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Abstract: The aim of this article is to present a hybrid integral formulation for modelling structures
made by conductors and thin electromagnetic shell models. Based on the principle of shell elements,
the proposed method provides a solution to various problems without meshing the air regions,
and at the same time helps to take care of the skin effect. By integrating the system of circuit
equations, the method presented in this paper can also model the conductor structures. In addition,
the equations describing the interaction between the conductors and the thin shell are also developed.
Finally, the formulation is validated via an axisymmetric finite element method and the obtained
results are compared with those implemented from another shell formulation.

Keywords: electromagnetic modelling; integral formulation; skin effect; thin shell approach; mutual
inductance; finite element method; partial element equivalent circuit method

1. Introduction

All of the electromagnetic phenomena occurring in the electrical systems are described by
Maxwell’s equations, together with the constitutive material laws. It is a set of partial differential
equations associated with the relationships of electromagnetic field (E, H) distributing into space and
varying into time, the distribution of currents and charges (J, ρ) and material properties (µ, σ) [1,2].

In order to compute the electromagnetic field (i.e., solutions to Maxwell’s equations), an analytical
method or a numerical method can be used. For these devices with simple geometries, a correct analytical
solution can be identified. However, in some general cases, especially for the complex structure of
electrical devices, the numerical methods are used as a sole solution. The numeric methods applied
in modelling of electromagnetic fields can be divided into two categories: finite methods like FEM
(Finite Element Method), FVM (Finite Volume Method) and the numerical integration methods such
as BEM (Boundary Elements method), MoM (Methods of Moments), PEEC method (Partial Element
Equivalent Circuit) [3–13]. The choice of an appropriate method totally depends on the physical
phenomena that need modelling such as the physical phenomena in high or low frequencies, with or
without magnetic material, considering the effect of inductance or capacitance, external excitation
source. However, there is no universal, optimal method for these problems, and the choice of the most
suitable method depends on the nature of the electrical devices and their operation range.

Generally, the electromagnetic modelling of structures including thin shell model and thin wires is a
complex problem in the fields of electrical engineering. Its geometry is characterized by a high ratio of the
length and the thickness. Thus, the use of a volume mesh leads to a large number of elements and/that
makes this method expensive and time consuming to apply to practical devices. Furthermore, due to the
skin effect, when the skin depth δis thinner than the thickness e, the size of the studied meshes must be
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smaller than that of the skin depth. This leads to the difficulties when the thickness of some parts of the
structures is very small in comparison with the overall size of the actual devices.

The shell element formulations have recently been developed by many authors in order to cope
with difficulties in thin plate models, e.g., with the boundary element method (BEM) [3], with the finite
element method (FEM) [5] and with the integral methods [11,14–16]. In [11], we presented a coupling
method between the Partial Element Equivalent Circuit (PEEC) and an integro-differential method
to model the devices that include thin electromagnetic shells and complicated conductor systems.
However, this coupling formulation cannot be applied to problems when the skin depth is low in
comparison with the thickness of the thin shell. In [14], the authors presented a hybrid of volume and
surface integral formulations for the eddy current solution of the conductive regions with arbitrary
geometry. However, this formulation cannot be used for the magnetic material and as in [11], the skin
effect is not yet considered. In [16], we developed a general shell element formulation for modelling
of thin magnetic and conductive regions. The thin shell is modelled by an integral method to avoid
meshing the air region. As in [3,5,15], the field variation through the thickness is considered. Based on
a simple discretization of the shell averaged surface, the number of unknowns is greatly reduced.
However, this formulation is not suitable for model systems with complex conductive structures.

In this paper, a hybrid integral formulation is proposed to allow the modelling of an inhomogeneous
structure constituted by conductors and thin magnetic and conductive shells in the general case (δ > e or
δ ≈ e or δ < e). The modelling of thin magnetic and conductive shell regions is determined thanks to
the integral formulation in [15,16]. A method that allows the modelling of the contributions of the
inductors fed with the alternating currents will be presented in Section 3. The coupling formulations
for integrating the interaction between conductors and thin shells material will be fully developed
in Section 4. Finally, two numerical examples are presented in Section 5. The results obtained from
this formulation are compared with those obtained from the FEM. Strong and weak points of our
formulation are also analyzed.

