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ENTANGLEMENT IN THE FAMILY OF DIVISION FIELDS OF ELLIPTIC CURVES
WITH COMPLEX MULTIPLICATION

FRANCESCO CAMPAGNA AND RICCARDO PENGO

Abstract. For every CM elliptic curve E de�ned over a number �eld F containing the CM �eld
K , we prove that the family of p∞-division �elds of E, with p ∈ N prime, becomes linearly
disjoint over F after removing an explicit �nite subfamily of �elds. If F = K and E is obtained as
the base-change of an elliptic curve de�ned over Q, we prove that this �nite subfamily is never
linearly disjoint over K as soon as it contains more than one element.

1. Introduction

Let E be an elliptic curve de�ned over a number �eld F , and let F ⊇ F be a �xed algebraic
closure. The absolute Galois group Gal(F/F ) acts on the group Etors := E(F )tors of all torsion
points of E, giving rise to a Galois representation

ρE : Gal(F (Etors)/F ) ↪→ AutZ(Etors) � GL2(Ẑ)
where F (Etors) is the compositum of the family of �elds {F (E[p∞])}p for p ∈ N prime. Each
extension F ⊆ F (E[p∞]) is in turn de�ned as the compositum of the family {F (E[pn])}n∈N,
where, for every N ∈ N, we denote by F (E[N ]) the division �eld obtained by adjoining to F the
coordinates of all the points belonging to the N -torsion subgroup E[N ] := E[N ](F ).

For an elliptic curve E without complex multiplication (CM), Serre’s Open Image Theorem
[29, Théorème 3] asserts that the image of ρE has �nite index in GL2(Ẑ). However, explicitly
describing this image is a non-trivial problem in general which is connected to the celebrated
Uniformity Conjecture [29, § 4.3]. A �rst step in this direction is to study the entanglement of
the family {F (E[p∞])}p for p prime, i.e. to describe the image of the natural inclusion

(1) Gal(F (Etors)/F ) ↪→
∏
p

Gal(F (E[p∞])/F )

where the product runs over all primes p ∈ N. For each non-CM elliptic curve E/F this has
been done in [7] by Stevenhagen and the �rst named author. They identify a �nite set S of “bad
primes” (depending on E and F ) such that the map (1) induces an isomorphism

Gal(F (Etors)/F ) Gal(F (E[S∞])/F ) ×
∏
p<S

Gal(F (E[p∞])/F )∼

where F (E[S∞]) denotes the compositum of the family of �elds {F (E[p∞])}p∈S . In this case one
says that the family {F (E[S∞])} ∪ {F (E[p∞])}p is linearly disjoint over F . The �rst goal of this
paper is to prove the following analogous statement for CM elliptic curves.
Theorem 1.1. Let F be a number �eld and E/F an elliptic curve with complex multiplication by
an order O in an imaginary quadratic �eld K ⊆ F . Denote by bE := fO ∆F NF/Q(fE) the product of
the conductor fO := |OK : O| of the order O, the absolute discriminant ∆F ∈ Z of the number �eld
F and the norm NF/Q(fE) := |OF/fE | of the conductor ideal fE ⊆ OF .
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2 FRANCESCO CAMPAGNA AND RICCARDO PENGO

Then the map (1) induces an isomorphism

Gal(F (Etors)/F ) Gal(F (E[S∞])/F ) ×
∏
p<S

Gal(F (E[p∞])/F )∼

where S ⊆ N denotes the �nite set of primes dividing bE .

A key ingredient in the proof of Theorem 1.1 is Proposition 3.3, which can be seen as an
explicit version of Deuring’s analogue, for CM elliptic curves, of Serre’s Open Image Theorem
(see [29, § 4.5]). More precisely, if E/F is an elliptic curve with complex multiplication by an
order O in an imaginary quadratic �eld K , the extension F ⊆ F (Etors) is abelian. This shows
that the image of ρE has in�nite index in AutZ(Etors) � GL2(Ẑ), and in particular the conclusion
of Serre’s theorem does not hold in this setting. Nevertheless, the elements of Gal(F/F ) act
on Etors as O-module automorphisms, so that the image of ρE is contained in the subgroup
AutO(Etors) ⊆ AutZ(Etors). Then Proposition 3.3 says that ρE(Gal(F (E[pn])/F )) = AutO(E[pn])
for every prime p < S and every n ∈ N. Hence one has the inclusion∏

p<S

AutO(E[p∞]) ⊆ Im(ρE) := ρE(Gal (F (Etors)/F ))

which can be used to show, as Deuring did, that Im(ρE) ⊆ AutO(Etors) has �nite index. Proposi-
tion 3.3 is proved using some results concerning formal groups attached to CM elliptic curves,
which are recalled in Section 2. We point out that another proof of Proposition 3.3 can also be
deduced from previous work of Lozano-Robledo, as explained in Remark 3.4.

While Proposition 3.3 (combined with Lemma 3.1) gives the identi�cation
(2) Gal(F (E[N ])/F ) � (O/NO)×

for everyN ∈ N coprime with bE , we prove in Theorem 4.3 that, if the extensionK ⊆ F is abelian
and F (Etors) ⊆ Kab, the isomorphism (2) does not hold for in�nitely many N ∈ N not coprime
with bE . Theorem 4.3 extends results of Coates and Wiles (see [9, Lemma 3]) and Kuhman (see
[15, Chapter II, Lemma 3]) using a class of abelian extensions of K which are constructed in
Appendix A. These extensions are a generalisation both of the usual ray class �elds for K (see
[26, Chapter VI, § 6]) and of the ray class �elds for orders de�ned in [37] and [38, § 4].

The condition F (Etors) ⊆ Kab was introduced by Shimura in [32, Theorem 7.44]. The author
also shows in [32, Page 217] that if K is an imaginary quadratic �eld with absolute discriminant
∆K . −1 (3), then there exists an elliptic curve E de�ned over the Hilbert class �eld HK with
complex multiplication by OK such that HK (Etors) ⊆ Kab. We generalise Shimura’s result in
Theorem 4.8 by proving that, for every imaginary quadratic �eld K and any order O ⊆ K ,
there exist in�nitely many ellipic curves E/HO with complex multiplication by O which satisfy
Shimura’s condition, i.e. such that the extension K ⊆ HO(Etors) is abelian. Here HO denotes the
ring class �eld of K relative to O (see [11, § 9]), which is an abelian extension of K coinciding
with the Hilbert class �eld HK when O = OK . We also show in Theorem 4.9 that there exist
in�nitely many elliptic curves E/HO which have complex multiplication by O and do not satisfy
Shimura’s condition. For these elliptic curves, we show in Corollary 4.6 that the whole family
of division �elds {HO(E[p∞])}p is linearly disjoint over HO .

