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I. INTRODUCTION

The recently developed semistochastic heat-bath configuration interaction (SHCI) method [1][2][3][4][5][6][7] is a systematically improvable quantum chemistry method capable of providing essentially exact energies for small manyelectron systems. It has been successfully applied to a number of challenging problems in quantum chemistry, including the potential energy curve of the chromium dimer 8 for which coupled cluster with single, double, and perturbative triple excitations [CCSD(T)], the gold standard of single-reference quantum chemistry, does not give even a qualitatively correct description. It has also been used as the reference method for calculations on transition metal atoms, ions, and monoxides 9 to test the accuracy of a wide variety of other electronic-structure methods.

SHCI is an example of the selected configuration interaction (SCI) plus perturbation theory (SCI+PT) methods [10][11][12][13][14][15][16][17][18][19][20][21] which have two stages. In the first stage a variational wave function is constructed iteratively, starting from a determinant that is expected to have a significant amplitude in the final wave function, e.g., the Hartree-Fock (HF) determinant. The number of determinants in the variational wave function is controlled by a parameter ǫ 1 . In the second stage, second-order perturbation theory is used to improve upon the variational energy.
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The total energy (sum of the variational energy and the perturbative correction) is computed at several values of ǫ 1 and extrapolated to ǫ 1 → 0 to obtain an estimate for the full configuration interaction (FCI) energy. The efficiency of SHCI depends on the choice of the orbitalsnatural orbitals lead to faster convergence of the energy relative to HF orbitals and optimized orbitals yield yet faster convergence.

In this paper, the SHCI method is reviewed in Section II, our orbital optimization schemes are described in Section III, the basis-set correction and extrapolation that we use are discussed in Section IV, and the details of the calculations are given in Section V. In Section VI we apply SHCI to the 55 first-and second-row molecules that served as the training set for the Gaussian-2 (G2) protocol 22 because accurate experimental atomization energies were believed to be known for them. The G2 protocol is one of several quantum chemistry composite methods that combine low-order methods on large basis sets and high-order coupled-cluster methods on smaller basis sets to compute accurate thermochemical properties (see, e.g., Refs. 23-27.). These 55 molecules, which we refer to as the G2 set, have previously been used to test the accuracy of coupled-cluster-based methods 24 and quantum Monte Carlo (QMC) methods [28][29][30][START_REF] Caffarel | Recent Progress in Quantum Monte Carlo[END_REF] . We employ the correlation consistent basis sets cc-pVnZ for n = 2 (D), 3 (T), 4 (Q), and 5 32 , keeping the core electrons frozen, to obtain SHCI energies that we believe are well within 1 mHa of the exact (FCI) energies for each of the molecules and basis sets. Hence these calculations provide a set of reference energies that can be used to test other accurate electronic-structure methods.

The molecules in the G2 set are sufficiently weakly correlated that one would expect CCSD(T) to be rea-sonably accurate, but not at the level of 1 mHa. Hence, we calculate also the CCSD(T) energies using the same basis sets in order to use SHCI to evaluate the errors in the CCSD(T) energies, as FCI is not feasible for most of these systems. The SHCI energies are then extrapolated to the complete-basis-set (CBS) limit, both without and with a basis-set correction based on density-functional theory (DFT) [33][34][35][36] . Corrections taken from the literature for zero-point energy, relativistic effects, and corevalence correlation are then applied to obtain our predictions for the atomization energies, which are then compared to the best available experimental values. For some systems the available experimental values differ substantially from each other and for at least one system we believe that the theoretical estimates are more accurate than the best experimental value.

II. REVIEW OF THE SHCI METHOD

In this section, we review the SHCI method, emphasizing the two important ways it differs from other SCI+PT methods. In the following, we use V for the set of variational determinants, and P for the set of perturbative determinants, that is, the set of determinants that are connected to the variational determinants by at least one non-zero Hamiltonian matrix element but are not present in V.

A. Variational stage SHCI starts from an initial determinant and generates the variational wave function through an iterative process. At each iteration, the variational wave function, Ψ V , is written as a linear combination of the determinants in the space

V |Ψ V = Di∈V c i |D i (1) 
and new determinants, D a , from the space P that satisfy the criterion

∃ D i ∈ V, such that |H ai c i | ≥ ǫ 1 (2) 
are added to the V space, where H ai is the Hamiltonian matrix element between determinants D a and D i , and ǫ 1 is a user-defined parameter that controls the accuracy of the variational stage 37 . (When ǫ 1 = 0, the method becomes equivalent to FCI.) After adding the new determinants to V, the Hamiltonian matrix is constructed and diagonalized using the diagonally preconditioned Davidson method 38 to obtain an improved estimate of the lowest eigenvalue, E V , and eigenvector, Ψ V . This process is repeated until the change in the variational energy E V falls below a certain threshold.

Other SCI methods use different criteria, based on either the first-order perturbative coefficient of the wave function,

c (1) a = i H ai c i E V -E a > ǫ 1 (3) 
or the second-order perturbative correction to the energy,