2. Thin Shell Equation

A thin electromagnetic shell (Ω) with thickness e, conductivity σ and linear permeability µr in this
study is illustrated in Figure 1, where Г1 and Г2 are the surface boundaries of the shell with the air region.
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Figure 1. Thin region and associated notations [16].

The electromagnetic behavior for the side “1” of the shell regions is represented by [15,16]:∫
Γ1

gradsw · (αH1s − βH2s)dΓ + jω
∫

Γ1

w ·B1 · n1dΓ = 0, (1)

where δ is the skin depth associated to the shell; a = (1 + j)/δ; α = a/σth(ae), β = a/σsh(ae); w is a
set of nodal surface weighting functions; H1s and H2s are the tangential magnetic fields on both sides
Г1, Г2 and n1 is the normal vector of the side Г1.
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The symmetrical equation corresponding to the other side of the shell is obtained by simply
exchanging the indices “1” and “2”:∫

Γ2

gradsw · (αH2s − βH1s)dΓ + jω
∫

Γ2

w ·B2 · n2dΓ = 0, (2)

where n2 is the normal vector corresponding the side “2” of the shell.
Equations (1) and (2) are written on the averaged surface Г of the thin shell region. Subtracting

Equations (2) and (1) leads to:

(α+ β)

∫
Γ

gradsw(H2s −H1s)dΓ + jω
∫

Γ
w(2 ·Ba · n)dΓ = 0, (3)

where Ba = (B1 + B2)/2 is defined as the averaged induction and n denotes the normal vector of the
surface Г (Figure 1).

The expressions related to the tangential magnetic fields on both sides and the outside of the shell
are:

H1s = H01s − gradsφ1; H2s = H02s − gradsφ2 (4)

where H01s and H02s are the tangential fields generated by the inductors at side Г1, Г2 and φ1, φ2

denote the corresponding reduced scalar magnetic potentials.
By using (4) and assuming the small variations of H0s through the thickness of the thin shell,

Equation (3) becomes:

(α+ β)

∫
Γ

gradsw · grads∆φdΓ + 2 jω
∫

Γ
w ·Ba · ndΓ = 0, (5)

where ∆φ = φ1 −φ2 is the scalar magnetic potential discontinuity.
Using magnetization law of the linear material, equation (5) can be rewritten as:

(α+ β)

∫
Γ

gradsw · grads∆φdΓ + 2 jω
µ0µr

µr − 1

∫
Γ

w ·Ma · ndΓ = 0, (6)

where Ma = (M1 + M2)/2 is defined as the averaged magnetization.
On the averaged surface Г, the total magnetic field Ha is the sum of the inductor field H0, the field

created by magnetization HM and the field created by the eddy currents flowing in the shell HEC:

Ha(P) = H0(P) + HM(P) + HEC(P) (7)

where P is a point located in the surface region Г.
The field HM is equal to [10]:

HM(P) = −grad
1

4π

∫
Ω

(M · r)
r3 dΩ (8)

where r is the vector between the integration point on Ω and the point P.
By using Biot and Savart law, the field HEC can be written as:

HEC(P) =
1

4π

∫
Ω

J× r
r3 dΩ, (9)

where J denotes the eddy current density of the thin shell.
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The integration of the tangent magnetization through the depth of the thin shell is written as
follows [3,5,16]:

+e/2∫
−e/2

Mdz =
G(M1 + M2)

2
= GMa, (10)

where G = th[(1 + j)e/2δ]/[(1 + j)e/2δ].
Using (10), Equation (8) becomes:

HM(P) = −grad
G
4π

∫
Γ

(Ma · r)
r3 dΓ. (11)

The equivalent shell current K is defined as [3]:

K =

+e/2∫
−e/2

Jdz = n× grad∆φ. (12)

Using (12), Equation (9) becomes:

HEC(P) =
1

4π

∫
Γ

n× grad∆φ× r
r3 dΓ. (13)

Combining (11) with (12), Equation (7) is rewritten as:

Ha(P) = H0(P) − grad
G
4π

∫
Γ

(Ma · r)
r3 dΓ +

1
4π

∫
Γ

n× grad∆φ× r
r3 dΓ. (14)

Let us consider a linear magnetic law for the material Ma(P) = (µr − 1)Ha(P), then Equation (14)
becomes [10,11]:

Ma(P)
µr − 1

= H0(P) − grad
G
4π

∫
Γ

(Ma · r)
r3 dΓ +

1
4π

∫
Γ

n× grad∆φ× r
r3 dΓ, (15)

In [16], Equations (6) and (15) have been resolved and validated by the comparison with the
axisymmetric FEM and the FEM 3D with the shell elements. Let us note that in the proposed
equations, the integrals are determined only by the surface numerical integration. Therefore, the 3D
implementation is simple and reliable. The comparison results with different ratios (e/δ) have
demonstrated the ability and the advantages of the method.