In the �nal section, we use Theorem 1.1 and Theorem 4.3 to prove Theorem 5.5, which pro-
vides a complete description of the image of (1) when F = K is an imaginary quadratic �eld
and E/K is the base-change of an elliptic curve de�ned over Q. In particular, as we note in Re-
mark 5.6, Theorem 5.5 shows that the �nite set of primes S appearing in Theorem 1.1 cannot
be made smaller in general. However, see Remark 3.7 for a general discussion about this topic.

We �nally remark that our work, despite having di�erent objectives, bears a connection with
Lozano-Robledo’s recent work [20], which provides an explicit list of subgroups of GL2(Zp) that
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can occur as the image of the p-adic Galois representations associated to a CM elliptic curve.
We comment more punctually on this relation in Remark 3.6, Remark 4.7 and Remark 5.2.

The results contained in this article are applied by the authors in two di�erent ways. The
�rst named author uses Theorem 1.1 in [6] to study, jointly with Stevenhagen, cyclic reduction
of CM elliptic curves. The second named author uses Theorem 1.1 in [27] to provide explicit
planar models of CM elliptic curves de�ned over Q and to compute their Mahler measure.

2. Formal groups and elliptic curves

2.1. Formal groups. The aim of this subsection is to recall, following [34, Chapter IV], some
of the main points of the theory of one dimensional, commutative formal group laws de�ned
over a ring R, which we call formal groups for short. Roughly speaking, these are power series
F ∈ RJz1, z2K for which the association x +F y := F (x ,y) behaves like an abelian group law.

Given a formal group F ∈ RJz1, z2K we denote the set of endomorphisms of F by
EndR(F ) := { f ∈ tRJtK | f (x +F y) = f (x) +F f (y)}

which is a ring under the operations (f +F д)(t) := F (f (t),д(t)) and (д ◦ f )(t) := д(f (t)). We
write AutR(F ) for the unit group EndR(F )× and we denote by [·]F the unique ring homomor-
phism Z→ EndR(F ). For everyϕ ∈ EndR(F ) one has thatϕ ∈ AutR(F ) if and only ifϕ′(0) ∈ R×
where ϕ′(t) := d

dtϕ ∈ RJtK (see [34, Chapter IV, Lemma 2.4]). Moreover, every ϕ ∈ EndR(F ) is
uniquely determined by ϕ′(0)whenever R is torsion-free. More precisely, there exist two power
series expF , logF ∈ (R ⊗Z Q)JtK such that
(3) ϕ(t) = expF (ϕ′(0) · logF (t))
as explained in [34, Chapter IV, § 5].

Let us now recall that if (R,m) is a complete local ring there is a well de�ned map

m ×m
+F−−→ m

(x ,y) 7→ F (x ,y)
endowing the set m with the structure of an abelian group, which will be denoted by F (m).
We will sometimes refer to F (m) as the group ofm-points of F . Every ϕ ∈ EndR(F ) induces an
endomorphism ϕm : F (m) → F (m), and for every ideal Φ ⊆ EndR(F ) we de�ne the Φ-torsion
subgroup F (m)[Φ] ⊆ F (m) as

F (m)[Φ] :=
⋂
ϕ∈Φ

ker(ϕm).

TheseΦ-torsion subgroups generalise the usualN -torsion subgroupsF (m)[N ] ⊆ F (m) de�ned
for every N ∈ Z. The following lemma provides some information about the behaviour of
F (m)[pn] under �nite extensions of local rings with residue characteristic p.

Lemma 2.1 (see [34, Chapter IV, Exercise 4.6] and [35, Page 15]). Let R ⊆ S be a �nite extension
of complete discrete valuation rings of characteristic zero with maximal ideals mR ⊆ mS and
residue �elds κR ⊆ κS . Let p := char(κR) > 0 be the residue characteristic of R and S , and suppose
thatmR = pR. Then for every formal group F ∈ RJz1, z2K and every x ∈ F (mS )[pn]\F (mS )[pn−1]
with n ∈ Z≥1 we have that

vS (x) ≤
vS (p)

ph(n−1) · (ph − 1)
where vS denotes the normalised valuation on S , and

h = ht(F ) := max
{
n ∈ N

��� [p]F ∈ κRJtpnK }
is the height of the reduced formal group F ∈ κRJz1, z2K.
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Proof. Using that h = ht(F ) and that mR = p · R we see that there exist f ,д ∈ RJtK such that
[p]F = f (tph )+p д(t). We can assume that f ,д ∈ t RJtK and д′(0) = 1 because [p]F ∈ t RJtK and
[p]′F (0) = p. Now �x x ∈ F (mS )[pn] \ F (mS )[pn−1] and proceed by induction on n ∈ Z≥1.

If n = 1 then f (xph ) + p д(x) = [p]F (x) = 0, hence vS (p) + vS (д(x)) = vS (f (xp
h )). Now

vS (д(x)) = vS (x) because д(0) = 0 and д′(0) = 1, and vS (f (xp
h )) ≥ vS (xp

h ) = ph vS (x) because
f (0) = 0. Hence vS (p) ≥ (ph − 1) · vS (x), which is what we wanted to prove.

If n ≥ 2 we know by induction that
vS (p)

ph(n−2) · (ph − 1)
≥ vS ([p]F (x)) = vS (f (xp

h ) + p д(x)) ≥ min(vS (xp
h ),vS (px))

because [p]F (x) ∈ F (mS )[pn−1]\F (mS )[pn−2]. This implies that min(vS (xp
h ),vS (px)) = vS (xp

h ).
Otherwise we would get the contradiction vS (p) ≥ ph(n−2) · (ph − 1) · vS (px) > vS (p) because
n ≥ 2, vS (x) > 0 and h ≥ 1. Hence we have that

vS (x) =
vS (xp

h )
ph

≤ vS (p)
ph · (ph(n−2) · (ph − 1))

=
vS (p)

ph(n−1) · (ph − 1)
which is what we wanted to prove. �

2.2. Formal groups and elliptic curves. Given an elliptic curve E de�ned over a number �eld
F by an integral Weierstrass equation one can construct, following for example [34, Chapter IV],
a formal group Ê ∈ OF Jz1, z2K which can be thought of as the formal counterpart of the addition
law on E. The association E 7→ Ê is functorial and in particular induces a map

(4)
EndF (E) → EndF (Ê)

ϕ 7→ ϕ̂

between the endomorphism rings of E and Ê. The power series lying in the image of (4) have
integral coe�cients, as proved in the following theorem, due to Streng.

