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The recently developed semistochastic heat-bath configuration interaction (SHCI) method is a systematically
improvable selected configuration interaction plus perturbation theory method capable of giving essentially
exact energies for larger systems than is possible with other such methods. We compute SHCI atomization
energies for 55 molecules which have been used as a test set in prior studies because their atomization energies
are known from experiment. Basis sets from cc-pVDZ to cc-pV5Z are used, totaling up to 500 orbitals and a
Hilbert space of 1032 Slater determinants for the largest molecules. For each basis, an extrapolated energy well
within chemical accuracy (1 kcal/mol or 1.6 mHa/mol) of the exact energy for that basis is computed using
only a tiny fraction of the entire Hilbert space. We also use our almost exact energies to benchmark coupled-
cluster [CCSD(T)] energies. The energies are extrapolated to the complete basis set limit and compared to the
experimental atomization energies. The extrapolations are done both without and with a basis-set correction
based on density-functional theory. The mean absolute deviations from experiment for these extrapolations
are 0.46 kcal/mol and 0.51 kcal/mol, respectively. Orbital optimization methods used to obtain improved
convergence of the SHCI energies are also discussed.

I. INTRODUCTION

The recently developed semistochastic heat-bath con-
figuration interaction (SHCI) method1–7 is a systemat-
ically improvable quantum chemistry method capable
of providing essentially exact energies for small many-
electron systems. It has been successfully applied to a
number of challenging problems in quantum chemistry,
including the potential energy curve of the chromium
dimer8 for which coupled cluster with single, double, and
perturbative triple excitations [CCSD(T)], the gold stan-
dard of single-reference quantum chemistry, does not give
even a qualitatively correct description. It has also been
used as the reference method for calculations on transi-
tion metal atoms, ions, and monoxides9 to test the accu-
racy of a wide variety of other electronic-structure meth-
ods.
SHCI is an example of the selected configuration inter-

action (SCI) plus perturbation theory (SCI+PT) meth-
ods10–21 which have two stages. In the first stage a vari-
ational wave function is constructed iteratively, starting
from a determinant that is expected to have a significant
amplitude in the final wave function, e.g., the Hartree-
Fock (HF) determinant. The number of determinants in
the variational wave function is controlled by a param-
eter ǫ1. In the second stage, second-order perturbation
theory is used to improve upon the variational energy.
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The total energy (sum of the variational energy and the
perturbative correction) is computed at several values of
ǫ1 and extrapolated to ǫ1 → 0 to obtain an estimate for
the full configuration interaction (FCI) energy. The ef-
ficiency of SHCI depends on the choice of the orbitals –
natural orbitals lead to faster convergence of the energy
relative to HF orbitals and optimized orbitals yield yet
faster convergence.

In this paper, the SHCI method is reviewed in Sec-
tion II, our orbital optimization schemes are described
in Section III, the basis-set correction and extrapolation
that we use are discussed in Section IV, and the details of
the calculations are given in Section V. In Section VI we
apply SHCI to the 55 first- and second-rowmolecules that
served as the training set for the Gaussian-2 (G2) pro-
tocol22 because accurate experimental atomization ener-
gies were believed to be known for them. The G2 proto-
col is one of several quantum chemistry composite meth-
ods that combine low-order methods on large basis sets
and high-order coupled-cluster methods on smaller basis
sets to compute accurate thermochemical properties (see,
e.g., Refs. 23–27.). These 55 molecules, which we refer
to as the G2 set, have previously been used to test the
accuracy of coupled-cluster-based methods24 and quan-
tum Monte Carlo (QMC) methods28–31. We employ the
correlation consistent basis sets cc-pVnZ for n = 2 (D),
3 (T), 4 (Q), and 532, keeping the core electrons frozen,
to obtain SHCI energies that we believe are well within 1
mHa of the exact (FCI) energies for each of the molecules
and basis sets. Hence these calculations provide a set of
reference energies that can be used to test other accurate
electronic-structure methods.

The molecules in the G2 set are sufficiently weakly
correlated that one would expect CCSD(T) to be rea-
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sonably accurate, but not at the level of 1 mHa. Hence,
we calculate also the CCSD(T) energies using the same
basis sets in order to use SHCI to evaluate the errors in
the CCSD(T) energies, as FCI is not feasible for most of
these systems. The SHCI energies are then extrapolated
to the complete-basis-set (CBS) limit, both without and
with a basis-set correction based on density-functional
theory (DFT)33–36. Corrections taken from the litera-
ture for zero-point energy, relativistic effects, and core-
valence correlation are then applied to obtain our predic-
tions for the atomization energies, which are then com-
pared to the best available experimental values. For some
systems the available experimental values differ substan-
tially from each other and for at least one system we
believe that the theoretical estimates are more accurate
than the best experimental value.

II. REVIEW OF THE SHCI METHOD

In this section, we review the SHCI method, emphasiz-
ing the two important ways it differs from other SCI+PT
methods. In the following, we use V for the set of vari-
ational determinants, and P for the set of perturbative
determinants, that is, the set of determinants that are
connected to the variational determinants by at least one
non-zero Hamiltonian matrix element but are not present
in V .