3. Conductor System Modelling

We now consider m volume conductors fed with alternating sources placed in an air region.
The external electric field incident at point P can be written [7–9]:

Eext(P) =
Jc(P)
σ

+ jωA(P) + gradV(P), (16)

where A(P) is the vector potential and V(P) is the scalar potential.
The magnetic vector potential generated by the current density Jc is:

A(P) =
m∑

k=1

µ0

4π

∫
Ωck

Jc
r

dΩ, (17)



Appl. Sci. 2020, 10, 4284 5 of 14

where Ωck is the volume of the conductor k; r is the distance between the integration point on Ωck and
the point P.

In the context of the quasi-stationary regime operated at the frequency range up to ten MHz, it is
possible to neglect the capacitive effect. Equation (16) is written in the form:

Eext(P) =
Jc(P)
σ

+ jω
m∑

k=1

µ0

4π

∫
Ωck

Jc
r

dΩ. (18)

The PEEC method is particularly pertinent and reliable to solve this kind of problem. Let us
assume that the current density in each conductor is uniform. For each conductor, Equation (18) can be
associated to the electrical equivalent circuit presented by the self and mutual inductances in series with
the resistances [8,9]. In most respects, what we know about this approach is difficult to the magnetic
material or the magnetic conductive material. However, the mesh of the air region can be neglected
and some conventional SPICEs-like or Saber circuit solvers can be employed to analyze the equivalent
circuit. As a result, the behavior of several electrical devices that have electrical interconnections can
be studied in only one system. With all of the advantages described above, the PEEC is well-suited for
modelling real industrial devices [17–21].

Despite these clear advantages, this technique has a major drawback due to the necessity to
store a fully dense matrix inherent to the use of the integral formulation in Maxwell’s equation.
Consequently, this approach is strongly limited in modelling large-scale electrical devices requiring
substantial meshes. Let us denote N as the number of unknown then the needed memory for
the fully dense matrix storage leads to O(N2) and the computational costs of a direct solver
(LU-decomposition) increases in proportion to O(N3). For example, a large size modelling problem
containing 50,000 unknowns requires at least 50,000 × 50,000 × 8 bytes or approximately 20 GB in the
memory to store a fully dense matrix and the computational costs of finding one solution by direct
solver are roughly several weeks. In order to study the characteristic of the devices in a frequency
range or in a period of time by the PEEC method, the total computational costs must be multiplied
with the number of frequency or the time steps. Moreover, none of the circuit solvers can handle
the equivalent circuit composing of 50,000 × 50,000 basic circuit elements RLMC (resistor, inductor,
partial inductor, and capacitor). Overall, in both cases the computational time tends to infinity, or it
is impossible to solve. To solve this problem, the algorithms coupling different matrix compression
algorithms or the model order reduction technique with integral methods have been developed with
the purpose of limiting matrix storage [19,21].

In addition, the expansion of the PEEC method for more general problems has been
investigated [11,18,20]. However, this method is still difficult for considering special structures such as a
circular coil, thick circular coil, and thin disk coil. This drawback can be easily improved by using the
semi-analytic methods developed in [22,23].

4. Coupling Thin Shell with Circuit Equation

We now consider a general system composed of m conductors and thin magnetic conductive shell
(volume Ω and average surface Γ) (Figure 2). Let us assume that the current density in each conductor
is uniform.
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4.1. Influence of the Conductor Current on the Thin Region

The term H0 in Equation (15) can be computed by using Biot and Savart law:

H0(P) =
m∑

k=1

1
4π

Ik
Sk

∫
Ωck

lk × r
r3 dΩ, (19)

where Ik and Sk are respectively the current and the cross section of the conductor k; Ωck is the volume
of conductor k; lk is the vector unit of current direction in the conductor k and r is the vector between
the integration point on Ωck and the point P where the field is expressed.

