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Abstract An unstructured-PEEC method for modelling electromagnetic regions with surface impedance condition (SIBC) is 
proposed. Two coupled circuits representations are used for solving both electric and/or magnetic effects in thin regions discretized by a 
finite element surface mesh. The formulation is applied in the context of low frequency problems with volumic magnetic media and coils. 
Non simply connected regions are treated with fundamental branch independent loop matrices coming from the circuit representation.  

Purpose -  An unstructured PEEC (Partial Element Equivalent Circuit) method for modelling electromagnetic regions with Surface Impedance 

Boundary Condition (SIBC) is proposed  

Design/Methodology/Approach -  Thanks to the use of Withney face elements, two coupled circuits representations are used for solving both 

electric and/or magnetic effects in thin regions discretized by a finite element surface mesh. The air is not meshed. 

Finding -  The new surface impedance formulation enables the modeling of volume conductive regions in order to efficiently simulate various 

devices with only a surface mesh. 

Research limitations implications – The propagation effects are not taken into account in the proposed formulation 

Originality/Value – The formulation is original and is efficient for modelling non simply connected conductive regions with the use of SIBC. 

The unstructured PEEC SIBC formulation has been validated in presence of volume magnetic nonconductive region and compared with a SIBC 

FEM approach. The computational effort is considerably reduced in comparison with volume approaches. 

Keywords -   Volume Integral Formulation, Unstructured PEEC, Surface Impedance Condition, Losses. 
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1 Introduction  

A major interest in using Volume Integral Methods for 3D magnetic and electric fields analysis is that the air region does not 

need to be meshed. Moreover, the development of new efficient matrix compression algorithms (e.g. FMM, ACA, which greatly 

improve memory storage and resolution time of fully dense matrix systems) renewed the interest of solving Maxwell's equations with 

integral methods based on the Green's function. In this work, we propose a new formulation dedicated to electromagnetic regions 

treated by the surface impedance condition [1]. This work is an extension of a previous volume integral approach based on 3D facet 

interpolations of the current density and of the magnetic flux density [2], [8] and SIBC approaches in the case of conductive but non-

magnetic regions [11]. The main interest is that volume conductive regions only require a surface mesh and that the air is not 

discretized (unlike finite element approaches combined with SIBC). In others words, only the interface between active and air region 

need to be meshed. 

This approach can be compared to Boundary Equation Method (BEM) which also requires the surface mesh of the interface 

between air and active regions. Some formulations have already been developed in order to take account conductive and magnetic 

regions [9][10]. These approaches are powerful and are more general than the SIBC formulation presented in this work because they 
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are not based on any approximation. However, BEM implementations are not straightforward and their performances are penalized 

by the need to integrate complex Green’s kernels which is always a difficulty and a can be source of numerical inaccuracies. So, 

when the skin depth allows the use of SIBC, our integral formulation becomes very attractive in terms of computing performances. 

Moreover, thanks to the circuit representation, these formulations can be easily and naturally coupled with external circuits, PEEC-

1D cables or coil which is not straightforward in the BEM context.  

 In this paper, we first present fundamental equations for building the circuit approach formulation for volume con-ducting regions 

treated with SIBC. The proposed formulation is applied to low frequency problems (capacitive effects and propagation effects will 

be neglected) in presence of coils and magnetic non conducting regions. 

2 Formulation 

2.1 Volume Integral Formulation 

Let us consider a linear magnetoharmonic problem with electromagnetic regions Ω (with current density J and magnetization M), 

and source coils Ω0 (with imposed current density J0). Based on the solution of Maxwell equations, electric field E and magnetic 

field H can be written in terms of the Green’s functions, the current density J, and magnetization M by means integral expression 

over Ω. In the frequency domain, by neglecting propagation effects, and thanks to Lorentz gauge, we have: 

 
Fig. 1. Typical electromagnetic problem 

 
𝐄(P) = −jω𝐀(P) − 𝐠𝐫𝐚𝐝V 

 
𝐇(P) = 𝐓(P) − 𝐠𝐫𝐚𝐝φ 
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(2) 

 

 In the above expressions, r is the distance between observation point P and the integration point. Volume Integral Equations [2] 

are then obtained by matching (1) and (2) with constitutive relationships E(J) and H(M) inside Ω௃ and Ωெ, which, in the case of linear 

properties, are : 

𝐄 =
1

𝜎
𝐉 

 

𝐇 =
1

𝜇௥ − 1
𝐌 

 
where σ is the conductivity and µ = µ0µr is the permeability. Different formulations can be obtained by discretizing the regions and 

by choosing adequate unknowns and interpolation shape functions. The use of 2-form Whitney face interpolation for both current 

density J and magnetic flux density B leads to the unstructured PEEC method proposed in [2]. 