A. Variational stage

SHCI starts from an initial determinant and generates
the variational wave function through an iterative pro-
cess. At each iteration, the variational wave function,
ΨV , is written as a linear combination of the determi-
nants in the space V

|ΨV 〉 =
∑

Di∈V

ci |Di〉 (1)

and new determinants, Da, from the space P that satisfy
the criterion

∃ Di ∈ V , such that |Haici| ≥ ǫ1 (2)

are added to the V space, where Hai is the Hamiltonian
matrix element between determinants Da and Di, and
ǫ1 is a user-defined parameter that controls the accuracy
of the variational stage37. (When ǫ1 = 0, the method
becomes equivalent to FCI.) After adding the new deter-
minants to V , the Hamiltonian matrix is constructed and
diagonalized using the diagonally preconditioned David-
son method38 to obtain an improved estimate of the low-
est eigenvalue, EV , and eigenvector, ΨV . This process is
repeated until the change in the variational energy EV

falls below a certain threshold.
Other SCI methods use different criteria, based on ei-

ther the first-order perturbative coefficient of the wave

function,
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or the second-order perturbative correction to the energy,

−∆E(2) = − (
∑

i Haici)
2

EV − Ea
> ǫ1, (4)

where Ea = Haa. The reason we choose instead the se-
lection criterion in Eq. (2) is that it can be implemented
very efficiently without checking the vast majority of the
determinants that do not meet the criterion, by taking
advantage of the fact that most of the Hamiltonian ma-
trix elements correspond to double excitations, and their
values do not depend on the determinants themselves but
only on the four orbitals whose occupancies change dur-
ing the double excitation. Therefore, at the beginning of
an SHCI calculation, for each pair of spin-orbitals, the
absolute values of the Hamiltonian matrix elements ob-
tained by doubly exciting from that pair of orbitals is
computed and stored in decreasing order by magnitude,
along with the corresponding pairs of orbitals the elec-
trons would excite to. Then the double excitations that
meet the criterion in Eq. (2) can be generated by loop-
ing over all pairs of occupied orbitals in the reference
determinant, and traversing the array of sorted double-
excitation matrix elements for each pair. As soon as the
cutoff is reached, the loop for that pair of occupied or-
bitals is exited. Although the criterion in Eq. (2) does
not include information from the diagonal elements, this
selection criterion is not significantly different from ei-
ther of the criteria in Eqs. (3) and (4) because the terms
in the numerators of Eqs. (3) and (4) span many orders
of magnitude, so the sums are highly correlated with the
largest-magnitude term in the sums in Eqs. (3) or (4),
and because the denominator is never small after several
determinants have been included in V . It was demon-
strated in Ref. 1 that the selected determinants give only
slightly inferior convergence to those selected using the
criterion in Eq. (3). This is greatly outweighed by the
improved selection speed. Moreover, one could use the
criterion in Eq. (2) with a smaller value of ǫ1 as a prese-
lection criterion, and then select determinants using the
criterion in Eq. (4) or something close to it, thereby hav-
ing the benefit of both a fast selection method and a close
to optimal choice of determinants. We use a similar, but
somewhat more complicated criterion, also for the se-
lection of the determinants connected to those in V by a
single excitation, but this improvement is of lesser impor-
tance because the number of determinants connected by
single excitations is much smaller than the number con-
nected by double excitations. With these improvements
the time required for selecting determinants is negligible,
and the most time consuming step by far in the varia-
tional stage is the construction of the sparse Hamilto-
nian matrix. Details for doing this efficiently are given
in Ref. 7.
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B. Perturbative stage

In common with most other SCI+PT methods, the
perturbative correction is computed using Epstein-
Nesbet perturbation theory39,40. The variational wave
function is used to define the zeroth-order Hamiltonian,
Ĥ(0), and the perturbation, Ĥ(1),

Ĥ(0) =
∑

Di,Dj∈V

Hij |Di〉〈Dj |+
∑

Da /∈V

Haa|Da〉〈Da|.

Ĥ(1) = Ĥ − Ĥ(0). (5)

The first-order energy correction is zero, and the second-
order energy correction ∆E(2) is

∆E(2) = 〈ΨV |Ĥ(1)|Ψ(1)〉 =
∑

Da∈P

(
∑

Di∈V Haici
)2

EV − Ea
,(6)

where Ψ(1) is the first-order wave-function correction.
The SHCI total energy is

ESHCI = EV +∆E(2) = 〈ΨV |H |ΨV 〉+∆E(2) (7)

It is expensive to evaluate the expression in Eq. (6)
because the outer summation includes all determinants
in the space P and their number is O(N2

eN
2
vNV), where

NV is the number of variational determinants, Ne is the
number of electrons, and Nv is the number of unoccu-
pied orbitals. The straightforward and time-efficient ap-
proach to computing the perturbative correction requires
storing the partial sum

∑

Di∈V Haici for each unique a,
while looping over all the determinants Di ∈ V . This
creates a severe memory bottleneck. An alternative ap-
proach, which is widely used, does not require storing the
unique a, but requires checking whether the determinant
was already generated by checking its connection with
variational determinants whose connections have already
been included. This entails some additional computa-
tional expense.
The SHCI algorithm instead uses two other strategies

to reduce both the computational time and the storage
requirement. First, SHCI screens the sum1 using a sec-
ond threshold, ǫ2 (where ǫ2 < ǫ1) as the criterion for
selecting perturbative determinants Da ∈ P ,

∆E(2) (ǫ2) =
∑

Da∈P

(

∑(ǫ2)
Di∈V Haici

)2

EV − Ea
(8)

where
∑(ǫ2) indicates that only terms in the sum for

which |Haici| ≥ ǫ2 are included. Similar to the vari-
ational stage, we find the connected determinants effi-
ciently with precomputed arrays of double excitations
sorted by the magnitude of their Hamiltonian matrix el-
ements1. Note that the vast number of terms that do not
meet this criterion are never evaluated.
Even with this screening, the simultaneous storage of

all terms indexed by a in Eq. (8) can exceed computer

memory when ǫ2 is chosen small enough to obtain essen-
tially the exact perturbation energy. The second innova-
tion in the calculation of the SHCI perturbative correc-
tion is to overcome this memory bottleneck by evaluating
it semistochastically. The most important contributions
are evaluated deterministically and the rest are sampled
stochastically. Our original method used a two-step per-
turbative algorithm2, but our later three-step perturba-
tive algorithm7 is even more efficient. The three steps
are:

1. A deterministic step with cutoff ǫdtm2 (< ǫ1),
wherein all the variational determinants are used,
and all the perturbative batches are summed over.

