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The recently developed semistochastic heat-bath configuration interaction (SHCI) method is a systematically
improvable selected configuration interaction plus perturbation theory method capable of giving essentially
exact energies for larger systems than is possible with other such methods. We compute SHCI atomization
energies for 55 molecules which have been used as a test set in prior studies because their atomization energies
are known from experiment. Basis sets from cc-pVDZ to cc-pV5Z are used, totaling up to 500 orbitals and a
Hilbert space of 1032 Slater determinants for the largest molecules. For each basis, an extrapolated energy well
within chemical accuracy (1 keal/mol or 1.6 mHa/mol) of the exact energy for that basis is computed using
only a tiny fraction of the entire Hilbert space. We also use our almost exact energies to benchmark coupled-
cluster [CCSD(T)] energies. The energies are extrapolated to the complete basis set limit and compared to the
experimental atomization energies. The extrapolations are done both without and with a basis-set correction
based on density-functional theory. The mean absolute deviations from experiment for these extrapolations
are 0.46 kcal/mol and 0.51 kcal/mol, respectively. Orbital optimization methods used to obtain improved

convergence of the SHCI energies are also discussed.

I. INTRODUCTION

The recently developed semistochastic heat-bath con-
figuration interaction (SHCI) method} 7 is a systemat-
ically improvable quantum chemistry method capable
of providing essentially exact energies for small many-
electron systems. It has been successfully applied to a
number of challenging problems in quantum chemistry,
including the potential energy curve of the chromium
dimer® for which coupled cluster with single, double, and
perturbative triple excitations [CCSD(T)], the gold stan-
dard of single-reference quantum chemistry, does not give
even a qualitatively correct description. It has also been
used as the reference method for calculations on transi-
tion metal atoms, ions, and monoxides? to test the accu-
racy of a wide variety of other electronic-structure meth-
ods.

SHCI is an example of the selected configuration inter-
action (SCI) plus perturbation theory (SCI4+PT) meth-
0dst? 2! which have two stages. In the first stage a vari-
ational wave function is constructed iteratively, starting
from a determinant that is expected to have a significant
amplitude in the final wave function, e.g., the Hartree-
Fock (HF) determinant. The number of determinants in
the variational wave function is controlled by a param-
eter €;. In the second stage, second-order perturbation
theory is used to improve upon the variational energy.
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The total energy (sum of the variational energy and the
perturbative correction) is computed at several values of
€1 and extrapolated to ¢; — 0 to obtain an estimate for
the full configuration interaction (FCI) energy. The ef-
ficiency of SHCI depends on the choice of the orbitals —
natural orbitals lead to faster convergence of the energy
relative to HF orbitals and optimized orbitals yield yet
faster convergence.

In this paper, the SHCI method is reviewed in Sec-
tion [[Il our orbital optimization schemes are described
in Section [[TI] the basis-set correction and extrapolation
that we use are discussed in Section[[V], and the details of
the calculations are given in Section [Vl In Section [VI] we
apply SHCI to the 55 first- and second-row molecules that
served as the training set for the Gaussian-2 (G2) pro-
tocol?2 because accurate experimental atomization ener-
gies were believed to be known for them. The G2 proto-
col is one of several quantum chemistry composite meth-
ods that combine low-order methods on large basis sets
and high-order coupled-cluster methods on smaller basis
sets to compute accurate thermochemical properties (see,
e.g., Refs. M) These 55 molecules, which we refer
to as the G2 set, have previously been used to test the
accuracy of coupled-cluster-based methods?* and quan-
tum Monte Carlo (QMC) methods?® 31, We employ the
correlation consistent basis sets cc-pVnZ for n = 2 (D),
3 (T), 4 (Q), and 532, keeping the core electrons frozen,
to obtain SHCI energies that we believe are well within 1
mHa of the exact (FCI) energies for each of the molecules
and basis sets. Hence these calculations provide a set of
reference energies that can be used to test other accurate
electronic-structure methods.