2.2 Surface Impedance Boundary Condition (SIBC) 

We consider that the frequency is sufficiently high to use the surface impedance first order approximation [1]. Thus, we consider that 

the current and flux density in the volume regions are mainly tangential to the boundary and located in a thin pellicular region placed 

of Ω. Tangential current density J and flux density B along the perpendicular direction (z) of the boundary are express by : 

𝐉 =  𝐉𝒔𝑒ି(ଵା௝)
௭
ఋ  

𝐁 =  𝐁𝐬𝑒ି(ଵା௝)
௭
ఋ 

 
 

Js and Bs being the tangential surface current and flux densitiy on Γ (the external boundary of Ω) respectively, whereas δ is the 

skin depth. Tangential surface current K (in A/m) and surface flux density Φ (in Wb/m) are obtained by integrating J and B along 

(z) i.e.:  

Then, we have: 

𝐊 =  𝐉𝒔

𝛿
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𝛿
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(3) 



  

 

From (1) and (2), the evaluation of electric and magnetic fields can be obtained from K and Φ on Γ. Integral equations are then 

obtained by matching the values of electric and magnetic fields on the boundaries of the pellicular region. This leads to two surface 

integral equations with K and Φ as variables: 
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2.3 Use of 2D face element on 3D surface 

Region Γ is discretized by surface finite element meshes (composed of triangles or quadrilaterals for instance) on which K and 

Φ are interpolated with 2D first order surface face elements: 

                 

 𝐊 = ෍ 𝒘𝒔𝒋

௝

𝐼ୱ௝                           𝚽 = ෍ 𝒘𝒔𝒋

௝

𝜙௦௝ 

𝒘𝒔𝒋 is the face function related to j-th face, whereas 𝐼ୱ௝ and 𝜙௦௝ are the current (in A) and magnetic flux (in Wb) flowing through 

the j-th face, respectively. It is worth notice that, with a surface mesh, face elements are associated to the edges of the mesh).  

We have: 
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where 𝑠௘  is the area of the e-th element, and 𝑙௜ is the length of i-th face (geometric edge). The signs in (5) depend on the choice 

of the global orientation of the face. These relations ensure the continuity of K.n and 𝚽.n between adjacent elements. Using (5), by 

considering any scalar potential u and thanks to divergence theorem, we obtain: 

 

න 𝒘𝒊𝒔 𝒈𝒓𝒂𝒅 𝑢 =  Δ𝑢௜
୻

 (6) 

 

 

Figure 2. Primal and dual mesh (dotted lines) 

where 𝛥𝑢௜ is the difference between both mean values of the potential u on elements sharing face i, as shown in Fig. 2. These 

properties will be useful to construct an equivalent circuit representation based on the dual mesh, as developed in the next section. 

It is worth notice that the surface divergences of K and Φ are generally different from zero. Indeed, these divergences are related 

to the current / flux flowing out from Γ. Thus, assuming that the faces of the elements are oriented towards the outside, we have: 
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2.4 Unstructured PEEC model for thin regions 

Applying a Galerkin projection with facet functions wi to equations (4), and by considering (5), we get a circuit representation 

on the dual mesh [2]: 
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The equivalent circuit (dual mesh) is made by the branches connecting two adjacent elements (i.e. face of primal mesh), where 

elements are the nodes of the dual mesh. {ΔVs} and {Δφs} represent the differences between electric and magnetic potentials on 

the branches of the dual mesh. R and Y are sparse finite element matrices while L, C and C’ are fully populated integral matrices. 

 

In order to take into account magnetic fluxes flowing out from magnetic regions and to consider the presence of capacitive 

effects in the electric regions (if any), equations (5) must be completed. The value of electric and magnetic potentials on each face 

element of Γ can be obtained from equations (2). Considering that div J = 0  in ΩJ, we have : 
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where 𝐼௘௟ is the capacitive current flowing out from element l. Moreover, we have: 
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where 𝜙௘௟  is the magnetic flux flowing out from element l.  

 

The average value of potentials on each element of Γcan then be written as: 
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{𝜙௘} and {Ie} are the magnetic fluxes and electric currents flowing out from the surface elements of Γ to the air. By considering 

that electric and magnetic potentials are null at infinite, the electric and magnetic circuits are completed by adding branches which 

connect nodes (i.e. surface elements) of Γ to the infinite (Fig. 3).   

 

 

 

Figure. 3: Example of magnetic equivalent circuit (dotted lines) for a cubic volume region treated by SIBC. External branches allow to take into account 

magnetic fluxes going outside of the region. Analog circuit is used for electric circuit with or without external branches depending of the presence of capacitive 

effects. 

Then, the complete set of equations representing the equivalent circuit interpretation of the electromagnetic problem is given 

by: 
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The solution can then be obtained using a circuit solver based on an independent loops search technique for instance. 