2. A “pseudo-stochastic” step, with cutoff ǫpsto2 (<
ǫdtm2 ), wherein all the variational determinants are
used, but the perturbative determinants are parti-
tioned into batches. Typically only a small fraction
of these batches need be summed over to achieve
an error much smaller than the target error.

3. A stochastic step, with cutoff ǫ2(< ǫpsto2 ), wherein a
few stochastic samples of variational determinants,
each consisting of Nd determinants, are sampled
with probability |ci|/

∑

Di∈V |ci|, and only one of
the perturbative batches is randomly selected per
variational sample.

Using this semistochastic algorithm, the statistical error
of our calculations for each ǫ1 is at most 20 µHa, which
is negligible on the scale of the desired accuracy. Having
a small statistical error is important for doing a reliable
extrapolation to the ǫ1 = 0 limit. This is done3 by com-
puting ESHCI at 5 or 6 values of ǫ1 and using a weighted
quadratic fit of ESHCI to −∆E(2) to obtain ESHCI at
−∆E(2) = 0, using weights proportional to (∆E(2))−2.
Fig. 1 shows the convergence of ESHCI for the system that
has the largest extrapolation distance (difference between
the energy at the smallest ǫ1 used and the estimated en-
ergy at ǫ1 = 0), namely, SO2 in the cc-pV5Z basis set.
We note that, subsequent to our first semistochastic

paper2, a completely different, but also efficient, semis-
tochastic approach has been presented in Ref. 18.

III. ORBITAL OPTIMIZATION

SHCI gives an estimate of the exact FCI energy by ex-
trapolating energies evaluated at several ǫ1 > 0 to ǫ1 = 0,
the FCI limit. This results in an extrapolation error that
disappears in the limit that the extrapolation distance
goes to zero.
The extrapolation distance can be reduced by decreas-

ing ǫ1, but this is limited by the available computer
memory and time. An alternative approach is to opti-
mize the orbitals to obtain more compact configuration-
interaction (CI) expansions with lower variational ener-
gies.
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FIG. 1. Convergence of SHCI energy of SO2 in the cc-pV5Z
basis set. The line is a weighted quadratic fit, but is very
nearly linear. The statistical error bars are plotted but are
invisible on the scale of the plot.
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FIG. 2. Comparison of four orbital optimization schemes for
the H2CO molecule in the cc-pVDZ basis and threshold pa-
rameter ǫ1 = 2 × 10−4. All four calculations start with HF
orbitals and construct natural orbitals on the first iteration,
so they differ only from the second iteration on. The New-
ton and diagonal Newton curves are nearly coincident for this
system.

The first step to orbital optimization is to find the
SHCI natural orbitals, i.e., the eigenstates of the one-
body reduced density matrix. These orbitals have a defi-
nite occupation number for a given variational wave func-
tion and the most occupied ones represent in some sense
the most important degrees of freedom.
Orbitals can be further optimized by directly minimiz-

ing the energy of the variational wave function through
the orbital rotation parameters X:

E(X) = 〈ΨV | exp(X̂)Ĥ exp(−X̂)|ΨV 〉, (9)

where X̂ is a real anti-Hermitian operator such that
exp(−X̂) parameterizes unitary transformations in or-
bital space. For a system with Norb real-valued orbitals,
this yields at most Norb(Norb− 1)/2 orbital optimization
parameters, which are the elements of the real antisym-
metric matrix X. In reality, the number of parameters

will often be less than this due to point-group symme-
try. Depending on the particular optimization algorithm
used, the gradient and sometimes part of the Hessian
of the energy with respect to the orbital parameters are
needed, either of which requires computing both the one-
and two-body density matrices of the variational wave
function. In addition to the orbital parameters, the CI
parameters (which are much more numerous) must be
optimized as well. We next discuss some of the optimiza-
tion methods we have studied.

A. Newton’s method

Newton’s method is a straightforward method for opti-
mizing the parameters. The parameters xt+1 at iteration
t+ 1 are given by

xt+1 = xt − h−1
t gt. (10)

where gt and ht are the gradient and the Hessian of the
energy with respect to the parameters at iteration t. In
practice it is more efficient to find the parameter changes
by solving the set of linear equations:

ht (xt+1 − xt) = −gt. (11)

However, the problem is that the number of parameters
is typically much too large for even this to be practical.
Typically, even using a rather large value of the threshold
parameter ǫ1 for the optimization step, there are millions
of CI parameters whereas there are only thousands of or-
bital parameters. So, one resorts to alternating the opti-
mization of the CI parameters using the usual Davidson
algorithm, and optimizing the orbital parameters in the
much smaller space of orbital rotations using Newton’s
method. This alternating optimization often converges
very slowly because the coupling between the CI param-
eters and the orbital parameters is strong as can be seen
in Fig. 2. Note that the orbital optimization problem in
SHCI is more difficult than that in the usual complete-
active-space self-consistent-field (CASSCF) method for
two reasons. First, none of the orbital rotations among
orbitals of the same symmetry are redundant, so the
number of orbital parameters that need to be optimized
is much larger. Second, the coupling between the CI pa-
rameters and the orbital parameters is stronger.
In quantum chemistry problems, the orbital part of the

Hessian matrix is often diagonally dominant. In that case
one can save significant computer time by ignoring the
off-diagonal elements. We refer to this as the “diagonal
Newton” method, and Fig. 2 shows that for this molecule
it converges at the same rate as Newton’s method. The
convergence of both methods is limited by the lack of
coupling between the CI and orbital parameters.