Theorem 2.2 (see [39, Theorem 2.9]). Let E be an elliptic curve de�ned over a number �eld F and
let Ê ∈ OF Jz1, z2K be the formal group law associated to a Weierstrass model of E with coe�cients
a1, . . . ,a6 ∈ OF . Then for every ϕ ∈ EndF (E) we have that ϕ̂ ∈ OF JtK.

Proof. One can show by induction that [̂n]E = [n]Ê ∈ Z[a1, . . . ,a6]JtK ⊆ OF JtK for every n ∈ Z,
where [n]E ∈ EndF (E) denotes the multiplication-by-n map. This proves the theorem when
EndF (E) � Z. Otherwise E has complex multiplication by [34, Chapter III, Corollary 9.4], and
one can combine [33, Chapter II, Proposition 1.1] and [34, Chapter IV, Corollary 4.3] to see that
there exists a unique isomorphism [·]E : O −→∼ EndF (E) such that [̂α]

′
E(0) = α for every α ∈ O

where O is an order in an imaginary quadratic �eld K ⊆ F .
Let {ψj}j∈N ⊆ F [s] be the polynomials determined by the equality

+∞∑
j=0

ψj(s) · t j = expÊ(s · logÊ(t)) ∈ FJt , sK

and observe thatψj(Z) ⊆ OF for every j ∈ N because (3) shows that
+∞∑
j=0

ψj(n) · t j = [n]Ê(t) ∈ OF JtK

for every n ∈ Z.
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To conclude it is su�cient to show thatψj(O) ⊆ OFP for every j ∈ N and every primeP ⊆ OF ,
where FP denotes the completion of F at P. Indeed, in this case ψj(O) ⊆ OF for every j ∈ N,
and again (3) gives

[̂α]E(t) = expÊ([̂α]E
′
(0) · logÊ(t)) = expÊ(α · logÊ(t)) =

+∞∑
j=0

ψj(α) · t j ∈ OF JtK

for every α ∈ O. The inclusionψj(O) ⊆ OFP is easily seen ifP lies above a rational prime p ∈ N
which splits in K , because under this assumption O ⊆ Zp and ψj(Zp) ⊆ OFP since Z is dense
in Zp and ψj : FP → FP is continuous with respect to the P-adic topology. For the remaining
cases we refer the reader to the original proof contained in [39]. �

Let now P ⊆ OF be a prime of F with residue �eld κP and corresponding maximal ideal
mP ⊆ OFP , where FP denotes the completion of F at P. Then [39, § 2] shows that there is a
unique injective group homomorphism ιP : Ê(mP) → E(FP) making the following diagram

(5)
Ê(mP) E(FP)

Ê(mP) E(FP)

ϕ̂P

ιP

ϕ

ιP

commute for every ϕ ∈ EndFP(E), where ϕ̂P := (ϕ̂)mP (see Section 2.1). Moreover [34, Chap-
ter VII, Proposition 2.1 and Proposition 2.2] imply that ιP �ts in the following exact sequence

0→ Ê(mP)
ιP−→ E(FP)

πP−−→ Ẽ(κP) → 0

in which Ẽ denotes the reduction of E modulo P and πP : E(FP) � Ẽ(κP) is the canonical
projection. Taking torsion and using (5) we get a left-exact sequence

(6) 0→ Ê(mP)[Φ̂]
ιP−→ E(FP)[Φ]

πP−−→ Ẽ(κP)[Φ]
for every ideal Φ ⊆ EndFP(E). Here E(FP)[Φ] ⊆ E(FP) is the Φ-torsion subgroup

E(FP)[Φ] :=
⋂
ϕ∈Φ

ker(ϕ)

and Ẽ(κP)[Φ] is de�ned analogously, noting that the map EndFP(E) → EndκP(Ẽ) is injective (see
[33, Chapter II, Proposition 4.4]). We remark that Ê(mP)[Φ̂] is well de�ned since Φ̂ ⊆ OF JtK by
Theorem 2.2. Sequence (6) will be extensively used in the next section.

3. Division fields of CM elliptic curves: ramification and entanglement

The goal of this section is to prove Theorem 1.1 by studying the rami�cation properties of
primes in division �eld extensions associated to CM elliptic curves, as described in Proposi-
tion 3.2 and Proposition 3.3. The proof of these results is an application to the CM case of the
theory of formal groups outlined in Section 2. We work in a �xed algebraic closure Q of Q.

Let F ⊆ Q be a number �eld and let E/F be an elliptic curve with complex multiplication by
an order O in an imaginary quadratic �eld K , which means that EndQ(E) � O. One can always
�x, combining [33, Chapter II, Proposition 1.1] and [34, Chapter IV, Corollary 4.3], a unique
isomorphism [·]E : O −→∼ EndQ(E) normalised in such a way that [̂α]

′
E(0) = α for every α ∈ O,

where [̂α]E ∈ EndQ(Ê) denotes the endomorphism of the formal group Ê associated to [α]E by
(4). We will assume throughout this section that the �eld of de�nition F contains the CM �eld
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K . This assumption implies in particular that all the endomorphisms of E are already de�ned
over F , as proved in [31, Chapter II, Proposition 30].

For any �eld extension F ⊆ L ⊆ Q and any ideal I ⊆ O we write
E(L)[I ] := {P ∈ E(L) : [α]E(P) = 0 for all α ∈ I }

for the set of I -torsion points of E de�ned over L, which is naturally a module over O/I . When
I = α · O for some α ∈ O we write E(L)[α] := E(L)[I ] and E[α] := E(Q)[α]. For any ideal I ⊆ O
the groups E[I ] := E(Q)[I ] are always �nite and they give rise to �nite extensions F ⊆ F (E[I ])
obtained by adjoining to F the coordinates of every I -torsion point. We refer to the number
�eld F (E[I ]) as the I -division �eld of E/F . The next result summarises the main properties of
the extension F ⊆ F (E[I ]) when I is invertible (see [26, Chapter I, § 12]).

