase exsolved from mafic
magmas according to the experimental results of Zajacz et al. (2012).

In trachytes and rhyolites, the Cu-normalized abundances of S, Mo,
Zn, Ag, Pt, Au, Pbin Type 1 (trachyte) and Type 2 (trachyte and rhyolite)
SIs show different patterns (Fig. 6). While Mo/Cu ratio in the rhyolite
Type 2 Sls is higher than that of Type 2 SIs in trachyte, Zn/Cu and Pb/
Cu are distinctly lower (Fig. 6a). This is in agreement with the exsolution
of a Cl-rich magmatic fluid phase from the rhyolitic magma at La Fossa
(Fulignati et al., 2018), causing Pb and Zn to preferentially partition
with respect to Mo (Zajacz et al., 2008). Mo, which is not efficiently
partitioned in a Cl-rich magmatic fluid phase (Candela and Holland,
1984; Zajacz et al., 2008), tends to also increase in the rhyolite SIs.

At Vulcano, previous data suggest that metal-bearing fluids can be
involved in phreatic-phreatomagmatic eruptions (Gurioli et al., 2012).
An example is the Breccia di Commenda eruption, a violent explosive
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Fig. 4. Comparison of measured sulfide - silicate melt partition coefficients with values
predicted by the model of Li and Audétat (2015); (a) sulfide liquid (Type 1 SIs)-silicate
melt (b) monosulfide solid solution (Type 2 Sls)-silicate melt. T of 950 °C, AFMQ = —
0.77 and FeO in the melt = 4.4 wt% estimated for La Fossa trachyte by Fulignati et al.
(2018) have been used in the model.

event occurred at La Fossa volcano during XIII Cent. AD. This
eruption produced a high amount of lithics which showed acid-sulfate
alteration (Gurioli et al., 2012). Interestingly, S/Cu, Zn/Cu, Pb/Cu ratios
measured on the fine ash of the Breccia di Commenda deposits are
higher than the same ratios measured in the trachytic and rhyolitic Sls
(Fig. 6a). This suggests that Cl-rich fluids carrying Pb and Zn from the
magmatic-hydrothermal system were involved in the Breccia di
Commenda eruption.

5.3. Comparison with mineralized systems

With the aim to compare the SIs composition in the products
of an active arc volcano with that of SIs from magmas associated
with porphyry mineralization, absolute and Cu-normalized metal

9 clinopyroxene
O Latite
@ Trachytic lava
5 || ® Trachytic pumice é
%
. 8 %
£ . o o&
§: 3 —— Q ®
= @ @
O
2 L
e
] -
- 3
0 :
250 200 150 100 50 0
) Cr (ppm)
J o
<
2 g
g
g 3| é @~ @
= Q- @-
&)
5.
@
1t
E= .; 0.
0350 300 250 200 150 100
. V (ppm)
J °
~ Al
g
B3 *
= ® @ [ ]
@]
951
®
1l
-4
0 ¥ " .
100 80 60 . 40 20 0
Ni (ppm)

Fig. 5. Cu versus Cr, V and Ni content for clinopyroxene crystals in the latitic and trachytic
products of La Fossa hosting the type 1 (yellow and green symbols) and type 2 (red
symbols) SIs. See the supplementary material S1 for the complete data set of analyses of
clinopyroxene. 1 sigma error for each analysis is shown as error bars, which if not
visible, is smaller than the symbol. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

concentrations from La Fossa are compared with those found in
well-preserved SIs of ore-related igneous rocks. The metal ratios and
absolute concentrations in Vulcano Sls (either in Type 1 and Type 2
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SIs) match well with those of mineralized systems (Fig. 6b, c). This
suggests that, at Vulcano, the late attainment of sulfide saturation dur-
ing fractionation in mid-upper crustal reservoirs prevents the early
depletion in S and chalcophile metals and produces magmatic sulfide
melts with compositions comparable to those found in several por-
phyry systems. Once formed, the sulfides may be stored in crystal
mushes of intermediate to evolved crustal reservoirs, re-melted by
mafic sulfide-undersaturated recharges or eventually cannibalized by
aqueous fluids exsolving at the rhyolite stage, thereby producing
highly mineralizing solutions (Audétat and Simon, 2012; Halter
et al.,, 2002; Keith et al., 1997; Nadeau et al., 2010; Wilkinson, 2013).

Our results indicate that the processes governing metal evolution
through silicate melt differentiation in active arc magmatic systems
share similarities to those inferred for magmas associated to porphyry
Cu systems. Bearing in mind that the magmatic stage is arguably pivotal
in the evolution of porphyry Cu systems (Audétat and Simon, 2012), arc
volcanoes such as La Fossa can thus be viewed as active analogues and
ideal sites for studying the critical early stages of porphyry Cu genesis.
Their possibility to evolve toward mineralized systems will, of course,

depend also on other factors (magma chamber size and depth, duration
of magmatic and hydrothermal activity, and the efficiency of magmatic
fluid focusing; Richards, 2011; Wilkinson, 2013) that can either pro-
mote or inhibit porphyry Cu formation.

6. Conclusive remarks

In this work, we used combined compositional data (major, minor
and trace element) on melt inclusions, magmatic sulfides and host min-
erals from the eruptive products of the arc volcano of La Fossa (Vulcano
Island, Italy), to track the evolution of metals along the magma differen-
tiation path of an active magmatic system. We found that, in case of
sulfide-undersaturated, volatile-rich arc basalts, metals are scarcely
subtracted by degassing during ascent to shallow crustal reservoirs
and thus reach their highest abundances in intermediate magmas. Fur-
ther evolution results in sulfide saturation where Cu and chalcophile
metals strongly partition into the sulfide melt, causing a dramatic de-
crease in abundance from the silicate melt. The evolution of Cu in the sil-
icate melts was modeled with quantitative fractional crystallization, and



the results are in close agreement with experimental data. The model
shows that fractionation of only 0.2-0.3 wt¥% of sulfide is sufficient to de-
plete the silicate melt in Cu down to the values recorded by Mis in tra-
chytic and rhyolitic products. Metals that do not partition in sulfides
(Pb, Zn) increase their concentrations with magmatic evolution until
they are scavenged by a Cl-rich aqueous fluid phase, possibly exsolved
at the rhyolitic stage.

The comparison of metal ratios and absolute concentrations of the
Vulcano magmatic sulfides with those of sulfides found in magmatic
rocks, associated with world-class porphyry Cu systems, shows strong
similarities. This suggests that the processes governing metal evolu-
tion through silicate melt differentiation in active arc magmatic sys-
tems are similar to those processes inferred for magmatic stage of
porphyry Cu environments. Our results thus suggest that the investi-
gation of metal evolution in active arc volcanoes such as La Fossa
can provide information for interpreting the genetic mechanisms of
porphyry Cu deposit formation.
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