B. AMSGrad

AMSGrad is a momentum-based gradient-descent
method commonly used in machine learning41. It avoids
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the expensive Hessian calculations since only gradient
information is needed. At each iteration, it employs
running averages of the gradient components and their
squares, determined by the mixing parameters β1, β2 ∈
(0, 1), according to

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t ,

v̂t = max(v̂t−1, vt),

xt+1 = xt −
η√

v̂t + ǫ
mt. (12)

The learning parameters η, β1, and β2 together deter-
mine the level of aggressiveness of the descent and ǫ
is a small constant for numerical stability. We have
found empirically that with a suitable level of aggres-
siveness, AMSGrad oscillates for the first few iterations
but eventually descends at a much quicker pace per it-
eration compared to either Newton or diagonal Newton,
as can be seen in Fig. 2. In addition each iteration
takes less time since only the gradient is needed. For
a variety of systems we have found that the parameters
η = 0.01, β1 = 0.5, β2 = 0.5 give reasonably good con-
vergence, even though they are much different from the
values recommended in the literature.

C. Accelerated Newton’s method

Finally, we have developed a heuristic overshooting
method that achieves yet better convergence for most
systems. Here, the overshooting tries to account for the
coupling between CI and orbital parameters, but it may
be more generally useful whenever alternating optimiza-
tion of subsets of parameters is done.
At each iteration, a diagonal Newton step is calculated

for the orbital parameters, but, instead of using the pro-
posed step, it is amplified by a factor ft determined by
the cosine of the angle between the previous step xt−xt−1

and the current step xt+1 − xt:

ft = min

(

1

2− cos(xt − xt−1,xt+1 − xt)
,
1

ǫ

)

(13)

where ǫ is initialized to 0.01 and ǫ ← ǫ0.8 each time
cos(xt−xt−1,xt+1−xt) < 0. The cosine in the expression
is calculated in a “scale-invariant” way to make it invari-
ant under a rescaling of some of the parameters, i.e., in
the usual definition cos(v,w) = 〈v,w〉/

√

〈v,v〉〈w,w〉
we define the inner product as 〈v,w〉 = vThw, where
the Hessian h can again be approximated by its diago-
nal. Another scale invariant choice for the inner product
is 〈v,w〉 = vTggTw, and that works equally well.
As shown in Fig. 2, this accelerated scheme optimizes

much faster than the previous schemes. For instance, af-
ter 4 iterations, the gain in variational energy is already
better than that after 20 iterations using the conventional
Newton’s method. Compared to AMSGrad, the higher
per iteration cost is more than made up by the greatly re-
duced number of iterations needed. For this system, not

only does the energy drop significantly but the number
of determinants decreases as well. For the accelerated
scheme the drop is from 145,370 to 93,882 determinants.
However, for some systems the number of determinants
increases, thereby partly offsetting the benefit of the en-
ergy gain.

IV. BASIS-SET CORRECTION AND EXTRAPOLATION

We employ the correlation consistent polarized valence
(cc-pVnZ) basis sets with n = 2 (D), 3 (T), 4 (Q), 5. The
energies computed for each atom or molecule are extrap-
olated to the CBS limit using separate extrapolations for
the HF energy and the correlation energy,42–44

EHF
CBS = EHF

n + a exp (−bn), (14)

Ecorr
CBS = Ecorr

n + cn−3. (15)

where n is the cardinal number of the basis set. The only
exception is Li, for which the lowest HF energy is taken
as the CBS energy because the energies for n = 3, 4, 5
cannot be fit by a decaying exponential. Note that the
correlation energy extrapolation has 2 parameters, so it is
necessary to use only the n = 4 and 5 basis sets, whereas
the HF extrapolation has 3 parameters and so it is neces-
sary to use the n = 3, 4, and 5 basis sets. Consequently,
the extrapolation error is larger for the HF energy than
for the correlation energy, mostly for molecules contain-
ing second-row atoms, as we have verified for some sys-
tems by going to the n = 6 basis sets. In order to partially
cure this problem the cc-pV(n+d)Z basis sets, which have
one additional set of d basis functions, were introduced45

for the second-row atoms Al through Ar. For H, He,
and first-row atoms the cc-pVnZ and cc-pV(n+d)Z basis
sets are identical. Hence all the CBS energies presented
in this paper use extrapolated HF energies obtained from
Eq. (14) but with EHF

n replaced by EHF
n+d, where E

HF
n+d are

the HF energies in the cc-pV(n+d)Z basis sets. We find
that although the cc-pV(n+d)Z basis sets of course give
lower total energies than the cc-pVnZ basis sets for each
n, the estimated CBS energies are higher. Of the sys-
tems we study, replacing the cc-pVnZ basis sets with the
cc-pV(n+d)Z basis sets has the largest effect for SO2 and
SO, reducing the atomization energies by 3.68 kcal/mol
and 0.82 kcal/mol, respectively. The large change in the
estimated CBS energy of SO2 has previously been noted
in Refs. 46–48.
To estimate the total energies in the CBS limit, we

also employ the DFT-based basis-set correction recently
developed in Refs. 33–36. In this scheme, the total SHCI
energy in a given basis set is corrected as

ESHCI+PBE
n = EHF

n+d − EHF
n + ESHCI

n + ĒPBE
n [ρ, ζ, µ],

(16)

where ĒPBE
n [ρ, ζ, µ] is a basis-set-dependent functional

of the density ρ(r), the spin polarization ζ(r) = [ρ↑(r)−
ρ↓(r)]/ρ(r), and the local range-separation function µ(r)

ĒPBE
n [ρ, ζ, µ] =

∫

ρ(r)ε̄sr,PBE
c,md (ρ(r), ζ(r), µ(r))dr. (17)
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In Eq. (17), ε̄sr,PBE
c,md is the complementary short-range

correlation energy per particle with multideterminant
reference (md) that was constructed in Ref. 34 based on
the Perdew-Burke-Ernzerhof (PBE)49 correlation func-
tional and the on-top pair density of the uniform-electron
gas. The local range-separation function µ(r) provides a
local measure of the incompleteness of the basis set and
is defined as

µ(r) =

√
π

2
W (r, r), (18)

where W (r, r) is the on-top value of the effective two-
electron interaction in the basis set