Lemma 3.1. Let F be a number �eld and E/F an elliptic curve with complex multiplication by
an order O in an imaginary quadratic �eld K ⊆ F . Then for every ideal I ⊆ O the extension
F ⊆ F (E[I ]) is Galois and there is a canonical inclusion Gal(F (E[I ])/F ) ↪→ AutO(E[I ]). Moreover,
if I is invertible, the group E[I ] has a natural structure of free O/I -module of rank one and, after
choosing a generator, one gets an injective group homomorphism

ρE,I : Gal(F (E[I ])/F ) ↪→ (O/I )×

which will be denoted by ρE,N when I = N · O for some N ∈ Z. Under the further assumption that
I is coprime to the ideal fO · O generated by the conductor fO := |OK : O| of the order O, one has
that O/I � OK/IOK .
Proof. Since F contains the CM �eld K , the endomorphisms of E are all de�ned over F and this
implies that Gal(Q/F ) acts on E[I ] by O-module automorphisms. In particular F ⊆ F (E[I ])
is Galois and there is a canonical inclusion Gal(F (E[I ])/F ) ↪→ AutO(E[I ]). If I is invertible,
E[I ] has the structure of free O/I -module of rank one by [5, Lemma 2.4], and the choice of a
generator induces an isomorphism AutO(E[I ]) � (O/I )× which gives the map ρE,I appearing in
the statement. The last assertion follows from [11, Proposition 7.20]. �

With the next proposition we start our study concerning the rami�cation properties of the
extensions F ⊆ F (E[I ]) by �nding an explicit �nite set of primes outside which these are un-
rami�ed.

Proposition 3.2. Let F be a number �eld and E/F an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld K ⊆ F . Denote by fO := |OK : O| the conductor of
the order O and by fE ⊆ OF the conductor ideal of the elliptic curve E. Then for every ideal I ⊆ O
coprime with fO the extension F ⊆ F (E[I ]) is unrami�ed at all primes not dividing (I · OF ) · fE .
Proof. Since I is coprime with the conductor of the order O, it can be uniquely factored into a
product of invertible prime ideals of O (see [11, Proposition 7.20]). The �eld F (E[I ]) is then the
compositum of all the division �elds F (E[pn]) with pn the prime power factors of I in O. Hence
it su�ces to prove that for every invertible prime ideal p ⊆ O and n ∈ N, the �eld extension
F ⊆ F (E[pn]) is unrami�ed at every prime of F not dividing (p OF ) · fE .

Fix an invertible prime p ⊆ O and write L := F (E[pn]). Let q - (p OF ) · fE be a prime of F and
�x a primeQ ⊆ OL lying above q, with residue �eld κ. Since q does not divide the conductor fE
of the elliptic curve, E has good reduction Ẽ modulo q and we then denote by π : E(L) → Ẽ(κ)
the reduction map. Take σ ∈ I (Q/q), where I (Q/q) ⊆ Gal(L/F ) denotes the inertia subgroup of
q ⊆ Q, and �x a torsion point Q ∈ E[pn] = E(L)[pn]. By de�nition of inertia σ acts trivially on
the residue �eld κ, hence
(7) π (Qσ −Q) = π (Qσ ) − π (Q) = π (Q) − π (Q) = 0
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i.e. the point Qσ − Q is in the kernel of the reduction map π . We are going to use the exact
sequence (6) to show that the only pn-torsion point contained in this kernel is 0. To this aim,
we embed L in its Q-adic completion LQ with ring of integers OLQ and maximal ideal mQ .
Notice that the set (pn ∩ O) \ (Q ∩ O) is non-empty because p - fO and q - (p OF ). Consider
then the formal group Ê ∈ OF Jz1, z2K associated to an integral Weierstrass model of E, and let
α ∈ (pn ∩ O) \ (Q ∩ O). The endomorphism [̂α]E ∈ EndF (Ê) corresponding to [α]E ∈ EndF (E)
via (4) becomes an automorphism over LQ , because [̂α]

′
E(0) = α ∈ O×LQ . Hence taking Φ = [pn]E

in (6) shows that E[pn] ∩ ker(π ) ⊆ E[α] ∩ ker(π ) = {0}, where the last equality holds because
Ê(mQ)[̂α]E = 0. Combining this with (7) we see thatQσ = Q for everyQ ∈ E[pn] andσ ∈ I (Q/q).
Since L is generated over F by the elements of E[pn], we deduce that the inertia group I (Q/q) is
trivial. In particular, F ⊆ L is unrami�ed at every prime not dividing (p · OF ) fE , as wanted. �

We now turn to the study of the primes which ramify in F ⊆ F (E[I ]). To do this it su�ces to
restrict our attention to the case I = pn for some prime p ⊆ O and some n ∈ N, as we do in the
following proposition.

Proposition 3.3. Let F be a number �eld and E/F an elliptic curve with complex multiplication
by an order O in an imaginary quadratic �eld K ⊆ F . Denote by bE := fO ∆F NF/Q(fE) the product
of the conductor fO := |OK : O| of the order O, the absolute discriminant ∆F ∈ Z of the number
�eld F and the norm NF/Q(fE) := |OF/fE | of the conductor ideal fE ⊆ OF . Then for any n ∈ N and
any prime ideal p ⊆ O coprime with bE O the extension F ⊆ F (E[pn]) is totally rami�ed at each
prime dividing p OF . Moreover, the Galois representation

ρE,pn : Gal(F (E[pn])/F ) ↪→ (O/pn)× � (OK/pnOK )×

de�ned in Lemma 3.1 is an isomorphism.

Proof. The statement is trivially true if n = 0, hence we assume that n ≥ 1. Fix Ê ∈ OF Jz1, z2K to
be the formal group associated to an integral Weierstrass model of E, and let p ⊆ O be as in the
statement. The hypothesis of coprimality with bE O implies that p is invertible in O and that it
lies above a rational prime p ∈ N that is unrami�ed in K . We divide the proof according to the
splitting behaviour of p in O, which is the same as the splitting behaviour in K , since p - fO .