The molecules in the G2 set are sufficiently weakly
correlated that one would expect CCSD(T) to be rea-
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sonably accurate, but not at the level of 1 mHa. Hence,
we calculate also the CCSD(T) energies using the same
basis sets in order to use SHCI to evaluate the errors in
the CCSD(T) energies, as FCI is not feasible for most of
these systems. The SHCI energies are then extrapolated
to the complete-basis-set (CBS) limit, both without and
with a basis-set correction based on density-functional
theory (DFT)3236. Corrections taken from the litera-
ture for zero-point energy, relativistic effects, and core-
valence correlation are then applied to obtain our predic-
tions for the atomization energies, which are then com-
pared to the best available experimental values. For some
systems the available experimental values differ substan-
tially from each other and for at least one system we
believe that the theoretical estimates are more accurate
than the best experimental value.

Il. REVIEW OF THE SHCI METHOD

In this section, we review the SHCI method, emphasiz-
ing the two important ways it differs from other SCI+PT
methods. In the following, we use V for the set of vari-
ational determinants, and P for the set of perturbative
determinants, that is, the set of determinants that are
connected to the variational determinants by at least one
non-zero Hamiltonian matrix element but are not present

in V.

A. Variational stage

SHCI starts from an initial determinant and generates
the variational wave function through an iterative pro-
cess. At each iteration, the variational wave function,
Uy, is written as a linear combination of the determi-
nants in the space V

[Tv) = " |Dy) (1)

D;eVy

and new determinants, D,, from the space P that satisfy
the criterion

3 D; € V, such that |HM'01'| > €1 (2)

are added to the V space, where H,; is the Hamiltonian
matrix element between determinants D, and D;, and
€1 is a user-defined parameter that controls the accuracy
of the variational stage3”. (When ¢; = 0, the method
becomes equivalent to FCI.) After adding the new deter-
minants to V, the Hamiltonian matrix is constructed and
diagonalized using the diagonally preconditioned David-
son method3® to obtain an improved estimate of the low-
est eigenvalue, Fy, and eigenvector, ¥y . This process is
repeated until the change in the variational energy Ey
falls below a certain threshold.

Other SCI methods use different criteria, based on ei-
ther the first-order perturbative coefficient of the wave

function,

cHgic;
)= |zt s 3)

Ey - E,

or the second-order perturbative correction to the energy,

where E, = H,,. The reason we choose instead the se-
lection criterion in Eq. ([2]) is that it can be implemented
very efficiently without checking the vast majority of the
determinants that do not meet the criterion, by taking
advantage of the fact that most of the Hamiltonian ma-
trix elements correspond to double excitations, and their
values do not depend on the determinants themselves but
only on the four orbitals whose occupancies change dur-
ing the double excitation. Therefore, at the beginning of
an SHCI calculation, for each pair of spin-orbitals, the
absolute values of the Hamiltonian matrix elements ob-
tained by doubly exciting from that pair of orbitals is
computed and stored in decreasing order by magnitude,
along with the corresponding pairs of orbitals the elec-
trons would excite to. Then the double excitations that
meet the criterion in Eq. (2 can be generated by loop-
ing over all pairs of occupied orbitals in the reference
determinant, and traversing the array of sorted double-
excitation matrix elements for each pair. As soon as the
cutoff is reached, the loop for that pair of occupied or-
bitals is exited. Although the criterion in Eq. @) does
not include information from the diagonal elements, this
selection criterion is not significantly different from ei-
ther of the criteria in Eqs. (B)) and (@) because the terms
in the numerators of Eqs. [B) and () span many orders
of magnitude, so the sums are highly correlated with the
largest-magnitude term in the sums in Eqs. @) or (@),
and because the denominator is never small after several
determinants have been included in V. It was demon-
strated in Ref. [ that the selected determinants give only
slightly inferior convergence to those selected using the
criterion in Eq. [@). This is greatly outweighed by the
improved selection speed. Moreover, one could use the
criterion in Eq. (@) with a smaller value of €; as a prese-
lection criterion, and then select determinants using the
criterion in Eq. (@) or something close to it, thereby hav-
ing the benefit of both a fast selection method and a close
to optimal choice of determinants. We use a similar, but
somewhat more complicated criterion, also for the se-
lection of the determinants connected to those in V by a
single excitation, but this improvement is of lesser impor-
tance because the number of determinants connected by
single excitations is much smaller than the number con-
nected by double excitations. With these improvements
the time required for selecting determinants is negligible,
and the most time consuming step by far in the varia-
tional stage is the construction of the sparse Hamilto-
nian matrix. Details for doing this efficiently are given
in Ref. [7.