W (r, r) =

{

f(r, r)/n2(r, r), if n2(r, r) 6= 0,

∞, otherwise,
(19)

with

f(r, r) =
∑

pq∈B

∑

rstu∈A

φp(r)φq(r)V
rs
pq Γ

tu
rsφt(r)φu(r), (20)

n2(r, r) =
∑

rstu∈A

φr(r)φs(r)Γ
tu
rsφt(r)φu(r), (21)

where V rs
pq = 〈pq|rs〉 are the two-electron integrals and

Γtu
rs is the opposite-spin two-body density matrix. Since

µ(r) is very weakly dependent on Γtu
rs, we calculate Γtu

rs

at the HF level only. Consistently, {φp(r)} are the HF
orbitals, and ρ(r) and ζ(r) are also calculated at the HF
level. Since the core electrons are frozen in SHCI, we use
the frozen-core variant34,36 of this DFT basis-set correc-
tion which means that in Eqs. (20) and (21) the sums over
r, s, t, u are restricted to the set of active (i.e., non-core)
occupied HF orbitals A. Yet, the local range-separation
function µ(r) probes the entire basis set through the sums
over p, q, which run over the set of all (occupied + vir-
tual) HF orbitals B.
For a fixed basis set, the energy functional

ĒPBE
n [ρ, ζ, µ] provides an estimate of the energy miss-

ing in FCI to reach the CBS limit. It has the desirable
property of vanishing in the CBS limit, i.e. ĒPBE

CBS = 0,
and thus the DFT basis-set correction does not alter the
CBS limit, i.e. ESHCI+PBE

CBS = ESHCI
CBS , but just accelerates

the basis convergence.
Based on the analysis of basis convergence in range-

separated DFT50, we assume an exponential basis con-
vergence of ESHCI+PBE

n which gives us another estimate
of the CBS limit of ESHCI

n via the extrapolation

ESHCI+PBE
CBS = ESHCI+PBE

n + a exp (−bn), (22)

using n = 3, 4, 5. The only exceptions are Be and Cl,
whose cc-pV5Z energy is higher than the cc-pVQZ energy
and for which the cc-pV5Z energy is taken as the CBS
energy.

V. COMPUTATIONAL DETAILS

The HF and CCSD(T) calculations are done with
PySCF51 or MOLPRO52. The starting integrals are com-
puted for HF orbitals. The core orbitals are kept fixed

for all the subsequent steps. Then we construct integrals
in the SHCI natural orbital basis by computing and diag-
onalizing the one-body density matrix and rotating the
integrals in the HF basis to the natural orbital basis.
Next we use the methods discussed in Section III to con-
struct the integrals in the optimized orbital basis. We use
a fairly large value of ǫ1 (typically 2× 10−4) to construct
the natural orbitals and the optimized orbitals. For some
systems the natural orbital basis is reasonably close to
the optimal one, but for most systems the optimized or-
bital bases result in considerable gains in efficiency. The
final SHCI calculations using the optimized orbitals em-
ploy smaller values of ǫ1 (typically 5 values ranging from
2×10−4 to 2×10−5), which are then used to extrapolate
to the ǫ1 = 0 limit. The system with the largest extrapo-
lation distance, SO2 in the cc-pV5Z basis, was shown as
an example in Fig. 1.

The PBE-based basis-set correction described in Sec-
tion IV is calculated independently from the SHCI cal-
culations using the software QUANTUM PACKAGE53.
If the HF two-body density matrix is used in Eqs. (20)
and (21), the basis-set correction has a computational
cost of O(NgN

2
eN

2
orb) where Ng is the number of real-

space grid points used for numerical integration in Eq.
(17) and here Norb is the total number of orbitals (in-
cluding core orbitals) in the basis set. The two-electron
integrals in the HF orbital basis, involving up to two vir-
tual orbitals, are also needed and the cost for doing the
integral transformation to compute these is O(N2

eN
3
orb).

However, most of these integrals (aside from those involv-
ing the core orbitals) are needed for SHCI anyway. So,
the DFT-based basis-set correction does not increase the
computational time of SHCI calculations appreciably.

The geometries are taken from the Supplementary Ma-
terial of Ref. 30, which in turn took them from the papers
cited therein. They are provided in the Supplementary
Material54. The only exceptions are HCO and C2H4 for
which we took the geometry from Ref. 34, because these
geometries gave lower CBS-extrapolated energies by ap-
proximately 1.5 mHa. In order to compare to experi-
mental atomization energies, the CBS SHCI energies are
corrected for zero-point energies (ZPE), core-valence cor-
relation (CV), scalar relativity (SR), and spin-orbit (SO)
effects. We take the corrections from the literature. Since
most of the papers do not have all the 55 molecules we
studied, we take the corrections from Refs. 24 and 55 in
that order, i.e., we take it from the first of these refer-
ences that contains corrections for that molecule. The
source of the corrections is indicated in Table I next to
the entry for the zero-point energy (ZPE). Similarly the
experimental values quoted in Table I are taken from
Refs. 24, 56–58 in that order.
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TABLE I. Deviation of SHCI and SHCI+PBE atomization energies, D0, in the complete-basis-set limit, from the best available
experimental energies in units of kcal/mol. The raw SHCI and SHCI+PBE energies are corrected for zero-point energy (ZPE),
scalar relativity (SR), spin-orbit energy (SO) and core-valence correlation (CV). For each molecule, the ZPE, SR+SO and CV
corrections are taken from Ref. 55 if available, and otherwise from Ref. 24 as shown next to the ZPE correction. The only
exceptions are that the CV corrections for LiH and Li2 were taken from Ref. 24 because Ref. 55 did not freeze the core for
these systems.