First, assume that p is inert in K , so that p = pO. In this case, L := F (E[pn]) coincides with
the pn-division �eld F (E[pn]). The injectivity of the Galois representation

ρE,pn : Gal(L/F ) ↪→ (O/pnO)× � (OK/pnOK )×

shows that the degree of the extension F ⊆ L is bounded as

[L : F ] ≤ |(OK/pnOK )× | = p2(n−1)(p2 − 1).
LetP ⊆ OL be a prime of L lying abovep and denote by LP theP-adic completion of L with ring
of integers OLP , maximal idealmP and residue �eld κP. We want to determine the rami�cation
index e(P/(P ∩ OF )).

Since p is inert in K , the reduced elliptic curve Ẽ is supersingular by [16, § 14, Theorem 12],
hence Ẽ(κP)[pn] = 0. Taking Φ = [pn]E in (6), we see that the group Ê(mP) contains a non-zero
point of exact order pn. We can now use Lemma 2.1 and the hypothesis p - ∆F to get

(8) ph(n−1)(ph − 1) ≤ vLP(p) = e(P/p) = e(P/(P ∩ OF )) ≤ [L : F ] ≤ p2(n−1)(p2 − 1).

where h ∈ N denotes the height of the reduction modulo P of the formal group Ê. Since the
latter is precisely the formal group associated to Ẽ, we have that h = 2 by [34, Chapter V,
Theorem 3.1]. Thus all the inequalities appearing in (8) are actually equalities, and we see at
once that e(P/(P∩ OF )) = [L : F ] = p2(n−1)(p2 − 1), which implies that ρE,pn is an isomorphism
and that P ∩ OF is totally rami�ed in L. This concludes the proof of the inert case.
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Suppose now that p splits in K , so that pO = pp, where p is the image of p under the unique
non-trivial automorphism of K . If we put again L := F (E[pn]), the injectivity of ρE,pn gives

[L : F ] ≤ |(OK/pnOK )× | = pn−1(p − 1).
It is convenient in this case to work inside the bigger division �eld F̃ := F (E[pn]), which contains
both L and L′ := F (E[pn ]). We then �x P,P ⊆ OF̃ two primes of F̃ lying respectively above
pOK and pOK , and we denote by P := P ∩ OL and P := P ∩ OL the corresponding primes in
L. For every prime ideal q ∈ {P,P} we denote by F̃q the q-adic completion of F̃ with ring of
integers OF̃q and residue �eld κq, and by Ẽq the reduction of E/F̃ modulo q. We use analogous
notation for P and P. The goal is to compute the rami�cation index e(P/P ∩ OF ), and we
divide our argument in three steps.

Step 1 First of all, we prove that the reduction map E[pn] → Ẽ
P
(κ
P
) is injective. This is

equivalent to say that ker(πP) ∩ E(LP)[p
n] = 0, where

πP : E(LP)� ẼP(κP) ⊆ Ẽ
P
(κ
P
)

denotes the reduction modulo P. Since p is coprime with the conductor of the order O by
assumption, it is possible to �nd α ∈ pn such that α < p. The endomorphism [̂α]E ∈ EndF (Ê)
corresponding to [α]E ∈ EndF (E) via (4) becomes an automorphism over LP , because [̂α]

′
E(0) =

α ∈ O×LP . Hence taking Φ = [pn]E in (6) shows that

ker(πP) ∩ E(LP)[p
n] ⊆ ker(πP) ∩ E(LP)[α] = 0

where the last equality holds because Ê(mP)[̂α]E = 0. In exactly the same way, using L′ in place
of L, one shows that the reduction map E[pn] → ẼP(κP) is injective.

Step 2 We now claim that ker(πP) ∩ E[pn] = E[pn] where πP : E(F̃ ) → ẼP(κP) denotes the
reduction moduloP. Since pO = pp, there is a decomposition of the group E[pn] into the direct
sum of E[pn ] and E[pn ], which are cyclic groups of order pn by Lemma 3.1. In particular, there
exists A ∈ E[pn] and B ∈ E[pn] such that every pn-torsion point Q ∈ E[pn] can be written as

Q = [a](A) + [b](B)
for unique a,b ∈ {0, . . . ,pn − 1}. If πP(Q) = 0 then

πP([b](B)) = πP([−a](A)) ∈ ẼP[pn ] ∩ ẼP[pn ] = {0}
where the last equality follows from the fact that pn and pn are coprime in O. In particular,
[b](B) is in the kernel of the reduction map E[pn] → ẼP(κP)[pn], which is the restriction of πP
to E[pn] and is injective by Step 1. Hence we have Q = [a](A) ∈ E[pn], and this shows the
inclusion ker(πP) ∩ E[pn] ⊆ E[pn]. To prove the other inclusion �rst notice that the restriction
of πP to E[pn] gives rise to a surjection E[pn] � ẼP(κP)[pn] because E[pn] → ẼP(κP)[pn] is
injective and the elliptic curve ẼP is ordinary by [16, § 14, Theorem 12]. This gives

E[pn]
ker(πP) ∩ E[pn]

� ẼP(κP)[pn]

which in turn shows that

|ker(πP) ∩ E[pn]| =
|E[pn]|

|ẼP(κP)[pn]|
=
p2n

pn
= pn = |E[pn]|.

We conclude that ker(πP) ∩ E[pn] = E[pn].
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Step 3 Using (6) with Φ = [pn]E and Step 2, after recalling that P lies over P, one can
see that the group Ê(mP) contains a point of exact order pn. We now apply Lemma 2.1 and the
hypothesis p - ∆F to get

(9) ph(n−1)(ph − 1) ≤ vLP (p) = e(P/p) = e(P/(P ∩ OF )) ≤ [L : F ] ≤ pn−1(p − 1).
where h ∈ N denotes the height of the reduction modulo P of the formal group Ê. Since the
latter is precisely the formal group associated to the ordinary elliptic curve ẼP , we have that
h = 1 by [34, Chapter V, Theorem 3.1]. Thus all the inequalities appearing in (9) are actually
equalities, and we see at once that e(P/(P ∩ OF )) = [L : F ] = pn−1(p − 1), which implies that
ρE,pn is an isomorphism and that P ∩ OF is totally rami�ed in L. This concludes the proof. �

Remark 3.4. As we already stated in the introduction, Proposition 3.3 can be obtained by com-
bining various results of Lozano-Robledo. More precisely, see [21, Proposition 5.6] for the inert
case and the proof of [22, Theorem 6.10] for the split case. The arguments used by Lozano-
Robledo for the inert case involve a formula for the valuation of the coe�cient of tp in the
power series [p]Ê(t) ∈ OF JtK (see [19, Theorem 3.9]), and the study of the split case goes through
a detailed investigation of Borel subgroups of GL2(Z/pnZ) (see [22, Section 4]). Our proof of
Proposition 3.3, which concerns only CM elliptic curves and prime ideals not dividing bE O,
appears to be shorter because it uses the same techniques to deal with the split and inert case.
Notice as well that our discussion is explicitly written for general imaginary quadratic orders,
whereas [22, Theorem 6.10] is stated and proved only for maximal orders. We observe however
that [22, Remark 6.12] points out that the proof of [22, Theorem 6.10] carries over to the general
case.

We also remark that, if O = OK is a maximal order of class number 1 and F = K , Proposi-
tion 3.3 is proved by Coates and Wiles in [9, Lemma 5] (see also [1, Lemma 3] and [10, Propo-
sition 47]). The main tool used in their proof is Lubin-Tate theory.

Remark 3.5. Let E/F be any elliptic curve (not necessarily with complex multiplication) which
has good supersingular reduction at a prime p ⊆ OF lying above a prime p ∈ N which does
not ramify in Q ⊆ F . Then one can use the same argument provided in the �rst part of the
proof of Proposition 3.3 to show that the rami�cation index e(P/p) is bounded from below by
p2(n−1)(p2 − 1), where P ⊆ F (E[pn]) is any prime lying above p. This result has already been
proved by Lozano-Robledo in [21, Proposition 5.6] and by Smith in [36, Theorem 2.1].

Remark 3.6. Let E be an elliptic curve having complex multiplication by an imaginary quadratic
order O, and suppose that E is de�ned over the ring class �eld HO . Then using the recent work
[20] of Lozano-Robledo, and in particular [20, Theorem 1.2.(4)] and [20, Theorem 7.11], one can
show that the Galois representation ρE,pn is an isomorphism for every n ∈ N and every rational
prime p ∈ N such that p - 2fO∆K . This strengthens, for elliptic curves de�ned over HO , the �nal
assertion of Proposition 3.3.

We are now ready to prove Theorem 1.1. Recall that a family F = {Fs}s∈S of Galois exten-
sions of a number �eld F , indexed over any set S, is called linearly disjoint over F if the natural
inclusion map

Gal(L/F ) ↪→
∏
s∈S

Gal(Fs/F )

is an isomorphism, where L denotes the compositum of the �elds Fs . Otherwise the family is
called entangled over F .

Proof of Theorem 1.1. The family {F (E[p∞])}q<S∪{F (E[S∞])} appearing in the statement of The-
orem 1.1 is linearly disjoint over F if and only if F (E[pn]) ∩ F (E[m]) = F for every prime p < S ,
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every n ∈ N and everym ∈ Z coprime with p. To prove this latter statement, we �rst show that
every non-trivial subextension of F̃ := F (E[pn]) is rami�ed at some prime dividing p.

When p is inert in K , this follows immediately from Proposition 3.3. Suppose then that p
is split in K , with pOK = pp. The division �eld F̃ is the compositum over F of the extensions
Fp := F (E[pn]) and Fp := F (E[pn]). By Proposition 3.3 the extension F ⊆ Fp (respectively F ⊆ Fp)
is totally rami�ed at every prime of F lying over p (resp. p). Let P be a prime of F lying above
p, and denote by I (P) ⊆ Gal(F̃/F ) its inertia group and by e(P) its rami�cation index in the
extension F ⊆ F̃ . If F ( L is a subextension of F ⊆ F̃ in which P does not ramify, then L must
be contained in the inertia �eldT = (F̃ )I (P) relative toP. Notice that the latter also contains Fp,
since by Proposition 3.2 the extension F ⊆ Fp is unrami�ed at P. On the other hand, the fact
that F ⊆ Fp is totally rami�ed at P gives the chain of inequalities

[Fp : F ] ≤ [T : F ] = [F̃ : F ]|I (P)| =
[F̃ : F ]
e(P) ≤

[Fp : F ] · [Fp : F ]
e(P) ≤ [Fp : F ]

which shows that T = Fp. Hence Proposition 3.3 implies that any extension F ⊆ L which is
unrami�ed at every prime above p is totally rami�ed at every prime above p.

Now it is easy to conclude that F̃ ∩ F (E[m]) = F , since otherwise F ⊆ F (E[m]) would ramify
at some prime of F dividing p, contradicting Proposition 3.2. �

Remark 3.7. Let F be a number �eld and E/F an elliptic curve with complex multiplication by an
order O in an imaginary quadratic �eld K ⊆ F . Denote by S ⊆ N the set of primes dividing bE ,
as in Theorem 1.1. In this general setting it is an interesting question to study the entanglement
in the �nite family of “bad” division �elds {F (E[p∞])}p∈S , as we do in Section 5 where we specify
F = K and E to be the base-change of an elliptic curve de�ned over Q.

A �rst step towards a complete answer to the previous question in the general setting is to
�nd the minimal set S′ ⊆ S such that the family of division �elds

{F (E[p∞])}p<S ′ ∪ {F (E[(S′)∞])}
is linearly disjoint over F . We partially answer the latter question in Corollary 4.6, where we
prove that one can take S′ = ∅ for every elliptic curve E de�ned over the ring class �eld HO
satisfying the condition HO(Etors) * Kab. There are in�nitely many such elliptic curves when
Pic(O) , {1}, as we show in Theorem 4.9. On the other hand, if Pic(O) = {1} there are in�nitely
many examples of elliptic curves E having complex multiplication by O for which S′ = S can
be arbitrary large (see Remark 5.6).

Remark 3.8. Let F be a number �eld and E be a CM elliptic curve de�ned over F . Then, even
when K * F , we have that K ⊆ F (E[N ]) for every N > 2. This has been showed in [25,
Lemma 6] for F = Q and in [4, Lemma 3.15] for arbitrary F . In particular, the statement of
Theorem 1.1 does not hold when K * F .