B. Perturbative stage

In common with most other SCI+PT methods, the
perturbative correction is computed using Epstein-
Nesbet perturbation theory2?:4%. The variational wave
function is used to define the zeroth-order Hamiltonian,

fl(o), and the perturbation, fl(l),

HO = N Hy|DY(D;| + . HaalDa)(Dal.
Di,DjEV Da¢V

A0 — i - o), (5)

The first-order energy correction is zero, and the second-
order energy correction AE®) is

(ZD'L 24 Haici)

2
AB® = (wyAOY) = 30 =B ()

D.eP

where U1 is the first-order wave-function correction.
The SHCI total energy is

ESUCL = By + AB®) = (Uy|H[By) + AB®) (1)

It is expensive to evaluate the expression in Eq. (@)
because the outer summation includes all determinants
in the space P and their number is O(N2NZNy,), where
Ny, is the number of variational determinants, N, is the
number of electrons, and N, is the number of unoccu-
pied orbitals. The straightforward and time-efficient ap-
proach to computing the perturbative correction requires
storing the partial sum 3 p.ey Haici for each unique a,
while looping over all the determinants D; € V. This
creates a severe memory bottleneck. An alternative ap-
proach, which is widely used, does not require storing the
unique a, but requires checking whether the determinant
was already generated by checking its connection with
variational determinants whose connections have already
been included. This entails some additional computa-
tional expense.

The SHCI algorithm instead uses two other strategies
to reduce both the computational time and the storage
requirement. First, SHCI screens the sum? using a sec-
ond threshold, e; (where e2 < €1) as the criterion for
selecting perturbative determinants D, € P,

@ g\
Yopiey Haici

AE® (€2) = Z Ey - E

D.,eP

(8)

where 2(62) indicates that only terms in the sum for
which |Hgic;] > ez are included. Similar to the vari-
ational stage, we find the connected determinants effi-
ciently with precomputed arrays of double excitations
sorted by the magnitude of their Hamiltonian matrix el-
ements!. Note that the vast number of terms that do not
meet this criterion are never evaluated.

Even with this screening, the simultaneous storage of
all terms indexed by a in Eq. () can exceed computer

memory when €5 is chosen small enough to obtain essen-
tially the exact perturbation energy. The second innova-
tion in the calculation of the SHCI perturbative correc-
tion is to overcome this memory bottleneck by evaluating
it semistochastically. The most important contributions
are evaluated deterministically and the rest are sampled
stochastically. Our original method used a two-step per-
turbative algorithm?2, but our later three-step perturba-
tive algorithm? is even more efficient. The three steps
are:

1. A deterministic step with cutoff ed'™(< 1),
wherein all the variational determinants are used,
and all the perturbative batches are summed over.

2. A “pseudo-stochastic” step, with cutoff €5™°(<
€§tm) wherein all the variational determinants are
used, but the perturbative determinants are parti-
tioned into batches. Typically only a small fraction
of these batches need be summed over to achieve
an error much smaller than the target error.

3. A stochastic step, with cutoff es(< €5™°), wherein a
few stochastic samples of variational determinants,
each consisting of N, determinants, are sampled
with probability [c;|/ > p ¢y |cil, and only one of
the perturbative batches is randomly selected per
variational sample.