-∆E (2) = - ( i H ai c i ) 2 E V -E a > ǫ 1 , (4) 
where E a = H aa . The reason we choose instead the selection criterion in Eq. ( 2) is that it can be implemented very efficiently without checking the vast majority of the determinants that do not meet the criterion, by taking advantage of the fact that most of the Hamiltonian matrix elements correspond to double excitations, and their values do not depend on the determinants themselves but only on the four orbitals whose occupancies change during the double excitation. Therefore, at the beginning of an SHCI calculation, for each pair of spin-orbitals, the absolute values of the Hamiltonian matrix elements obtained by doubly exciting from that pair of orbitals is computed and stored in decreasing order by magnitude, along with the corresponding pairs of orbitals the electrons would excite to. Then the double excitations that meet the criterion in Eq. ( 2) can be generated by looping over all pairs of occupied orbitals in the reference determinant, and traversing the array of sorted doubleexcitation matrix elements for each pair. As soon as the cutoff is reached, the loop for that pair of occupied orbitals is exited. Although the criterion in Eq. ( 2) does not include information from the diagonal elements, this selection criterion is not significantly different from either of the criteria in Eqs. ( 3) and (4) because the terms in the numerators of Eqs. ( 3) and (4) span many orders of magnitude, so the sums are highly correlated with the largest-magnitude term in the sums in Eqs. (3) or (4), and because the denominator is never small after several determinants have been included in V. It was demonstrated in Ref. 1 that the selected determinants give only slightly inferior convergence to those selected using the criterion in Eq. ( 3). This is greatly outweighed by the improved selection speed. Moreover, one could use the criterion in Eq. ( 2) with a smaller value of ǫ 1 as a preselection criterion, and then select determinants using the criterion in Eq. ( 4) or something close to it, thereby having the benefit of both a fast selection method and a close to optimal choice of determinants. We use a similar, but somewhat more complicated criterion, also for the selection of the determinants connected to those in V by a single excitation, but this improvement is of lesser importance because the number of determinants connected by single excitations is much smaller than the number connected by double excitations. With these improvements the time required for selecting determinants is negligible, and the most time consuming step by far in the variational stage is the construction of the sparse Hamiltonian matrix. Details for doing this efficiently are given in Ref. 7.

B. Perturbative stage

In common with most other SCI+PT methods, the perturbative correction is computed using Epstein-Nesbet perturbation theory 39,40 . The variational wave function is used to define the zeroth-order Hamiltonian, Ĥ(0) , and the perturbation, Ĥ(1) ,

Ĥ(0) = Di,Dj ∈V H ij |D i D j | + Da / ∈V H aa |D a D a |. Ĥ(1) = Ĥ -Ĥ(0) . (5) 
The first-order energy correction is zero, and the secondorder energy correction ∆E (2) is

∆E (2) = Ψ V | Ĥ(1) |Ψ (1) = Da∈P Di∈V H ai c i 2 E V -E a , (6) 
where Ψ (1) is the first-order wave-function correction.

The SHCI total energy is

E SHCI = E V + ∆E (2) = Ψ V |H|Ψ V + ∆E (2) (7)
It is expensive to evaluate the expression in Eq. ( 6) because the outer summation includes all determinants in the space P and their number is

O(N 2 e N 2 v N V )
, where N V is the number of variational determinants, N e is the number of electrons, and N v is the number of unoccupied orbitals. The straightforward and time-efficient approach to computing the perturbative correction requires storing the partial sum Di∈V H ai c i for each unique a, while looping over all the determinants D i ∈ V. This creates a severe memory bottleneck. An alternative approach, which is widely used, does not require storing the unique a, but requires checking whether the determinant was already generated by checking its connection with variational determinants whose connections have already been included. This entails some additional computational expense.

The SHCI algorithm instead uses two other strategies to reduce both the computational time and the storage requirement. First, SHCI screens the sum 1 using a second threshold, ǫ 2 (where ǫ 2 < ǫ 1 ) as the criterion for selecting perturbative determinants D a ∈ P,

∆E (2) (ǫ 2 ) = Da∈P (ǫ2) Di∈V H ai c i 2 E V -E a (8) 
where (ǫ2) indicates that only terms in the sum for which |H ai c i | ≥ ǫ 2 are included. Similar to the variational stage, we find the connected determinants efficiently with precomputed arrays of double excitations sorted by the magnitude of their Hamiltonian matrix elements 1 . Note that the vast number of terms that do not meet this criterion are never evaluated.

Even with this screening, the simultaneous storage of all terms indexed by a in Eq. ( 8) can exceed computer memory when ǫ 2 is chosen small enough to obtain essentially the exact perturbation energy. The second innovation in the calculation of the SHCI perturbative correction is to overcome this memory bottleneck by evaluating it semistochastically. The most important contributions are evaluated deterministically and the rest are sampled stochastically. Our original method used a two-step perturbative algorithm 2 , but our later three-step perturbative algorithm 7 is even more efficient. The three steps are:

1. A deterministic step with cutoff ǫ dtm 2 (< ǫ 1 ), wherein all the variational determinants are used, and all the perturbative batches are summed over. ), wherein all the variational determinants are used, but the perturbative determinants are partitioned into batches. Typically only a small fraction of these batches need be summed over to achieve an error much smaller than the target error. Using this semistochastic algorithm, the statistical error of our calculations for each ǫ 1 is at most 20 µHa, which is negligible on the scale of the desired accuracy. Having a small statistical error is important for doing a reliable extrapolation to the ǫ 1 = 0 limit. This is done 3 by computing E SHCI at 5 or 6 values of ǫ 1 and using a weighted quadratic fit of E SHCI to -∆E (2) to obtain E SHCI at -∆E (2) = 0, using weights proportional to (∆E (2) ) -2 . Fig. 1 shows the convergence of E SHCI for the system that has the largest extrapolation distance (difference between the energy at the smallest ǫ 1 used and the estimated energy at ǫ 1 = 0), namely, SO 2 in the cc-pV5Z basis set.

We note that, subsequent to our first semistochastic paper 2 , a completely different, but also efficient, semistochastic approach has been presented in Ref. 18.

III. ORBITAL OPTIMIZATION

SHCI gives an estimate of the exact FCI energy by extrapolating energies evaluated at several ǫ 1 > 0 to ǫ 1 = 0, the FCI limit. This results in an extrapolation error that disappears in the limit that the extrapolation distance goes to zero.

The extrapolation distance can be reduced by decreasing ǫ 1 , but this is limited by the available computer memory and time. An alternative approach is to optimize the orbitals to obtain more compact configurationinteraction (CI) expansions with lower variational energies. The first step to orbital optimization is to find the SHCI natural orbitals, i.e., the eigenstates of the onebody reduced density matrix. These orbitals have a definite occupation number for a given variational wave function and the most occupied ones represent in some sense the most important degrees of freedom.