SHCI SHCI+PBE
molecule SHCI De ZPE SR+SO CV experiment D0 deviation D0 deviation
LiH 57.71 -1.9955 -0.02 0.30 55.7058 56.00 0.30 56.02 0.32
BeH 50.23 -2.9255 -0.02 0.51 47.7059 47.80 0.10 47.80 0.10
CH 84.11 -4.0455 -0.08 0.14 79.9756 80.13 0.16 80.16 0.19
CH2(

3
B1) 190.01 -10.5555 -0.23 0.82 179.8356 180.05 0.22 179.95 0.12

CH2(
1
A1) 181.12 -10.2955 -0.17 0.39 170.8356 171.05 0.22 171.10 0.27

CH3 306.93 -18.5555 -0.25 1.07 289.1156 289.20 0.09 289.18 0.07
CH4 419.25 -27.7455 -0.27 1.26 392.4756 392.50 0.03 392.56 0.09
NH 83.09 -4.6455 -0.07 0.11 78.3656 78.49 0.13 78.55 0.19
NH2 182.50 -11.8455 0.08 0.32 170.5956 171.06 0.47 171.10 0.51
NH3 297.91 -21.3355 -0.25 0.65 276.5956 276.98 0.39 276.97 0.38
OH 107.26 -5.2955 -0.24 0.14 101.7356 101.87 0.14 101.81 0.08
H2O 233.01 -13.2655 -0.49 0.38 219.3756 219.64 0.27 219.51 0.14
HF 141.76 -5.8655 -0.58 0.17 135.2756 135.49 0.22 135.37 0.10
SiH2(

1
A1) 153.90 -7.3024 -0.60 0.00 144.1058 146.00 1.90 146.05 1.95

SiH2(
3
B1) 133.31 -7.5024 -0.80 −0.50 123.4024 124.51 1.11 124.42 1.02

SiH3 228.22 -13.2024 -0.80 −0.20 212.2058 214.02 1.82 214.02 1.82
SiH4 324.80 -19.4024 -1.00 −0.20 302.6058 304.20 1.60 304.27 1.67
PH2 154.24 -8.4024 -0.20 0.30 144.7024 145.94 1.24 145.96 1.26
PH3 241.91 -14.4455 -0.44 0.33 227.1058 227.36 0.26 227.36 0.26
H2S 183.63 -9.4055 -0.93 0.24 173.2058 173.54 0.34 173.41 0.21
HCl 107.41 -4.2424 -1.00 0.30 102.2156 102.47 0.26 102.30 0.09
Li2 24.14 -0.5055 0.00 0.20 23.9058 23.84 -0.06 23.84 -0.06
LiF 138.15 -1.3024 -0.60 0.90 137.6058 137.15 -0.45 137.34 -0.26
C2H2 403.16 -16.5055 -0.46 2.47 388.6456 388.67 0.03 388.84 0.20
C2H4 561.72 -31.6655 -0.50 2.36 532.0456 531.92 -0.12 532.09 0.05
C2H6 711.36 -46.2355 -0.56 2.42 666.1956 666.99 0.80 666.97 0.78
CN 180.24 -2.9555 -0.24 1.10 178.1256 178.15 0.03 178.58 0.46
HCN 311.91 -9.9555 -0.31 1.67 303.1456 303.32 0.18 303.76 0.62
CO 258.61 -3.0955 -0.46 0.95 256.2356 256.01 -0.22 256.47 0.24
HCO 278.10 -8.0955 -0.59 1.16 270.7656 270.58 -0.18 270.92 0.16
H2CO 373.42 -16.5255 -0.65 1.30 357.4856 357.55 0.07 357.88 0.40
H3COH 512.44 -31.7224 -0.80 1.50 480.9756 481.42 0.45 481.52 0.55
N2 227.66 -3.3655 -0.14 0.80 224.9456 224.96 0.02 225.62 0.68
N2H4 438.61 -32.6855 -0.51 1.14 404.8156 406.56 1.75 406.60 1.79
NO 152.33 -2.7155 -0.23 0.42 149.8156 149.81 0.00 150.23 0.42
O2 120.50 -2.2555 -0.62 0.24 117.9956 117.87 -0.12 117.95 -0.04
H2O2 269.21 -16.4455 -0.82 0.36 252.2156 252.31 0.10 252.33 0.12
F2 39.09 -1.3055 -0.79 −0.11 36.9356 36.89 -0.04 36.93 0.00
CO2 388.19 -7.2455 -1.01 1.77 381.9856 381.71 -0.27 382.46 0.48
Na2 16.74 -0.2024 0.00 0.30 17.0058 16.84 -0.16 16.85 -0.15
Si2 76.66 -0.7355 -1.01 0.13 74.4058 75.05 0.65 75.03 0.63
P2 116.66 -1.1155 -0.25 0.77 116.0058 116.07 0.07 116.29 0.29
S2 103.95 -1.0455 -1.40 0.34 100.8058 101.85 1.05 101.51 0.71
Cl2 59.92 -0.8055 -1.82 −0.13 57.1856 57.17 -0.01 56.75 -0.43
NaCl 100.03 -0.5024 -1.10 −1.20 97.4058 97.23 -0.17 96.85 -0.55
SiO 192.01 -1.7855 -0.90 0.95 189.8058 190.28 0.48 190.53 0.73
CS 171.55 -1.8355 -0.80 0.75 170.4058 169.67 -0.73 169.67 -0.73
SO 126.15 -1.6355 -1.09 0.41 123.5058 123.84 0.34 123.67 0.17
ClO 65.58 -1.2255 -0.81 0.06 63.4256 63.61 0.19 63.07 -0.35
ClF 62.95 -1.1255 -1.39 −0.10 60.3556 60.34 -0.01 59.99 -0.36
Si2H6 535.40 -30.5024 -2.00 0.00 500.1024 502.90 2.80 503.34 3.24
CH3Cl 395.06 -23.1924 -1.40 1.20 371.3556 371.67 0.32 371.53 0.18
H3CSH 474.48 -28.6024 -1.20 1.50 445.1058 446.18 1.08 445.91 0.81
HOCl 166.62 -8.1824 -1.50 0.40 156.8856 157.34 0.46 156.93 0.05
SO2 260.36 -4.3855 -1.79 0.92 254.4657 255.11 0.65 255.00 0.54
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FIG. 3. The error in the CCSD(T) total energies obtained by comparison to the SHCI total energies. The CCSD(T) errors
are of course zero for systems with one or two valence electrons, and they are positive in all other cases. The errors for each
system are very similar for the various basis sets, especially for the larger basis sets.