Fundamental circuit equations to be solved are: 
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where [𝑀ூ] and ൣ𝑀థ൧are the branch-fundamental independent loop matrices of the electric and magnetic equivalent circuit 

representations, respectively. The unknowns of the system to solve are the mesh currents IM and mesh flux density 𝜙ெ: 
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The final system be solving is: 
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In the case of only conducting regions, the magnetic unknowns are not needed and the system to solve becomes: 

 

[𝑀ூ][𝑍ூ][𝑀ூ
௧]{𝐼ெ} = {𝑈ூ} 

 

2.5 Coupling with volume magnetic regions 

In this section, capacitive effects are neglected. We present how to adapt the proposed formulation in order to consider volume 

magnetic regions ΩM (see second problem presented in the section “Results”). In the context of a circuit representation, we have to 

consider a magnetic equivalent circuit for volume magnetic region which contains internal and external branches [2]. The magnetic 

fluxes flowing through internal magnetic branches are related to the flux density by the use of volume face elements, i.e.: 
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where 𝒘𝒔𝒋 is the volume face function associate to the face j of the volume discretization and 𝛷௩௝ the magnetic flux flowing 

through the j-th face. External branches connect nodes on the external surface of the volume magnetic region with the infinite, as 

in the case of regions treated by surface impedance condition. The previous equations can then be adapted by considering the fluxes 

{𝜙௦} and {𝜙௩} flowing in the magnetic regions, the external fluxes {𝜙௘} (treated by surface impedance or not) and surface currents 

{𝐼௦}. We have: 
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Note that matrix Q must consider all the external faces of magnetic regions, treated by surface impedance condition or not. If 

two volume regions are in contact, a small change has to be done to determine Q. Otherwise, we can notice that C and C’ matrices 

need a volume integration on the magnetic region. However, previous works have shown that a relative coarse meshing of magnetic 

regions leads to good results when volume integral formulation based on circuit representation is used [12]. 

 

In order to get a good accuracy, the integration of Green’s kernels of L, P, Q, C matrices are computed by using the analytical 

integration technique proposed in [3] for the self-interactions. 

 

2.6 Non simply connected domains 

It is worth notice that non-simply connected domains are naturally treated thanks to the use of a circuit solver (see the second 

example presented in the section “Results”). In order to efficiently obtain the incidence matrices 𝑀ூ and 𝑀థ, the circuit solver uses 

a specific algorithm, which combines the use of connectivity matrix between nodes and edges [6][7] of the primal mesh and 

independent loops search algorithm based on the circuit representation [5]. A first connectivity matrix is easily obtained from the 

finite element mesh and provides a set of small loops (i.e. the loops around each node) which is then provided to the circuit solver 

to be completed. Then, a specific algorithm builds independent loop matrices by adding missing loops and eliminating superfluous 

ones. This technic, based on [13], leads to an efficient determination of 𝑀ூ and 𝑀థ, with the advantages to prioritize small loops. 

 

2.7 Post-treatment 

The computation of the electric and magnetic fields inside the regions can be achieved tanks to the face finite element solution 

obtained for K and Φ. Fields in air and flux in coils can be obtained thanks to integral computed on the active regions [14]. Finally, 

thanks to the solution obtained for K, losses are computed by integrating on Γ, i.e. 
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3 Results 

We first present an academic problem composed of a conductive sphere (radius R = 1m, µr = 1, σ = 5.5E+7 S/m) placed in 

uniform external field B = 1T. Fig.1 shows eddy current losses obtained by the analytical solution and the proposed PEEC SICBC 

formulation.  

 

Fig. 4. Eddy current losses at different frequencies. 

A more complex problem is considered with multiply connected regions as proposed by IEEJ (Fig.5) [4]. The conductivity and 

relative permeability of both plates are 5.5E7S/m and µr = 100, respectively. The ferrite region has a relative permeability of 3000. 

The excitation coil is fed by an alternating current 1000A, 1000Hz.  

 

Fig. 5. The model proposed by IEEJ. 

 

Fig. 6. Geometry and example of mesh for the model proposed by IEEJ 



  

 

Fig. 7. Loops for taking into account non simply connected electric problem 

In order to determine the independent loop matrices, the connectivity matrix from the primal mesh is used. For each conductive 

part, two supplementary loops are found by the circuit solver (Fig. 7) for the electric circuit representation, allowing to take into 

account the eddy currents flowing around the hole and along the section (Fig. 7), if any. 

 

Fig. 8. Surface current K (real part) on conductive regions treated by SIBC 

The density of the equivalent surface current K (Fig. 8) is compared with the result obtained by a FEM-SIBC formulation 

implemented in the Altair FluxTM software (Fig. 9). The difference in terms of Joule losses is about 0.04% for a fine mesh and of 1 

% for a coarse mesh (Fig. 10). 

 

Fig.9. Comparison of the equivalent surface current K. 
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Fig.10 Comparison of losses between a FEM converged solution and the unstructured PEEC formulation. Both formulations use the SIBC condition. 

4 Conclusion 

The new surface impedance formulation enables the modeling of volume conductive and/or magnetic regions in order to 

efficiently simulate various devices with only a surface mesh. The computational effort is considerably reduced in comparison with 

volume approaches. The unstructured PEEC SIBC formulation has been tested in presence of volume magnetic nonconductive region 

and compared with a SIBC FEM approach.  
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