Orbitals can be further optimized by directly minimizing the energy of the variational wave function through the orbital rotation parameters X:

E(X) = Ψ V | exp( X) Ĥ exp(-X)|Ψ V , (9) 
where X is a real anti-Hermitian operator such that exp(-X) parameterizes unitary transformations in orbital space. For a system with N orb real-valued orbitals, this yields at most N orb (N orb -1)/2 orbital optimization parameters, which are the elements of the real antisymmetric matrix X. In reality, the number of parameters will often be less than this due to point-group symmetry. Depending on the particular optimization algorithm used, the gradient and sometimes part of the Hessian of the energy with respect to the orbital parameters are needed, either of which requires computing both the oneand two-body density matrices of the variational wave function. In addition to the orbital parameters, the CI parameters (which are much more numerous) must be optimized as well. We next discuss some of the optimization methods we have studied.

A. Newton's method

Newton's method is a straightforward method for optimizing the parameters. The parameters x t+1 at iteration t + 1 are given by

x t+1 = x t -h -1 t g t . ( 10 
)
where g t and h t are the gradient and the Hessian of the energy with respect to the parameters at iteration t. In practice it is more efficient to find the parameter changes by solving the set of linear equations:

h t (x t+1 -x t ) = -g t . (11) 
However, the problem is that the number of parameters is typically much too large for even this to be practical. Typically, even using a rather large value of the threshold parameter ǫ 1 for the optimization step, there are millions of CI parameters whereas there are only thousands of orbital parameters. So, one resorts to alternating the optimization of the CI parameters using the usual Davidson algorithm, and optimizing the orbital parameters in the much smaller space of orbital rotations using Newton's method. This alternating optimization often converges very slowly because the coupling between the CI parameters and the orbital parameters is strong as can be seen in Fig. 2. Note that the orbital optimization problem in SHCI is more difficult than that in the usual completeactive-space self-consistent-field (CASSCF) method for two reasons. First, none of the orbital rotations among orbitals of the same symmetry are redundant, so the number of orbital parameters that need to be optimized is much larger. Second, the coupling between the CI parameters and the orbital parameters is stronger.

In quantum chemistry problems, the orbital part of the Hessian matrix is often diagonally dominant. In that case one can save significant computer time by ignoring the off-diagonal elements. We refer to this as the "diagonal Newton" method, and Fig. 2 shows that for this molecule it converges at the same rate as Newton's method. The convergence of both methods is limited by the lack of coupling between the CI and orbital parameters.

B. AMSGrad

AMSGrad is a momentum-based gradient-descent method commonly used in machine learning [START_REF] Reddi | ICLR Published as a conference paper at the International Conference on Learning Representations[END_REF] . It avoids the expensive Hessian calculations since only gradient information is needed. At each iteration, it employs running averages of the gradient components and their squares, determined by the mixing parameters β 1 , β 2 ∈ (0, 1), according to

m t = β 1 m t-1 + (1 -β 1 )g t , v t = β 2 v t-1 + (1 -β 2 )g 2 t , vt = max(v t-1 , v t ), x t+1 = x t - η √ vt + ǫ m t . (12) 
The learning parameters η, β 1 , and β 2 together determine the level of aggressiveness of the descent and ǫ is a small constant for numerical stability. We have found empirically that with a suitable level of aggressiveness, AMSGrad oscillates for the first few iterations but eventually descends at a much quicker pace per iteration compared to either Newton or diagonal Newton, as can be seen in Fig. 2. In addition each iteration takes less time since only the gradient is needed. For a variety of systems we have found that the parameters η = 0.01, β 1 = 0.5, β 2 = 0.5 give reasonably good convergence, even though they are much different from the values recommended in the literature.

C. Accelerated Newton's method

Finally, we have developed a heuristic overshooting method that achieves yet better convergence for most systems. Here, the overshooting tries to account for the coupling between CI and orbital parameters, but it may be more generally useful whenever alternating optimization of subsets of parameters is done.

At each iteration, a diagonal Newton step is calculated for the orbital parameters, but, instead of using the proposed step, it is amplified by a factor f t determined by the cosine of the angle between the previous step x t -x t-1 and the current step x t+1x t :

f t = min 1 2 -cos(x t -x t-1 , x t+1 -x t ) , 1 ǫ (13) 
where ǫ is initialized to 0.01 and ǫ ← ǫ 0.8 each time cos(x t -x t-1 , x t+1 -x t ) < 0. The cosine in the expression is calculated in a "scale-invariant" way to make it invariant under a rescaling of some of the parameters, i.e., in the usual definition cos(v, w) = v, w / v, v w, w we define the inner product as v, w = v T hw, where the Hessian h can again be approximated by its diagonal. Another scale invariant choice for the inner product is v, w = v T gg T w, and that works equally well.

As shown in Fig. 2, this accelerated scheme optimizes much faster than the previous schemes. For instance, after 4 iterations, the gain in variational energy is already better than that after 20 iterations using the conventional Newton's method. Compared to AMSGrad, the higher per iteration cost is more than made up by the greatly reduced number of iterations needed. For this system, not only does the energy drop significantly but the number of determinants decreases as well. For the accelerated scheme the drop is from 145,370 to 93,882 determinants. However, for some systems the number of determinants increases, thereby partly offsetting the benefit of the energy gain.