Equation (15) is then rewritten as:

Ma(P)
µr − 1

=
m∑

k=1

1
4π

Ik
Sk

∫
Ωck

lk × r
r3 dΩ − grad

G
4π

∫
Γ

(Ma · r)
r3 dΓ +

1
4π

∫
Γ

n× grad∆φ× r
r3 dΓ. (20)

4.2. Influence of Thin Shell Magnetization on the Conductor

In order to take into account the influence of the field created by the thin shell magnetization,
we have to integrate the magnetic vector potential AM generated by the magnetized thin shell on the
conductor. This magnetic vector potential is expressed as [11,24]:

AM(P) =
µ0

4π

∫
Ω

M× r
r3 dΩ, (21)

where r denotes the vector between the integration point and the point P.
Using (10), Equation (21) can be rewritten as:

AM(P) =
µ0G
4π

∫
Γ

Ma × r
r3 dΓ (22)

4.3. Influence of Thin Shell Eddy Current on the Conductor

The eddy current J in the thin shell generates a magnetic potential vector on the conductor:

AEC(P) =
µ0

4π

∫
Ω

J
r

dΩ, (23)

where r is the distance between the integration point on Ω and the point P.
Using (12), Equation (23) can be rewritten as:

AEC(P) =
µ0

4π

∫
Γ

n× grad∆φ
r

dΓ. (24)
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Combining (17), (22), (23), Equation (18) is rewritten as:

Eext(P) =
J(P)
σ + jω

m∑
k=1

µ0
4π

∫
Ωck

Jc
r dΩ + jωµ0G

4π

∫
Γ

Ma×r
r3 dΓ

+ jω µ0
4π

∫
Γ

n×grad∆φ
r dΓ.

(25)

4.4. Final System of Equations

Equations (6), (20) and (25) are solved by using a numerical method. The most suitable way is to
mesh the averaged surface Γ into n triangular elements and p nodes. Let us assume that the tangential
component of the eddy current and the magnetization in each element are uniform.

The Galerkine projection method is then applied to Equation (6), and we get the following matrix
system [11,15,16]:

[A]·[M] + [B]·[∆Φ] = 0, (26)

where:
[M] is a complex vector of dimension 3n; [∆Φ] is a complex vector of dimension p;
[A] is a (p × 3n) matrix expressed as follows:

A(i, k) = 2 jω
µ0µr

µr − 1

∫
Γ

wi · nkdΓ = 0, (27)

[B] is a (p × p) sparse matrix and can be written as:

B(i, k) = (α+ β)

∫
Γ

gradswi · gradswkdΓ. (28)

A matrix system representing Equation (20) can also be determined thanks to a point matching
approach at the element centroids. This linear matrix system is expressed as [10,11,16]:(

[Id]

µr − 1
+ [F]

)
·[M] − [C]·[∆Φ] − [D]·[I] = 0, (29)

where [Id] represents the identity matrix; [F] is a (3n × 3n) dense matrix; [C] is a (3n × p) also dense
matrix; [D] is a (3n × m) matrix and [I] is a (m × 1) vector. The coefficients of these matrices are
expressed as follows:

F(i, j) =

 G
4π

grad
∫

Γ j

u j·ri

r3
i

dΓ

, ui

 (30)

where [,] is defined as the scalar product operator and ui is the vector basis of the element i and ri is the
vector between the integration point on Γj to the centroid of the element i.

C(i, j) =
1

4π

∫
Γ

n j × gradwi × ri

r3
i

dΓ. (31)

D(i, j) =
1

4π
1
S j

∫
Ωc j

l j × ri

r3
i

dΩ. (32)

By integrating Equation (25) on each conductor, we have the link between the partial voltages
of the conductors to the currents flowing in them. Thus, the voltage appearing on the conductor k is
given by:

Uk = RkIk + jω
m∑

i=1

mikIi + jω
n∑

i=1

m f
ikMai + jω

p∑
i=1

mq
ik·φi, (33)
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where Rk is the resistance of the kth conductor; mik is the mutual inductance between the two conductors
k, i; m f

ik is defined as the mutual inductance between the magnetization Mai of the shell element
and the conductor k; mq

ik is defined as the mutual inductance between the scalar magnetic potential
discontinuity ∆φ of the shell node and the conductor k. These mutual inductances are expressed
as follows:

mik =
µ0

4π
1

SiSk

∫
Ωck

∫
Ωci

lilk
r

dΩcidΩck, (34)

m f
ik =

µ0G
4π

1
Sk

∫
Ωck

∫
Γi

ui × r
r3 dΓlkdΩck, (35)

mq
ik =

µ0

4π
1
Sk

∫
Ωck

∫
Γi

ni × gradwi

r
dΓlkdΩck, (36)

where ui is a basis vector of magnetizations; ni is the normal vector of the element Γi and lk is the
vector unit of the current direction in the conductor k. Let us note that the mutual inductance terms
mik can be calculated by the well-known semi-analytic formulas in [7–9,22,23]. Whereas, the terms m f

ik,
mq

ik are computed with a standard numerical integration.
Writing Equation (33) for all conductors, we get a matrix system known as the impedance matrix

system:
[U] = [Z]·[I] +

[
L f

]
·[M] + [Lq]·[∆Φ], (37)

where [Z] is a (m ×m) matrix; [U] is a (m × 1) vector;
[
L f

]
is a (m × 3n) matrix and [Lq] is a (m × p) matrix.

Finally, the algebraic linear systems (26), (29) and (37) is considered as p + 3n + m complex
unknowns: 

A B 0
MoM −C −D

L f Lq Z

×


M
∆Φ

I

 =


0
0
U

 (38)

where MoM =
[Id]
µr−1 + [F] is usually called the magnetic moment method matrix.

Let us note that Equation (29) has a disadvantage when the permeability of the material is
high. Indeed, in such cases, the matrix term [Id]/(µr − 1) becomes very small in comparison with
the [F] matrix. This can lead to the singularity of matrix [MoM]. It should be noted that for the
linear case, the simpler formulations can be developed. In such cases, Laplace equation is applied
in the whole electromagnetic thin shell regions. Formulation (30) can be determined by a surface
integral equation generated by charge distributions (Coulombian approach) or current distributions
(Amperian approach) located on the surface area bounding the volume Ω of the thin shell region.
In such configuration, only this surface area must be discretized. Consequently, the degrees of freedom
of the obtained matrix system is lower. Moreover, Newton-Raphson algorithm can be easily used for
the non-linear case [25].

Besides, in order to solve the equation system (38) with a reduced number of degrees of freedom,
a Kirchhoff’s mesh rule is introduced. Consequently, the current and the voltage values become
associated to each of the independent circuit mesh. The coupling formulation has been implemented
for 3D geometry.

5. Numerical Examples

In this section, we consider two numerical examples. To valid our formulation, three numerical
methods are compared. The first one is a 3D shell element FEM coupled with the circuit equations [5].
In this modelling, a special care is proposed for the mesh around the conductor to ensure accurate
results. The second one is a 2D FEM formulation. This approach has already shown its good precision
with a few numbers of elements and is considered as the reference. The last one is our coupling
integral formulation.



Appl. Sci. 2020, 10, 4284 9 of 14

5.1. Validation Through an Academic Example

In the first example, a thin magnetic conductive disk is considered with the circular conductor fed
by a voltage of 1V and a frequency of 10Hz (Figure 3).
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Figure 3. Thin magnetic conductive disk and conductor.

The device parameters are presented as below:

– Thin disk:

# Electrical conductivity σdisk = 6 × 107 S/m
# Permeability µr = 200
# R = 1 m, e = 50 mm
# The skin depth δ = 1.45 mm is smaller than the disk’s thickness

– Conductor:

# Electrical conductivity σ conductor = 5.79 × 107 S/m
# h = R/4 = 0.25 m

This academic example is solved by three numerical methods, where the first one is the
axisymmetric FEM, the second one is a shell element formulation implemented in 3D FEM method [5]
and the last one is the proposed integral method with the surface elements. In order to valid our method
and to compare different approaches, we mainly focus on the computed current in the conductor and
the magnetic field in the air region close to the device (calculated on the path AB, for A (0.25; 0; 0.1)
and B (0.25; 0; 0.25)).