Using this semistochastic algorithm, the statistical error
of our calculations for each €; is at most 20 pHa, which
is negligible on the scale of the desired accuracy. Having
a small statistical error is important for doing a reliable
extrapolation to the €; = 0 limit. This is done? by com-
puting ESHCT at 5 or 6 values of €; and using a weighted
quadratic fit of ESHCT to —AE® to obtain ESHCT at
—~AE® = 0, using weights proportional to (AE®))~2,
Fig.Mshows the convergence of ESHC! for the system that
has the largest extrapolation distance (difference between
the energy at the smallest €; used and the estimated en-
ergy at e, = 0), namely, SOz in the cc-pV5Z basis set.
We note that, subsequent to our first semistochastic
paper2, a completely different, but also efficient, semis-
tochastic approach has been presented in Ref. 4.

I1l. ORBITAL OPTIMIZATION

SHCI gives an estimate of the exact FCI energy by ex-
trapolating energies evaluated at several e; > 0to e; = 0,
the FCI limit. This results in an extrapolation error that
disappears in the limit that the extrapolation distance
goes to zero.

The extrapolation distance can be reduced by decreas-
ing €1, but this is limited by the available computer
memory and time. An alternative approach is to opti-
mize the orbitals to obtain more compact configuration-
interaction (CI) expansions with lower variational ener-
gies.
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FIG. 1. Convergence of SHCI energy of SO2 in the cc-pV5Z
basis set. The line is a weighted quadratic fit, but is very
nearly linear. The statistical error bars are plotted but are
invisible on the scale of the plot.
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FIG. 2. Comparison of four orbital optimization schemes for
the HoCO molecule in the cc-pVDZ basis and threshold pa-
rameter ¢1 = 2 x 10™%. All four calculations start with HF
orbitals and construct natural orbitals on the first iteration,
so they differ only from the second iteration on. The New-
ton and diagonal Newton curves are nearly coincident for this
system.

The first step to orbital optimization is to find the
SHCI natural orbitals, i.e., the eigenstates of the one-
body reduced density matrix. These orbitals have a defi-
nite occupation number for a given variational wave func-
tion and the most occupied ones represent in some sense
the most important degrees of freedom.

Orbitals can be further optimized by directly minimiz-
ing the energy of the variational wave function through
the orbital rotation parameters X:

E(X) = (Uy|exp(X)H exp(—X)[Ty), 9)

where Af( is a real anti-Hermitian operator such that
exp(—X) parameterizes unitary transformations in or-
bital space. For a system with N, real-valued orbitals,
this yields at most N (Norp — 1)/2 orbital optimization
parameters, which are the elements of the real antisym-

metric matrix X. In reality, the number of parameters

will often be less than this due to point-group symme-
try. Depending on the particular optimization algorithm
used, the gradient and sometimes part of the Hessian
of the energy with respect to the orbital parameters are
needed, either of which requires computing both the one-
and two-body density matrices of the variational wave
function. In addition to the orbital parameters, the CI
parameters (which are much more numerous) must be
optimized as well. We next discuss some of the optimiza-
tion methods we have studied.

A. Newton’s method

Newton’s method is a straightforward method for opti-
mizing the parameters. The parameters x;4; at iteration
t+ 1 are given by

Xt41 = Xt — h;lgt. (10)
where g; and h; are the gradient and the Hessian of the
energy with respect to the parameters at iteration ¢. In
practice it is more efficient to find the parameter changes
by solving the set of linear equations:

ht (Xt+1 — Xt) = —8t. (11)

However, the problem is that the number of parameters
is typically much too large for even this to be practical.
Typically, even using a rather large value of the threshold
parameter €; for the optimization step, there are millions
of CI parameters whereas there are only thousands of or-
bital parameters. So, one resorts to alternating the opti-
mization of the CI parameters using the usual Davidson
algorithm, and optimizing the orbital parameters in the
much smaller space of orbital rotations using Newton’s
method. This alternating optimization often converges
very slowly because the coupling between the CI param-
eters and the orbital parameters is strong as can be seen
in Fig. 2 Note that the orbital optimization problem in
SHCI is more difficult than that in the usual complete-
active-space self-consistent-field (CASSCF) method for
two reasons. First, none of the orbital rotations among
orbitals of the same symmetry are redundant, so the
number of orbital parameters that need to be optimized
is much larger. Second, the coupling between the CI pa-
rameters and the orbital parameters is stronger.