IV. BASIS-SET CORRECTION AND EXTRAPOLATION

We employ the correlation consistent polarized valence (cc-pVnZ) basis sets with n = 2 (D), 3 (T), 4 (Q), 5. The energies computed for each atom or molecule are extrapolated to the CBS limit using separate extrapolations for the HF energy and the correlation energy, [START_REF] Helgaker | [END_REF][43][44] E HF CBS = E HF n + a exp (-bn), ( 14)

E corr CBS = E corr n + cn -3 . ( 15 
)
where n is the cardinal number of the basis set. The only exception is Li, for which the lowest HF energy is taken as the CBS energy because the energies for n = 3, 4, 5 cannot be fit by a decaying exponential. Note that the correlation energy extrapolation has 2 parameters, so it is necessary to use only the n = 4 and 5 basis sets, whereas the HF extrapolation has 3 parameters and so it is necessary to use the n = 3, 4, and 5 basis sets. Consequently, the extrapolation error is larger for the HF energy than for the correlation energy, mostly for molecules containing second-row atoms, as we have verified for some systems by going to the n = 6 basis sets. In order to partially cure this problem the cc-pV(n+d)Z basis sets, which have one additional set of d basis functions, were introduced 45 for the second-row atoms Al through Ar. For H, He, and first-row atoms the cc-pVnZ and cc-pV(n+d)Z basis sets are identical. Hence all the CBS energies presented in this paper use extrapolated HF energies obtained from Eq. ( 14) but with E HF n replaced by E HF n+d , where E HF n+d are the HF energies in the cc-pV(n+d)Z basis sets. We find that although the cc-pV(n+d)Z basis sets of course give lower total energies than the cc-pVnZ basis sets for each n, the estimated CBS energies are higher. Of the systems we study, replacing the cc-pVnZ basis sets with the cc-pV(n+d)Z basis sets has the largest effect for SO 2 and SO, reducing the atomization energies by 3.68 kcal/mol and 0.82 kcal/mol, respectively. The large change in the estimated CBS energy of SO 2 has previously been noted in Refs. 46-48. To estimate the total energies in the CBS limit, we also employ the DFT-based basis-set correction recently developed in Refs. 33-36. In this scheme, the total SHCI energy in a given basis set is corrected as In Eq. ( 17), εsr,PBE c,md is the complementary short-range correlation energy per particle with multideterminant reference (md) that was constructed in Ref. 34 based on the Perdew-Burke-Ernzerhof (PBE) 49 correlation functional and the on-top pair density of the uniform-electron gas. The local range-separation function µ(r) provides a local measure of the incompleteness of the basis set and is defined as

E SHCI+PBE n = E HF n+d -E HF n + E SHCI n + ĒPBE n [ρ, ζ, µ], (16) where 
µ(r) = √ π 2 W (r, r), (18) 
where W (r, r) is the on-top value of the effective twoelectron interaction in the basis set

W (r, r) = f (r, r)/n 2 (r, r), if n 2 (r, r) = 0, ∞, otherwise, (19) 
with

f (r, r) = pq∈B rstu∈A
φ p (r)φ q (r)V rs pq Γ tu rs φ t (r)φ u (r), ( 20)

n 2 (r, r) = rstu∈A φ r (r)φ s (r)Γ tu rs φ t (r)φ u (r), (21) 
where V rs pq = pq|rs are the two-electron integrals and Γ tu rs is the opposite-spin two-body density matrix. Since µ(r) is very weakly dependent on Γ tu rs , we calculate Γ tu rs at the HF level only. Consistently, {φ p (r)} are the HF orbitals, and ρ(r) and ζ(r) are also calculated at the HF level. Since the core electrons are frozen in SHCI, we use the frozen-core variant 34,36 of this DFT basis-set correction which means that in Eqs. ( 20) and ( 21) the sums over r, s, t, u are restricted to the set of active (i.e., non-core) occupied HF orbitals A. Yet, the local range-separation function µ(r) probes the entire basis set through the sums over p, q, which run over the set of all (occupied + virtual) HF orbitals B. For a fixed basis set, the energy functional ĒPBE n [ρ, ζ, µ] provides an estimate of the energy missing in FCI to reach the CBS limit. It has the desirable property of vanishing in the CBS limit, i.e. ĒPBE CBS = 0, and thus the DFT basis-set correction does not alter the CBS limit, i.e. E SHCI+PBE CBS = E SHCI CBS , but just accelerates the basis convergence.

Based on the analysis of basis convergence in rangeseparated DFT 50 , we assume an exponential basis convergence of E SHCI+PBE n which gives us another estimate of the CBS limit of E SHCI n via the extrapolation

E SHCI+PBE CBS = E SHCI+PBE n + a exp (-bn), (22) 
using n = 3, 4, 5. The only exceptions are Be and Cl, whose cc-pV5Z energy is higher than the cc-pVQZ energy and for which the cc-pV5Z energy is taken as the CBS energy.

V. COMPUTATIONAL DETAILS

The HF and CCSD(T) calculations are done with PySCF 51 or MOLPRO 52 . The starting integrals are computed for HF orbitals. The core orbitals are kept fixed for all the subsequent steps. Then we construct integrals in the SHCI natural orbital basis by computing and diagonalizing the one-body density matrix and rotating the integrals in the HF basis to the natural orbital basis. Next we use the methods discussed in Section III to construct the integrals in the optimized orbital basis. We use a fairly large value of ǫ 1 (typically 2 × 10 -4 ) to construct the natural orbitals and the optimized orbitals. For some systems the natural orbital basis is reasonably close to the optimal one, but for most systems the optimized orbital bases result in considerable gains in efficiency. The final SHCI calculations using the optimized orbitals employ smaller values of ǫ 1 (typically 5 values ranging from 2 × 10 -4 to 2 × 10 -5 ), which are then used to extrapolate to the ǫ 1 = 0 limit. The system with the largest extrapolation distance, SO 2 in the cc-pV5Z basis, was shown as an example in Fig. 1.

The PBE-based basis-set correction described in Section IV is calculated independently from the SHCI calculations using the software QUANTUM PACKAGE [START_REF] Garniron | HF, CCSD, CCSD(T) and SHCI energies[END_REF] . If the HF two-body density matrix is used in Eqs. ( 20) and ( 21), the basis-set correction has a computational cost of O(N g N 2 e N 2 orb ) where N g is the number of realspace grid points used for numerical integration in Eq. ( 17) and here N orb is the total number of orbitals (including core orbitals) in the basis set. The two-electron integrals in the HF orbital basis, involving up to two virtual orbitals, are also needed and the cost for doing the integral transformation to compute these is O(N 2 e N 3 orb ). However, most of these integrals (aside from those involving the core orbitals) are needed for SHCI anyway. So, the DFT-based basis-set correction does not increase the computational time of SHCI calculations appreciably.