The description of the set of primes S in Theorem 1.1 is actually redundant, since all the
primesp dividing the conductor fO , with the possible exception ofp = 2, also divide the absolute
discriminant ∆F of the �eld of de�nition of E. This can be seen as follows: since K ⊆ F , the
�eld F always contains the �eld K(j(E)), obtained by adjoining to K the j-invariant j(E) of the
elliptic curve E. Despite its de�nition, HO := K(j(E)) does not depend on E but only on its CM
order O, and is called the ring class �eld of K relative to the order O. The extension K ⊆ HO
is always abelian and it is possibly rami�ed only at primes of K dividing the conductor fO (see
[11, § 9.A]). If O = OK , the �eld HOK coincides with the Hilbert class �eld of K , i.e. the maximal
abelian extension of K which is unrami�ed everywhere. The initial assertion now follows from
the following proposition, which is a weaker form of [11, Exercise 9.20].
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Proposition 3.9. Let O be an order of conductor fO := |OK : O| in an imaginary quadratic �eld
K . Then the extension Q ⊆ HO is rami�ed at all the odd primes dividing fO . Moreover if 4 | fO the
same extension is also rami�ed at 2.

Proof. If fO = 1 there is nothing to prove. Otherwise let fO = pa11 · · ·p
an
n be the prime factorisa-

tion of fO , and observe that, for every i ∈ {1, . . . ,n}, one has the chain of inclusions
K ⊆ HOK ⊆ HOi ⊆ HO

given by the Anordnungsatz for ring class �elds (see Remark A.3), where Oi denotes the order
of conductor paii . Now, the class number formula [11, Theorem 7.24] yields

(10) [HOi : HOK ] =
[HOi : K]
[HOK : K]

=
hOi
hK
=

paii
|O×K : O×i |

(
1 −

(
∆K

pi

)
1
pi

)
.

where hOi := [HOi : K] = |Pic(Oi)| and analogously hK := [HOK : K] = |Pic(OK )|. Since either
pi ≥ 3 or pi = 2 and ai ≥ 2, we see from (10) that HOi , HOK except when pi = 3, ai = 1
and K = Q(

√
−3). In this last case the extension Q ⊆ K is rami�ed at pi = 3. Otherwise the

extension HOK ( HOi is rami�ed at some prime dividing pi . Indeed, HOK ( HOi is rami�ed at
some prime because K ⊆ HOi is abelian and HOK is the Hilbert class �eld of K , and this su�ces
to conclude because K ⊆ HOi can ramify only at primes lying above pi . �

Remark 3.10. If 2 | fO but 4 - fO the extension Q ⊆ HO could still be unrami�ed at 2. This
happens, for instance, if fO = 2 and 2 splits in K , because in this case the ring class �eld HO is
equal to the Hilbert class �eld HOK .

Proposition 3.9 shows that the set S in Theorem 1.1 could be replaced by the set S′ of primes
dividing 2 ·∆F ·NF/Q(fE), even if this results in a slightly weaker statement. However, choosing
the set S′ instead of the set S allows to draw a comparison with a result of Lombardo on the
image of p-adic Galois representations attached to CM elliptic curves, which is shown in [17,
Theorem 6.6]. In this paper Lombardo proves the isomorphism

Gal(F (E[p∞])/F ) � (O ⊗Z Zp)×

for every prime p - ∆F · NF/Q(fE). If moreover p ≥ 3, i.e. p < S′, this isomorphism follows also
from Proposition 3.3 by taking inverse limits. The methods used in [17] are di�erent from ours
and generalise also to higher dimensional abelian varieties.

4. Minimality of division fields

We have seen in Proposition 3.3 that for every CM elliptic curve E de�ned over a number
�eld F with EndF (E) � O for some order O in an imaginary quadratic �eld K ⊆ F , the division
�elds F (E[N ]) are maximal for all integers N coprime with a �xed integer bE ∈ N. This is to
say that the associated Galois representation ρE,N given by Lemma 3.1 is surjective. When E
is de�ned over the ring class �eld HO of K relative to O, the division �elds HO(E[N ]) always
contain a special abelian extension HN ,O ⊆ Kab called the ray class �eld modulo N relative
to the order O. If the division �eld HO(E[N ]) is maximal and N > 2 then the containment
HN ,O ⊆ HO(E[N ]) is strict. In this section we want to study for which integers N the division
�elds are minimal, in the sense that HO(E[N ]) = HN ,O . Theorem 4.3, which is the main result
of Section 4, provides an explicit set of integers N ∈ N for which such an equality occurs. This
will be used in Section 5 to detect entanglement in families of division �elds. We point out
that Theorem 4.3 is formulated in a wider setting, with the integer N replaced by a general
invertible ideal I ⊆ O. The study of the ray class �elds HI ,O associated to these ideals is the
content of Appendix A. We begin instead this section with a summary of some basic facts on
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lattices in number �elds which will be used in the proof of Theorem 4.3. Our exposition follows
[16, Chapter 8].

Let F be a number �eld. A lattice Λ ⊆ F is an additive subgroup of F which is free of rank
[F : Q] over Z. Given a pair of lattices Λ1,Λ2 ⊆ F we can form their sum Λ1 + Λ2 ⊆ F , their
product Λ1 · Λ2 ⊆ F and their quotient (Λ1 : Λ2) := {x ∈ F | x · Λ2 ⊆ Λ1} ⊆ F . Moreover, it
is possible to de�ne an action of the idèle group of F on the set {Λ ⊆ F : Λ lattice}, as we are
going to describe.

For a place w ∈ MF denote by Fw the completion of the number �eld F at w and by OFw its
ring of integers. Let AF be the adèle ring of F , de�ned by the restricted product

AF :=
∏′

w∈MF

Fw =

{
s = (sw )w∈MF ∈

∏
w∈MF

Fw

����� sw ∈ OFw for almost all w ∈ MF

}
.

The discussion on [26, Page 371] shows that the adèle ring of F can be obtained from the rational
adèle ring by extending scalars, i.e. there is a ring isomorphism AF � AQ ⊗Q F . This enables
us to talk, for a place p ∈ MQ, of the p-component sp ∈ Fp := Qp ⊗Q F of an adèle s ∈ AF ; in
particular if p = ∞ is the unique in�nite place ofQwe have the in�nity component s∞ ∈ R⊗Q F .
Hence s ∈ AF can be alternatively written as
(11) s = (sw )w∈MF or s = (sp)p∈MQ
and of course the same is true if s ∈ A×F belongs to the idèle group A×F . In what follows, we will
often confuse �nite places p ∈ M0

Q
and rational primes p ∈ N.