VI. RESULTS

A. Accuracy of CCSD(T)

We have computed the total energies for each of the 55
molecules and their 12 constituent atoms in the four ba-
sis sets mentioned in Section IV. The accuracy of these
energies should be considerably better than 1 mHa, as
discussed later in this section. These energies are pro-
vided in CSV files in the Supplementary Material54 and
can serve as a reference for other approximate methods.
In particular, we have used it to test the accuracy of
CCSD(T). None of the 67 systems studied is strongly
correlated, so one would expect the CCSD(T) energies
to be reasonably accurate. This is in fact the case, as
can be seen from Fig. 3, which shows the deviation
of the CCSD(T) total energies from the SHCI total en-
ergies. CCSD(T) deviates from SHCI by 1-2 mHa for
the lighter systems and 3-4 mHa for the heavier ones.
For systems with two or fewer valence electrons, the two
methods agree exactly as they must, and for all the sys-
tems with more electrons, CCSD(T) underestimates the
correlation energy. The mean absolute deviation (MAD)
is roughly independent of the basis size, being 0.99, 1.06,
1.09, and 1.05 mHa, respectively, for the four basis sets.
The pattern of the errors is very similar for the four basis
sets. Although the absolute value of the correlation en-
ergy grows with the size of the basis set by a few tens of

percent going from cc-pVDZ to cc-pV5Z basis sets, the
error that CCSD(T) makes does not grow in proportion.
The same set of molecules have also recently been com-

puted by another SCI+PTmethod60. In their calculation
they correlate all the electrons, so the energies they ob-
tain are not directly comparable to ours. They employ
only the cc-pVDZ and cc-pVTZ basis sets so they cannot
extrapolate to the CBS limit. Further, they employ at
the most only 106 determinants, whereas we employ a few
times 108 determinants for the larger molecules and ba-
sis sets. Consequently when they compare to CCSD(T)
energies, they find two systems for the cc-pVDZ basis
set and several systems for the cc-pVTZ basis set where
their energies are higher than those from CCSD(T). In
contrast, as shown in Fig. 3, we find that our SHCI ener-
gies are always lower than CCSD(T) energies and further
that the pattern of the energy differences is very similar
for the various basis sets.

B. Atomization energies

Table I shows the difference between the SHCI total
energies for the molecules and their constituent atoms,
extrapolated to the CBS limit according to Eqs. (14)
and (15). It also shows the ZPE, SR+SO, and CV cor-
rections taken from the literature and the final prediction
for the SHCI atomization energy, D0, and how much it
differs from the best available experimental values. The
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difference between the SHCI D0 and experiment is also
plotted in Fig. 4, both before and after the corrections
are applied.
There are 3 possible sources of discrepancy between

the calculated and the experimental atomization ener-
gies: (1) The extrapolation to the CBS limit may not be
accurate; (2) the literature values of the ZPE, SR+SO,
and CV corrections may not be accurate; 3) the exper-
imental values have errors. It seems likely, as discussed
below, that all three of these play a role for some of the
systems.
We show in Fig. 5 the convergence of the atomization

energies with basis size. The SHCI atomization energies
in fact have two extrapolation errors. The first and more
benign error comes from extrapolating SHCI total ener-
gies for each basis set to the FCI limit, i.e., ǫ1 → 0. This
error can be reduced by employing smaller ǫ1 and/or us-
ing better optimized orbitals. For the four basis sets n
= 2 (D), 3 (T), 4 (Q), and 5, the largest extrapolation
distances in the total energy of these 55 molecules and 12
atoms are 0.97, 2.36, 3.34, and 2.90 mHa, respectively.61

Assuming that the extrapolated energies are in error by
no more than a fifth of the extrapolation distance, all
these energies should be accurate to considerably better
than 1 mHa. Further, the typical extrapolation distances
are much smaller, especially for the lighter systems: the
median distances for the four basis sets are 2.92, 14.4,
56.4, and 77.0 µHa, respectively. The second source of

error comes from extrapolation to the CBS limit, using
Eqs. (14) and (15), and is less under control. For these
67 systems, the maximum and median CBS extrapola-
tion distances are 21.8 and 6.47 mHa, respectively. This
CBS extrapolation error is likely to be an important error
for those systems where the extrapolation distance (the
energy difference between the black dots and red crosses
in Fig. 5) is large.

To further study the magnitude of the CBS extrap-
olation error, we add the PBE-based basis-set correc-
tion discussed in Sec. IV to the SHCI energies for each
basis set [see Eqs. (16) and (17)] and then extrapolate
the corrected energies to the CBS limit according to
Eq. (22), which gives us an alternative way to estimate
the CBS limit of the SHCI energies. The PBE-based
corrections can also be found in the Supplemental Mate-
rial54. It is apparent from Table I that the deviations of
the SHCI and the SHCI+PBE energies from experiment
are strongly correlated, thereby giving us a reasonable
measure of confidence in our two extrapolations as well as
an estimate of the extrapolation errors. Fig. 6 shows the
same information as Fig. 5 after the PBE-based basis-set
correction has been included. As summarized in Table II,
for each basis set the MAD from experiment decreases by
about a factor of 3 compared to that without the basis-
set correction.62 In particular, SHCI+PBE gives a MAD
of only 0.55 kcal/mol already with the cc-pVQZ basis set.
The cc-pV5Z basis set has a MAD of only 0.49 kcal/mol.
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FIG. 5. The comparison of SHCI atomization energies with experiment in the individual basis sets and in the extrapolated
complete-basis-set limit. The top panel is a blowup of the top portion of the bottom panel. The shaded region indicates
chemical accuracy (1 kcal/mol).