The geometries are taken from the Supplementary Material of Ref. 30, which in turn took them from the papers cited therein. They are provided in the Supplementary Material 54 . The only exceptions are HCO and C 2 H 4 for which we took the geometry from Ref. 34, because these geometries gave lower CBS-extrapolated energies by approximately 1.5 mHa. In order to compare to experimental atomization energies, the CBS SHCI energies are corrected for zero-point energies (ZPE), core-valence correlation (CV), scalar relativity (SR), and spin-orbit (SO) effects. We take the corrections from the literature. Since most of the papers do not have all the 55 molecules we studied, we take the corrections from Refs. 24 and 55 in that order, i.e., we take it from the first of these references that contains corrections for that molecule. The source of the corrections is indicated in Table I Error in CCSD(T) energy (mHa)

FIG. 3. The error in the CCSD(T) total energies obtained by comparison to the SHCI total energies. The CCSD(T) errors are of course zero for systems with one or two valence electrons, and they are positive in all other cases. The errors for each system are very similar for the various basis sets, especially for the larger basis sets.

VI. RESULTS

A. Accuracy of CCSD(T)

We have computed the total energies for each of the 55 molecules and their 12 constituent atoms in the four basis sets mentioned in Section IV. The accuracy of these energies should be considerably better than 1 mHa, as discussed later in this section. These energies are provided in CSV files in the Supplementary Material 54 and can serve as a reference for other approximate methods.

In particular, we have used it to test the accuracy of CCSD(T). None of the 67 systems studied is strongly correlated, so one would expect the CCSD(T) energies to be reasonably accurate. This is in fact the case, as can be seen from Fig. 3, which shows the deviation of the CCSD(T) total energies from the SHCI total energies. CCSD(T) deviates from SHCI by 1-2 mHa for the lighter systems and 3-4 mHa for the heavier ones. For systems with two or fewer valence electrons, the two methods agree exactly as they must, and for all the systems with more electrons, CCSD(T) underestimates the correlation energy. The mean absolute deviation (MAD) is roughly independent of the basis size, being 0.99, 1.06, 1.09, and 1.05 mHa, respectively, for the four basis sets. The pattern of the errors is very similar for the four basis sets. Although the absolute value of the correlation energy grows with the size of the basis set by a few tens of percent going from cc-pVDZ to cc-pV5Z basis sets, the error that CCSD(T) makes does not grow in proportion.

The same set of molecules have also recently been computed by another SCI+PT method 60 . In their calculation they correlate all the electrons, so the energies they obtain are not directly comparable to ours. They employ only the cc-pVDZ and cc-pVTZ basis sets so they cannot extrapolate to the CBS limit. Further, they employ at the most only 10 6 determinants, whereas we employ a few times 10 8 determinants for the larger molecules and basis sets. Consequently when they compare to CCSD(T) energies, they find two systems for the cc-pVDZ basis set and several systems for the cc-pVTZ basis set where their energies are higher than those from CCSD(T). In contrast, as shown in Fig. 3, we find that our SHCI energies are always lower than CCSD(T) energies and further that the pattern of the energy differences is very similar for the various basis sets.

B. Atomization energies

Table I shows the difference between the SHCI total energies for the molecules and their constituent atoms, extrapolated to the CBS limit according to Eqs. ( 14) and (15). It also shows the ZPE, SR+SO, and CV corrections taken from the literature and the final prediction for the SHCI atomization energy, D 0 , and how much it from the best available experimental values. The difference between the SHCI D 0 and experiment is also plotted in Fig. 4, both before and after the corrections are applied. There are 3 possible sources of discrepancy between the calculated and the experimental atomization energies: (1) The extrapolation to the CBS limit may not be accurate; (2) the literature values of the ZPE, SR+SO, and CV corrections may not be accurate; 3) the experimental values have errors. It seems likely, as discussed below, that all three of these play a role for some of the systems.

We show in Fig. 5 the convergence of the atomization energies with basis size. The SHCI atomization energies in fact have two extrapolation errors. The first and more benign error comes from extrapolating SHCI total energies for each basis set to the FCI limit, i.e., ǫ 1 → 0. This error can be reduced by employing smaller ǫ 1 and/or using better optimized orbitals. For the four basis sets n = 2 (D), 3 (T), 4 (Q), and 5, the largest extrapolation distances in the total energy of these 55 molecules and 12 atoms are 0.97, 2.36, 3.34, and 2.90 mHa, respectively. [START_REF]The extrapolation distance depends on the value of ǫ 1 in Eq. 2 and on how well the orbitals are optimized to improve the convergence of the energy. 62 To avoid confusion, we[END_REF] Assuming that the extrapolated energies are in error by no more than a fifth of the extrapolation distance, all these energies should be accurate to considerably better than 1 mHa. Further, the typical extrapolation distances are much smaller, especially for the lighter systems: the median distances for the four basis sets are 2.92, 14.4, 56.4, and 77.0 µHa, respectively. The second source of error comes from extrapolation to the CBS limit, using Eqs. ( 14) and (15), and is less under control. For these 67 systems, the maximum and median CBS extrapolation distances are 21.8 and 6.47 mHa, respectively. This CBS extrapolation error is likely to be an important error for those systems where the extrapolation distance (the energy difference between the black dots and red crosses in Fig. 5) is large.