In quantum chemistry problems, the orbital part of the
Hessian matrix is often diagonally dominant. In that case
one can save significant computer time by ignoring the
off-diagonal elements. We refer to this as the “diagonal
Newton” method, and Fig. Blshows that for this molecule
it converges at the same rate as Newton’s method. The
convergence of both methods is limited by the lack of
coupling between the CI and orbital parameters.

B. AMSGrad

AMSGrad is a momentum-based gradient-descent
method commonly used in machine learning®!. It avoids



the expensive Hessian calculations since only gradient
information is needed. At each iteration, it employs
running averages of the gradient components and their
squares, determined by the mixing parameters 31,82 €
(0,1), according to

m; = fimy_1 + (1 — B1)ge,

vy = Bovg—1 4+ (1 — 52)837
’IA}t = max(ﬁt_l s ’Ut),

Xi41 = X¢ — (12)

n
Voire
The learning parameters 7, 81, and (2 together deter-
mine the level of aggressiveness of the descent and e
is a small constant for numerical stability. We have
found empirically that with a suitable level of aggres-
siveness, AMSGrad oscillates for the first few iterations
but eventually descends at a much quicker pace per it-
eration compared to either Newton or diagonal Newton,
as can be seen in Fig. In addition each iteration
takes less time since only the gradient is needed. For
a variety of systems we have found that the parameters
n = 0.01,8; = 0.5,82 = 0.5 give reasonably good con-
vergence, even though they are much different from the
values recommended in the literature.

C. Accelerated Newton’'s method

Finally, we have developed a heuristic overshooting
method that achieves yet better convergence for most
systems. Here, the overshooting tries to account for the
coupling between CI and orbital parameters, but it may
be more generally useful whenever alternating optimiza-
tion of subsets of parameters is done.

At each iteration, a diagonal Newton step is calculated
for the orbital parameters, but, instead of using the pro-
posed step, it is amplified by a factor f; determined by
the cosine of the angle between the previous step x;—x;—1
and the current step xy41 — xy:

) 1 1

f¢ = min (2 — cos(X¢ — X¢—1,Xt41 — X¢t) Z) (13)
where € is initialized to 0.01 and e + €*® each time
cos(xt—X¢—1, Xt+1—X¢) < 0. The cosine in the expression
is calculated in a “scale-invariant” way to make it invari-
ant under a rescaling of some of the pararneters 1 e., 1n
the usual definition cos(v,w) = (v,w)/y/(v,v)(w, w)
we define the inner product as (v, W> =v hW Where
the Hessian h can again be approximated by its diago-
nal. Another scale invariant choice for the inner product
is (v,w) = vI'gg”w, and that works equally well.

As shown in Fig. B, this accelerated scheme optimizes
much faster than the previous schemes. For instance, af-
ter 4 iterations, the gain in variational energy is already
better than that after 20 iterations using the conventional
Newton’s method. Compared to AMSGrad, the higher
per iteration cost is more than made up by the greatly re-
duced number of iterations needed. For this system, not

only does the energy drop significantly but the number
of determinants decreases as well. For the accelerated
scheme the drop is from 145,370 to 93,882 determinants.
However, for some systems the number of determinants
increases, thereby partly offsetting the benefit of the en-

ergy gain.

IV. BASIS-SET CORRECTION AND EXTRAPOLATION

We employ the correlation consistent polarized valence
(ce-pVnZ) basis sets with n = 2 (D), 3 (T), 4 (Q), 5. The
energies computed for each atom or molecule are extrap-
olated to the CBS limit using separate extrapolations for

the HF energy and the correlation energy,42 44
Effs = BIY + aexp( bn), (14)
E&Es = E +en™. (15)