Applying the CBS extrapolation to SHCI+PBE gives a
somewhat larger MAD from experiment of 0.51 kcal/mol,
as the computed atomization energies are too small for
the smaller basis sets but increase with increasing basis
size and for the majority of the molecules the computed
CBS atomization energies are larger than experiment.
As seen from Figs. 5 and 6 the predicted CBS atom-

ization energy of Si2H6 is more than 3 kcal/mol larger
than experiment. However, even the n = 5 value is
larger than experiment, so the discrepancy cannot be at-
tributed to an inaccurate CBS extrapolation, but instead
to either inaccurate ZPE, SR+SO, and CV corrections,
or, to errors in the experimental value. The ZPE cor-
rection for Si2H6 is quite large, -30.50 mHa, so even a
small fractional error in its estimate could account for
the discrepancy in the atomization energy. In fact, these
statements hold for all seven molecules in Fig. 6 that
have cc-pV5Z atomization energies that are larger than
experiment by more than 1 kcal/mol. Note that there are
several systems for which the atomization energies are
overestimated in Figs. 5 and 6 by more than 1 kcal/mol,
but none for which they are underestimated by more than
1 kcal/mol.
The majority of the deviations fall below 1 kcal/mol,

reaching chemical accuracy as can be seen in Table I and
Figs. 5 and 6. As regards those where the deviations are
larger than 1 kcal/mol it should also be kept in mind that
that in addition to the uncertainties in the corrections, es-
pecially the ZPE correction, the experimental values may

TABLE II. Summary statistics of deviations from experimen-
tal atomization energies for the 55 molecules. For each of the
basis sets (but not for the CBS limit) the inclusion of the
PBE-based basis-set correction reduces the MAD by about a
factor of 3. MAD: mean absolute deviation. MAX: maximum
absolute deviation. Units: kcal/mol.

Method MAD MAX
SHCI cc-pVDZ 20.77 54.32
SHCI cc-pVTZ 6.83 17.43
SHCI cc-pVQZ 2.47 7.38
SHCI cc-pV5Z 1.20 3.15
SHCI CBS 0.46 2.80
SHCI+PBE cc-pVDZ 6.52 27.72
SHCI+PBE cc-pVTZ 1.47 6.02
SHCI+PBE cc-pVQZ 0.55 3.55
SHCI+PBE cc-pV5Z 0.49 3.36
SHCI+PBE CBS 0.51 3.24

also be inaccurate, particularly for those atomization en-
ergies that are not available from the ATcT database56.
For example, for PH2 the two available experimental val-
ues differ by 4.5 kcal/mol and our computed value differs
by +1.5 kcal/mol from Ref. 24 and -3.0 kcal/mol from
Ref. 58. For the molecules in the ATcT database the
MAD is only 0.24 kcal/mol before the PBE-based ba-
sis set correction is applied and 0.32 kcal/mol after it is
applied.
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FIG. 6. Same as Fig. 5 but with the PBE-based basis set correction applied. The extrapolation distances are much reduced
compared to Fig. 5.

Compared to other methods, our MAD of 0.46
kcal/mol is significantly less than the MAD of 1.2 to 3.2
kcal/mol obtained in various QMC studies28–30. Diffu-
sion Monte Carlo works directly in the CBS limit, but
the fixed-node approximation is the dominant error. Us-
ing trial wave functions with Slater determinants cho-
sen from an SCI method, it should be easily possible
to reduce considerably the fixed-node error as demon-
strated in Refs. 15, 63, and 64. Our MAD is compara-
ble to results reported from composite coupled-cluster-
based methods24,65,66. The HEAT studies performed all-
electron calculations using the coupled-cluster method
with up to quadruple excitations on a somewhat different
set of molecules consisting solely of first-row elements25.
Unfortunately, none of the molecules for which we have
discrepancies of more than 1 kcal/mol were included. For
the 19 molecules also present in the G2 set, the MAD of
HEAT, SHCI, and SHCI+PBE are 0.07, 0.16, and 0.27
kcal/mol, respectively. It should be noted that HEAT
is a composite quantum chemistry method, and for the
lower levels of theory it employs larger basis sets than
those we used, thereby significantly reducing the CBS
extrapolation error.

VII. CONCLUSION AND OUTLOOK

The SHCI method enables the calculation of essen-
tially exact energies within basis sets up to cc-pV5Z of all

the molecules in the G2 set. After extrapolation to the
CBS limit and addition of ZPE, SR+SO and CV cor-
rections, the MAD from the experimental atomization
energies is only about 0.5 kcal/mol. However, depending
on whether we use the PBE-based basis-set corrections
or not, there there are 7 or 9 molecules where the com-
puted atomization energy is more than 1 kcal/mol larger
than experiment (and none for which it is more than 1
kcal/mol smaller than experiment). These differences are
mostly due to a combination of errors in the various cor-
rections applied and in the experiments rather than lack
of convergence of the SHCI energies to the FCI energies.
With additional computational effort it would be possi-
ble to reduce the uncertainties in the computed energies.
First, instead of adding on a CV energy correction, one
could use the cc-pwCVnZ basis sets to include the cor-
relation contribution from the core electrons. This could
also make the basis-set extrapolation more reliable. Al-
though this entails a large increase in the Hilbert space,
the increase in the computational cost of the SHCI is not
prohibitive because relatively few of the core excitations
have a large amplitude. Second, relativistic effects could
also be included within the SHCI method, as has already
been demonstrated5. Third, the computation of the ZPE
correction would require calculating derivatives with re-
spect to the nuclear coordinates. This could also be done,
but would be the most computationally expensive part of
the calculation. Fourth, the CBS extrapolation could be
improved either by employing better basis sets or using a
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better DFT-based basis-set correction that employs the
SHCI rather than the HF density matrix. With these im-
provements, the computed energies could be sufficiently
accurate to reliably pinpoint errors in experimental val-
ues of atomization energies.
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