To further study the magnitude of the CBS extrapolation error, we add the PBE-based basis-set correction discussed in Sec. IV to the SHCI energies for each basis set [see Eqs. ( 16) and ( 17)] and then extrapolate the corrected energies to the CBS limit according to Eq. (22), which gives us an alternative way to estimate the CBS limit of the SHCI energies. The PBE-based corrections can also be found in the Supplemental Material 54 . It is apparent from Table I that the deviations of the SHCI and the SHCI+PBE energies from experiment are strongly correlated, thereby giving us a reasonable measure of confidence in our two extrapolations as well as an estimate of the extrapolation errors. Fig. 6 shows the same information as Fig. 5 after the PBE-based basis-set correction has been included. As summarized in Table II, for each basis set the MAD from experiment decreases by about a factor of 3 compared to that without the basisset correction. 62 In particular, SHCI+PBE gives a MAD of only 0.55 kcal/mol already with the cc-pVQZ basis set. The cc-pV5Z basis set has a MAD of only 0.49 kcal/mol. Applying the CBS extrapolation to SHCI+PBE gives a somewhat larger MAD from experiment of 0.51 kcal/mol, as the computed atomization energies are too small for the smaller basis sets but increase with increasing basis size and for the majority of the molecules the computed CBS atomization energies are larger than experiment.

As seen from Figs. 5 and 6 the predicted CBS atomization energy of Si 2 H 6 is more than 3 kcal/mol larger than experiment. However, even the n = 5 value is larger than experiment, so the discrepancy cannot be attributed to an inaccurate CBS extrapolation, but instead to either inaccurate ZPE, SR+SO, and CV corrections, or, to errors in the experimental value. The ZPE correction for Si 2 H 6 is quite large, -30.50 mHa, so even a small fractional error in its estimate could account for the discrepancy in the atomization energy. In fact, these statements hold for all seven molecules in Fig. 6 that have cc-pV5Z atomization energies that are larger than experiment by more than 1 kcal/mol. Note that there are several systems for which the atomization energies are overestimated in Figs. 5 and6 by more than 1 kcal/mol, but none for which they are underestimated by more than 1 kcal/mol.

The majority of the deviations fall below 1 kcal/mol, reaching chemical accuracy as can be seen in Table I and Figs. 5 and6. As regards those where the deviations are larger than 1 kcal/mol it should also be kept in mind that that in addition to the uncertainties in the corrections, especially the ZPE correction, the experimental values may Compared to other methods, our MAD of 0.46 kcal/mol is significantly less than the MAD of 1.2 to 3.2 kcal/mol obtained in various QMC studies [28][29][30] . Diffusion Monte Carlo works directly in the CBS limit, but the fixed-node approximation is the dominant error. Using trial wave functions with Slater determinants chosen from an SCI method, it should be easily possible to reduce considerably the fixed-node error as demonstrated in Refs. 15, 63, and 64. Our MAD is comparable to results reported from composite coupled-clusterbased methods 24,65,66 . The HEAT studies performed allelectron calculations using the coupled-cluster method with up to quadruple excitations on a somewhat different set of molecules consisting solely of first-row elements 25 . Unfortunately, none of the molecules for which we have discrepancies of more than 1 kcal/mol were included. For the 19 molecules also present in the G2 set, the MAD of HEAT, SHCI, and SHCI+PBE are 0.07, 0.16, and 0.27 kcal/mol, respectively. It should be noted that HEAT is a composite quantum chemistry method, and for the lower levels of theory it employs larger basis sets than those we used, thereby significantly reducing the CBS extrapolation error.

VII. CONCLUSION AND OUTLOOK

The SHCI method enables the calculation of essentially exact energies within basis sets up to cc-pV5Z of all the molecules in the G2 set. After extrapolation to the CBS limit and addition of ZPE, SR+SO and CV corrections, the MAD from the experimental atomization energies is only about 0.5 kcal/mol. However, depending on whether we use the PBE-based basis-set corrections or not, there there are 7 or 9 molecules where the computed atomization energy is more than 1 kcal/mol larger than experiment (and none for which it is more than 1 kcal/mol smaller than experiment). These differences are mostly due to a combination of errors in the various corrections applied and in the experiments rather than lack of convergence of the SHCI energies to the FCI energies. With additional computational effort it would be possible to reduce the uncertainties in the computed energies. First, instead of adding on a CV energy correction, one could use the cc-pwCVnZ basis sets to include the correlation contribution from the core electrons. This could also make the basis-set extrapolation more reliable. Although this entails a large increase in the Hilbert space, the increase in the computational cost of the SHCI is not prohibitive because relatively few of the core excitations have a large amplitude. Second, relativistic effects could also be included within the SHCI method, as has already been demonstrated 5 . Third, the computation of the ZPE correction would require calculating derivatives with respect to the nuclear coordinates. This could also be done, but would be the most computationally expensive part of the calculation. Fourth, the CBS extrapolation could be improved either by employing better basis sets or using a better DFT-based basis-set correction that employs the SHCI rather than the HF density matrix. With these improvements, the computed energies could be sufficiently accurate to reliably pinpoint errors in experimental values of atomization energies.

  2. A "pseudo-stochastic" step, with cutoff ǫ psto 2

  3. A stochastic step, with cutoff ǫ 2 (< ǫ psto 2 ), wherein a few stochastic samples of variational determinants, each consisting of N d determinants, are sampled with probability |c i |/ Di∈V |c i |, and only one of the perturbative batches is randomly selected per variational sample.

FIG. 1 .

 1 FIG.1. Convergence of SHCI energy of SO2 in the cc-pV5Z basis set. The line is a weighted quadratic fit, but is very nearly linear. The statistical error bars are plotted but are invisible on the scale of the plot.

FIG. 2 .

 2 FIG. 2. Comparison of four orbital optimization schemes forthe H2CO molecule in the cc-pVDZ basis and threshold parameter ǫ1 = 2 × 10 -4 . All four calculations start with HF orbitals and construct natural orbitals on the first iteration, so they differ only from the second iteration on. The Newton and diagonal Newton curves are nearly coincident for this system.

  ĒPBE n [ρ, ζ, µ] is a basis-set-dependent functional of the density ρ(r), the spin polarization ζ(r) = [ρ ↑ (r)ρ ↓ (r)]/ρ(r), and the local range-separation function µ(r) ĒPBE n [ρ, ζ, µ] = ρ(r)ε sr,PBE c,md (ρ(r), ζ(r), µ(r))dr. (17)

FIG. 5 .