where n is the cardinal number of the basis set. The only
exception is Li, for which the lowest HF energy is taken
as the CBS energy because the energies for n = 3,4,5
cannot be fit by a decaying exponential. Note that the
correlation energy extrapolation has 2 parameters, so it is
necessary to use only the n = 4 and 5 basis sets, whereas
the HF extrapolation has 3 parameters and so it is neces-
sary to use the n = 3,4, and 5 basis sets. Consequently,
the extrapolation error is larger for the HF energy than
for the correlation energy, mostly for molecules contain-
ing second-row atoms, as we have verified for some sys-
tems by going to the n = 6 basis sets. In order to partially
cure this problem the cc-pV(n+d)Z basis sets, which have
one additional set of d basis functions, were introduced2
for the second-row atoms Al through Ar. For H, He,
and first-row atoms the cc-pVnZ and cc-pV(n+d)Z basis
sets are identical. Hence all the CBS energies presented
in this paper use extrapolated HF energies obtained from
Eq. (@) but with EXF replaced by EMNY ntd» Where EHfd are
the HF energies in the cc-pV(n+d)Z basis sets. We find
that although the cc-pV(n+d)Z basis sets of course give
lower total energies than the cc-pVnZ basis sets for each
n, the estimated CBS energies are higher. Of the sys-
tems we study, replacing the cc-pVnZ basis sets with the
cc-pV(n+d)Z basis sets has the largest effect for SO5 and
SO, reducing the atomization energies by 3.68 kcal/mol
and 0.82 kcal/mol, respectively. The large change in the
estimated CBS energy of SOg has previously been noted
in Refs. [46-48.

To estimate the total energies in the CBS limit, we
also employ the DFT-based basis-set correction recently
developed in Refs. 133-13d. In this scheme, the total SHCI
energy in a given basis set is corrected as

ESHCI+PBE _ EHY 4 pSHCT | EPBE, ¢ 4],
(16)

where EFPBE[p ¢, u] is a basis-set-dependent functional
of the density p(r), the spin polarization {(r) = [p+(r) —
p1(r)]/p(r), and the local range-separation function p(r)

EFPPE | ¢, ] = / p()2EBE (p(x), ¢ (x), p(r))dr. (17)

Ener



In Eq. (I, ?C'f;:f Bis the complementary short-range
correlation energy per particle with multideterminant
reference (md) that was constructed in Ref. 34 based on
the Perdew-Burke-Ernzerhof (PBE)42 correlation func-
tional and the on-top pair density of the uniform-electron
gas. The local range-separation function u(r) provides a
local measure of the incompleteness of the basis set and

is defined as

T
() = W (e.x), (18)
where W(r,r) is the on-top value of the effective two-
electron interaction in the basis set
W(I‘, I‘) _ {f(rv I‘)/ng (I‘, I‘), if 712(1', I') # 07 (19>

o, otherwise,
with

Frr) =" " ¢p(r)y(r)VrTl ey (r)du(r), (20)

pgeB rstuc A

na(r,r) = Z ¢r(r)¢s(r)rg¢t(r)¢u(r)v (21)

rstucA

where V> = (pq|rs) are the two-electron integrals and
I'“ is the opposite-spin two-body density matrix. Since
p(r) is very weakly dependent on I':“, we calculate T'L%
at the HF level only. Consistently, {¢,(r)} are the HF
orbitals, and p(r) and ((r) are also calculated at the HF
level. Since the core electrons are frozen in SHCI, we use
the frozen-core variant24:3¢ of this DFT basis-set correc-
tion which means that in Eqs. (20) and (2I]) the sums over
r, 8,1, u are restricted to the set of active (i.e., non-core)
occupied HF orbitals A. Yet, the local range-separation
function u(r) probes the entire basis set through the sums
over p,q, which run over the set of all (occupied + vir-
tual) HF orbitals 5.

For a fixed basis set, the energy functional
EPBE[p, ¢, p] provides an estimate of the energy miss-
ing in FCI to reach the CBS limit. It has the desirable
property of vanishing in the CBS limit, i.e. EEESE =0,
and thus the DFT basis-set correction does not alter the
CBS limit, i.e. E(SjlégHPBE = E(Sjlégl, but just accelerates
the basis convergence.