Let us note that the problem must be meshed very finely to have an accurate result with the FEM
3D (Table 1 and Figure 4) because of the high variations of the fields around the conductor. The current
values greatly vary according to the number of the elements.

If the axisymmetric FEM is considered as our reference, the coupling integral method leads to
an error of 0.1% (Table 1). Our method leads to more accurate results than the same shell element
formulation but considering the air region treated with the 3D FEM.
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Table 1. Current values in the conductor, where j is an imaginary unit.

FEM Axisymmetric

Number of elements 15,000 30,000 55,000

Current values (A) 1905.95 − j493.12 1905.78 − j492.87 1905.75 − j492.86

FEM 3D with shell elements

Number of elements 130,000 500,000 950,000

Current values (A) 1866.75 − j460.52 1841.78 − j505.48 1839.23 − j509.75

Integral method

Number of elements 300 800 1000

Current values (A) 1908.21 − j495.44 1907.85 − j495.37 1907.76 − j495.35
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5.2. A Pratical Device Example

The second test problem is the modelling of a practical device proposed by the EDF (Electricité de
France) [26]. The power station “Folies” is equipped with a three-phase reactance to limit short-circuit
currents. In this case, the current in each reactance is 1000 A phase-shifted with 120 degrees,
the frequency is 50 Hz (Figure 5).Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 13 
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The parameters are presented as below (Figure 6):

– Outside diameter: ∅e = 1.6 m
– Inside diameter: ∅i = 0.74 m
– Winding thickness: ep = 0.5 m
– Center distance: Ent = 1.4 m
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Figure 6. Parameters of three reactances.

In nominal conditions, a three-phase reactance generate a leakage induction in the neighborhoods.
In order to minimize this electromagnetic disturbance, an electromagnetic shielding and a passive loop
are added between the magnetic field source and the protected area (Figure 7). The device parameters
are presented as below:

– Passive loop:

# Permeability µr = 1,
# Electrical conductivity σ = 3.03 × 107 S/m
# Section radius rs = 9.25 mm
# Zloop = 3.85 m

– Shielding:

# Permeability µr = 20,000,
# Electrical conductivity σ = 2.2 × 106 S/m
# Thickness = 3.5 mm
# Zshielding = 5.15 m
# The skin depth δ = 0.339mm is thinner than the shielding’s thickness.

The last case is tested by our integral method and the FEM 3D with shell elements. Let us note
that this example is in 3-dimensional space and cannot be modelled by the 2D FEM. The current values
in the passive loop and the current distribution in the shells are also compared.

The obtained results from the coupling method converge quite close to the current values presented
in Table 2. Figure 8 also shows that the surface distribution of the current in the shell is quite similar
to the two methods. The results achieved by the coupling integral method are very encouraging.
The convergence is reached with few elements (about 1000 elements).
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Table 2. Current values in the passive loop, where j is an imaginary unit.

FEM 3D with Shell Elements

Number of elements 450,000 800,000 1,100,000

Current values (A) 619.14 + j1946.05 602.72 + j1878.72 606.87 + j1870.24

Integral method

Number of elements 430 850 1020

Current values (A) 615.21 + j1742.30 619.86 + j1745.98 621.38 + j1746.60
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However, some matrices of Equation (38) are fully populated and compression algorithms must
be applied if there is a large number of elements. The coupling of the model order reduction techniques
or the matrix compression algorithms with some integral methods clearly demonstrates its efficiency.
For example, the coupling of a matrix compression algorithm like the FMM and the MoM or the PEEC
method has reduced the computation time and the memory requirements down to more than 10 times
and the compressed ratio is more than 80 percent [18,27]. Moreover, the acquired model can be reused
to build a real circuit, which is easy to employ in all conventional SPICEs-like circuit solvers [28,29].
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6. Conclusions

In this paper, we have presented a coupling integral method in order to model thin magnetic and
conductive regions which can be coupled with an external electric circuit. This coupling enables the
model of conductors with complex shapes, and various skin effects across the thickness of the thin
shell are taken into account. Two numerical examples have been presented and the results highlighted
the accuracy of the solution provided by our proposed method. In our suggestions, the problem dense
matrix and the full memory need could be solved with the compression algorithms.
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