 5 FIG. 5. The comparison of SHCI atomization energies with experiment in the individual basis sets and in the extrapolated complete-basis-set limit. The top panel is a blowup of the top portion of the bottom panel. The shaded region indicates chemical accuracy (1 kcal/mol).

FIG. 6 .

 6 FIG.6. Same as Fig.5but with the PBE-based basis set correction applied. The extrapolation distances are much reduced compared to Fig.5.

  next to the entry for the zero-point energy (ZPE). Similarly the experimental values quoted in Table I are taken from Refs. 24, 56-58 in that order.

TABLE I .

 I Deviation of SHCI and SHCI+PBE atomization energies, D0, in the complete-basis-set limit, from the best available experimental energies in units of kcal/mol. The raw SHCI and SHCI+PBE energies are corrected for zero-point energy (ZPE), scalar relativity (SR), spin-orbit energy (SO) and core-valence correlation (CV). For each molecule, the ZPE, SR+SO and CV corrections are taken from Ref.55 if available, and otherwise from Ref. 24 as shown next to the ZPE correction. The only exceptions are that the CV corrections for LiH and Li2 were taken from Ref. 24 because Ref. 55 did not freeze the core for these systems.

		4	cc-pVDZ								
		2									
		0							SHCI	SHCI+PBE
	molecule LiH 4	SHCI De 57.71 cc-pVTZ	ZPE -1.99 55	SR+SO -0.02	CV 0.30	experiment 55.70 58	D0 56.00	deviation 0.30	D0 56.02	deviation 0.32
	BeH CH	2	50.23 84.11	-2.92 55 -4.04 55	-0.02 -0.08	0.51 0.14	47.70 59 79.97 56	47.80 80.13	0.10 0.16	47.80 80.16	0.10 0.19
	CH2( 3 B1) CH2( 1 A1) 0 CH3 4	190.01 181.12 306.93 cc-pVQZ	-10.55 55 -10.29 55 -18.55 55	-0.23 -0.17 -0.25	0.82 0.39 1.07	179.83 56 170.83 56 289.11 56	180.05 171.05 289.20	0.22 0.22 0.09	179.95 171.10 289.18	0.12 0.27 0.07
	CH4 NH	2	419.25 83.09	-27.74 55 -4.64 55	-0.27 -0.07	1.26 0.11	392.47 56 78.36 56	392.50 78.49	0.03 0.13	392.56 78.55	0.09 0.19
	NH2 NH3	0	182.50 297.91	-11.84 55 -21.33 55	0.08 -0.25	0.32 0.65	170.59 56 276.59 56	171.06 276.98	0.47 0.39	171.10 276.97	0.51 0.38
	OH H2O	4	107.26 233.01 cc-pV5Z	-5.29 55 -13.26 55	-0.24 -0.49	0.14 0.38	101.73 56 219.37 56	101.87 219.64	0.14 0.27	101.81 219.51	0.08 0.14
	HF	2	141.76	-5.86 55	-0.58	0.17	135.27 56	135.49	0.22	135.37	0.10
	SiH2( 1 A1)	153.90	-7.30 24	-0.60	0.00	144.10 58	146.00	1.90	146.05	1.95
	SiH2( 3 B1) SiH3 SiH4 PH2 H Li Be C N O 133.31 228.22 324.80 154.24 F Na Si P S Cl LiH -13.20 24 -7.50 24 -19.40 24 -8.40 24 BeH CH CH2( 3 B1) CH2( 1 A1) CH3 CH4 NH NH2 NH3 -0.80 -0.80 -1.00 -0.20 OH H2O HF SiH2( 1 A1) SiH2( 3 B1) SiH3 -0.50 -0.20 -0.20 0.30 SiH4 PH2 PH3 H2S HCl Li2 LiF 123.40 24 212.20 58 302.60 58 144.70 24 C2H2 C2H4 C2H6 CN HCN CO HCO H2CO 124.51 214.02 304.20 145.94 H3COH N2 N2H4 NO O2 H2O2 F2 CO2 Na2 Si2 1.11 1.82 1.60 1.24 P2 S2 Cl2 NaCl SiO 124.42 214.02 304.27 145.96 CS SO ClO ClF Si2H6 CH3Cl H3CSH HOCl SO2 1.02 1.82 1.67 1.26 0
	PH3		241.91	-14.44 55	-0.44	0.33	227.10 58	227.36	0.26	227.36	0.26
	H2S		183.63	-9.40 55	-0.93	0.24	173.20 58	173.54	0.34	173.41	0.21
	HCl		107.41	-4.24 24	-1.00	0.30	102.21 56	102.47	0.26	102.30	0.09
	Li2		24.14	-0.50 55	0.00	0.20	23.90 58	23.84	-0.06	23.84	-0.06
	LiF		138.15	-1.30 24	-0.60	0.90	137.60 58	137.15	-0.45	137.34	-0.26
	C2H2	403.16	-16.50 55	-0.46	2.47	388.64 56	388.67	0.03	388.84	0.20
	C2H4	561.72	-31.66 55	-0.50	2.36	532.04 56	531.92	-0.12	532.09	0.05
	C2H6	711.36	-46.23 55	-0.56	2.42	666.19 56	666.99	0.80	666.97	0.78
	CN		180.24	-2.95 55	-0.24	1.10	178.12 56	178.15	0.03	178.58	0.46
	HCN	311.91	-9.95 55	-0.31	1.67	303.14 56	303.32	0.18	303.76	0.62
	CO		258.61	-3.09 55	-0.46	0.95	256.23 56	256.01	-0.22	256.47	0.24
	HCO	278.10	-8.09 55	-0.59	1.16	270.76 56	270.58	-0.18	270.92	0.16
	H2CO	373.42	-16.52 55	-0.65	1.30	357.48 56	357.55	0.07	357.88	0.40
	H3COH	512.44	-31.72 24	-0.80	1.50	480.97 56	481.42	0.45	481.52	0.55
	N2		227.66	-3.36 55	-0.14	0.80	224.94 56	224.96	0.02	225.62	0.68
	N2H4	438.61	-32.68 55	-0.51	1.14	404.81 56	406.56	1.75	406.60	1.79
	NO		152.33	-2.71 55	-0.23	0.42	149.81 56	149.81	0.00	150.23	0.42
	O2		120.50	-2.25 55	-0.62	0.24	117.99 56	117.87	-0.12	117.95	-0.04
	H2O2	269.21	-16.44 55	-0.82	0.36	252.21 56	252.31	0.10	252.33	0.12
	F2		39.09	-1.30 55	-0.79	-0.11	36.93 56	36.89	-0.04	36.93	0.00
	CO2		388.19	-7.24 55	-1.01	1.77	381.98 56	381.71	-0.27	382.46	0.48
	Na2		16.74	-0.20 24	0.00	0.30	17.00 58	16.84	-0.16	16.85	-0.15
	Si2		76.66	-0.73 55	-1.01	0.13	74.40 58	75.05	0.65	75.03	0.63
	P2		116.66	-1.11 55	-0.25	0.77	116.00 58	116.07	0.07	116.29	0.29
	S2		103.95	-1.04 55	-1.40	0.34	100.80 58	101.85	1.05	101.51	0.71
	Cl2		59.92	-0.80 55	-1.82	-0.13	57.18 56	57.17	-0.01	56.75	-0.43
	NaCl	100.03	-0.50 24	-1.10	-1.20	97.40 58	97.23	-0.17	96.85	-0.55
	SiO		192.01	-1.78 55	-0.90	0.95	189.80 58	190.28	0.48	190.53	0.73
	CS		171.55	-1.83 55	-0.80	0.75	170.40 58	169.67	-0.73	169.67	-0.73
	SO		126.15	-1.63 55	-1.09	0.41	123.50 58	123.84	0.34	123.67	0.17
	ClO		65.58	-1.22 55	-0.81	0.06	63.42 56	63.61	0.19	63.07	-0.35
	ClF		62.95	-1.12 55	-1.39	-0.10	60.35 56	60.34	-0.01	59.99	-0.36
	Si2H6	535.40	-30.50 24	-2.00	0.00	500.10 24	502.90	2.80	503.34	3.24
	CH3Cl	395.06	-23.19 24	-1.40	1.20	371.35 56	371.67	0.32	371.53	0.18
	H3CSH	474.48	-28.60 24	-1.20	1.50	445.10 58	446.18	1.08	445.91	0.81
	HOCl	166.62	-8.18 24	-1.50	0.40	156.88 56	157.34	0.46	156.93	0.05
	SO2		260.36	-4.38 55	-1.79	0.92	254.46 57	255.11	0.65	255.00	0.54