Based on the analysis of basis convergence in range-
separated DFT2?, we assume an exponential basis con-
vergence of ESHCITPBE which gives us another estimate
of the CBS limit of ESHC! via the extrapolation

E(SjggI+PBE — ESHCI+PBE + anp (—bn), (22)

using n = 3,4,5. The only exceptions are Be and Cl,
whose cc-pV5Z energy is higher than the cc-pVQZ energy
and for which the cc-pV5Z energy is taken as the CBS
energy.

V. COMPUTATIONAL DETAILS

The HF and CCSD(T) calculations are done with
PySCF3! or MOLPRO?2. The starting integrals are com-
puted for HF orbitals. The core orbitals are kept fixed

for all the subsequent steps. Then we construct integrals
in the SHCI natural orbital basis by computing and diag-
onalizing the one-body density matrix and rotating the
integrals in the HF basis to the natural orbital basis.
Next we use the methods discussed in Section [Tl to con-
struct the integrals in the optimized orbital basis. We use
a fairly large value of €; (typically 2 x 10™%) to construct
the natural orbitals and the optimized orbitals. For some
systems the natural orbital basis is reasonably close to
the optimal one, but for most systems the optimized or-
bital bases result in considerable gains in efficiency. The
final SHCI calculations using the optimized orbitals em-
ploy smaller values of €1 (typically 5 values ranging from
2x107* to 2 x 107°), which are then used to extrapolate
to the €; = 0 limit. The system with the largest extrapo-
lation distance, SOs in the cc-pV5Z basis, was shown as
an example in Fig. [

The PBE-based basis-set correction described in Sec-
tion [[V] is calculated independently from the SHCI cal-
culations using the software QUANTUM PACKAGE?22,
If the HF two-body density matrix is used in Eqs. (20)
and (2I)), the basis-set correction has a computational
cost of O(NgN2N?Z,) where N, is the number of real-
space grid points used for numerical integration in Eq.
[I@) and here Ny, is the total number of orbitals (in-
cluding core orbitals) in the basis set. The two-electron
integrals in the HF orbital basis, involving up to two vir-
tual orbitals, are also needed and the cost for doing the
integral transformation to compute these is O(NZN3 ).
However, most of these integrals (aside from those involv-
ing the core orbitals) are needed for SHCI anyway. So,
the DFT-based basis-set correction does not increase the
computational time of SHCI calculations appreciably.

The geometries are taken from the Supplementary Ma-
terial of Ref. [30, which in turn took them from the papers
cited therein. They are provided in the Supplementary
Material®?. The only exceptions are HCO and C,Hy for
which we took the geometry from Ref. [34, because these
geometries gave lower CBS-extrapolated energies by ap-
proximately 1.5 mHa. In order to compare to experi-
mental atomization energies, the CBS SHCI energies are
corrected for zero-point energies (ZPE), core-valence cor-
relation (CV), scalar relativity (SR), and spin-orbit (SO)
effects. We take the corrections from the literature. Since
most of the papers do not have all the 55 molecules we
studied, we take the corrections from Refs. [24 and 57 in
that order, i.e., we take it from the first of these refer-
ences that contains corrections for that molecule. The
source of the corrections is indicated in Table [l next to
the entry for the zero-point energy (ZPE). Similarly the
experimental values quoted in Table [l are taken from

Refs. , [5d-58 in that order.



TABLE I. Deviation of SHCI and SHCI4+PBE atomization energies, Do, in the complete-basis-set limit, from the best available
experimental energies in units of kcal/mol. The raw SHCI and SHCI4+PBE energies are corrected for zero-point energy (ZPE),
scalar relativity (SR), spin-orbit energy (SO) and core-valence correlation (CV). For each molecule, the ZPE, SR+SO and CV
corrections are taken from Ref. |55 if available, and otherwise from Ref. 24 as shown next to the ZPE correction. The only
exceptions are that the CV corrections for LiH and Liz were taken from Ref. 24 because Ref. 155 did not freeze the core for
these systems.

SHCI SHCI+PBE
molecule SHCI D, ZPE SR+SO Ccv experiment Dy deviation Dy deviation
LiH 57.71 -1.9922 -0.02 0.30 55.7028 56.00 0.30 56.02 0.32
BeH 50.23 -