  FIG.4. The comparison of SHCI atomization energies in the extrapolated complete-basis-set limit with experiment, with (red dots) and without (green crosses) scalar relativistic and spin-orbit (SR+SO) corrections and core-valence (CV) corrections. Both sets of points include zero-point energy (ZPE) corrections. Systems for which red dots fall in the shaded region are considered to have reached chemical accuracy (1 kcal/mol).

		6													(ithout ΔESR+SO or ΔECV
	Deviation of SHCI ato ization energy fro e)peri ent (kcal/ ol)	-4 -2 0 2 4													with ΔESR + SO and ΔECV
		LiH BeH CH CH2( 3 B1) CH2( 1 A1) CH3 CH4	NH NH2 NH3	OH H2O	HF SiH2( 1 A1) SiH2( 3 B1) SiH3 SiH4 PH2 PH3	H2S	HCl Li2	LiF C2H2 C2H4 C2H6	CN HCN CO HCO H2CO H3COH N2 N2H4	NO O2 H2O2 F2	CO2 Na2	Si2 P2	S2	Cl2	NaCl SiO CS SO ClO ClF Si2H6 CH3Cl H3CSH	HOCl SO2

TABLE II .

 II Summary statistics of deviations from experimental atomization energies for the 55 molecules. For each of the basis sets (but not for the CBS limit) the inclusion of the PBE-based basis-set correction reduces the MAD by about a factor of 3. MAD: mean absolute deviation. MAX: maximum absolute deviation. Units: kcal/mol. not available from the ATcT database[START_REF] Ruscic | Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network[END_REF] . For example, for PH 2 the two available experimental values differ by 4.5 kcal/mol and our computed value differs by +1.5 kcal/mol from Ref. 24 and -3.0 kcal/mol from Ref. 58. For the molecules in the ATcT database the MAD is only 0.24 kcal/mol before the PBE-based basis set correction is applied and 0.32 kcal/mol after it is applied.

	Method SHCI cc-pVDZ SHCI cc-pVTZ SHCI cc-pVQZ SHCI cc-pV5Z SHCI CBS SHCI+PBE cc-pVDZ SHCI+PBE cc-pVTZ SHCI+PBE cc-pVQZ SHCI+PBE cc-pV5Z SHCI+PBE CBS also be inaccurate, particularly for those atomization en-MAD MAX 20.77 54.32 6.83 17.43 2.47 7.38 1.20 3.15 0.46 2.80 6.52 27.72 1.47 6.02 0.55 3.55 0.49 3.36 0.51 3.24 ergies that are LiH BeH CH CH2( 3 B1) CH2( 1 A1) CH3 CH4 NH NH2 NH3 OH H2O HF SiH2( 1 A1) SiH2( 3 B1) SiH3 SiH4 PH2 PH3 H2S HCl Li2 LiF C2H2 C2H4 C2H6 CN HCN CO HCO H2CO H3COH N2 N2H4 NO O2 H2O2 F2 CO2 Na2 Si2 P2 S2 Cl2 NaCl SiO CS SO ClO ClF Si2H6 CH3Cl H3CSH HOCl SO2
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