Now, for a lattice Λ ⊆ F and a prime p ∈ N, denote by Λp := Λ ⊗Z Zp the completion of the
lattice Λ at p. Given an idèle s = (sp)p∈MQ ∈ A×F there exists a unique lattice s · Λ ⊆ F with the
property that (s · Λ)p = sp · Λp for every prime p ∈ N. This de�nes an action of the idèle group
A×F on the set of lattices in F , given by (s,Λ) 7→ s ·Λ. We remark that the notation s ·Λ, although
evocative of a multiplication between an idèle and a lattice, is purely formal and should not be
confused with the notation Λ1 · Λ2 for the usual product of lattices. Nevertheless, it is easy to
see from the de�nitions that (s ·Λ1) ·Λ2 = s · (Λ1 ·Λ2) for every pair of lattices Λ1,Λ2 ⊆ F . Using
the action just described, it is also possible to de�ne a multiplication by s map F/Λ s ·−→ F/(s · Λ)
by means of the following commutative diagram

F

Λ

F

s · Λ

⊕
p∈M0

Q

Fp

Λp

⊕
p∈M0

Q

Fp

spΛp

s ·

∼ ∼

(sp · )p

where the vertical maps are the obvious isomorphisms induced by the inclusions F ↪→ Fp and
the bottom map is given by (xp)p 7→ (sp xp)p .

An essential ingredient in the proof of Theorem 4.3 is Theorem 4.1, which describes the action
of complex automorphisms on torsion points of a CM elliptic curve in terms of its analytic
parametrisation. The statement of the result involves the global Artin map and the notion of
Hecke character. The �rst one is de�ned for every number �eld F and is a surjective, continuous
group homomorphism [·, F ] : A×F � Gal(F ab/F ) such that F× · F×∞ ⊆ ker([·, F ]), where F× ⊆ A×F
via the diagonal inclusion and F×∞ :=

∏
w |∞ F×w is the product of the unit groups of all the

Archimedean completions of M (see [26, Chapter VI, § 5] and [2, Chapter IX]). Recall moreover
that an Hecke character on a number �eld F is a continuous group homomorphism

ψ : A×F → C×
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such thatψ (F×) = 1. Given a Hecke characterψ we denote by fψ ⊆ OF its conductor, as de�ned
in [14, Chapter 16, De�nition 5.7]. For every place w ∈ MF we denote by ψw : F×w → C× the
group homomorphismψw := ψ ◦ ιw , where ιw : F×w ↪→ A×F is the natural inclusion. Similarly, for
every rational prime p ∈ N we denote by ψp : F×p → C× the group homomorphism ψp := ψ ◦ ιp
where ιp : F×p ↪→ A×F is the analogous inclusion induced by the decomposition (11).

Theorem 4.1. Let F ⊆ C be a number �eld, E/F be an elliptic curve such that EndF (E) � O for
some order O inside an imaginary quadratic �eld K ⊆ F . Let K ⊆ M ⊆ F be a sub�eld such that
F (Etors) ⊆ Mab · F . Then there exist [Mab ∩ F : M] group homomorphisms α : A×M → K× ⊆ C×
such that:
• the map φ : A×M → C× de�ned as φ(s) := α(s) · NM/K (s)−1∞ is a Hecke character, where
NM/K : A×M → A×K is the idelic norm map described for example in [26, Chapter VI, § 2];
• for every lattice Λ ⊆ K ⊆ C, every analytic isomorphism ξ : C/Λ −→∼ E(C) and every
s ∈ M× · NF/M (A×F ) ⊆ A×M we have that (α(s) · NM/K (s)−1) · Λ = Λ and the following
diagram

K/Λ K/Λ

E(Mab · F ) E(Mab · F )

ξ

(α(s)·NM/K (s)−1)·

ξ

τ

commutes, where τ ∈ Gal(Mab ·F/F ) is the unique automorphism such that τ
��
Mab = [s,M].

Proof. Combine [32, Proposition 7.40] and [32, Proposition 7.41] when M = F and use [32,
Theorem 7.44] for the general case. Notice that, by class �eld theory, for every s ∈ M×·NF/M (A×F )
the restriction [s,M]

��
Mab∩F is trivial. This gives a unique τ ∈ Gal(Mab · F/F ) such that τ

��
Mab =

[s,M]. Moreover, �xing an embedding F ⊆ C automatically �xes an embedding Mab · F ⊆ C,
hence E(Mab · F ) ⊆ E(C), which gives a meaning to the vertical arrows in the diagram. �

Remark 4.2. If K ⊆ M ⊆ M′ ⊆ F and F (Etors) ⊆ Mab then M ⊆ F is abelian and Theorem 4.1
gives us [Mab∩ F : M] = [F : M] Hecke characters φ : A×M → C× and [(M′)ab∩ F : M′] = [F : M′]
Hecke characters φ̃ : A×M ′ → C×. We can observe that

[Mab ∩ F : M]
[(M′)ab ∩ F : M′]

=
[F : M]
[F : M′] = [M

′ : M] ∈ N

and that for every Hecke character φ̃ : A×M ′ → C× given by Theorem 4.1 there are exactly
[M′ : M]Hecke characters φ : A×M → C× such that φ̃ = φ ◦NM ′/M . If K = M and F = M′ then we
have a unique Hecke character φ̃ : A×F → C× which coincides with the usual Hecke character
associated to elliptic curves with complex multiplication, de�ned for example in [33, Chapter II,
§ 9] and [16, Chapter 10, Theorem 9].

We can now state the main theorem of this section, recalling that for every order O contained
in an imaginary quadratic �eld K and every ideal I ⊆ O we denote by HI ,O the ray class �eld
of K modulo I relative to the order O, as de�ned in Appendix A.

Theorem 4.3. Let F ⊆ C be a number �eld and let E/F be an elliptic curve such that EndF (E) � O
for some order O inside an imaginary quadratic �eld K ⊆ F . Suppose that F (Etors) ⊆ Kab. Let
H := HO the ring class �eld of O, and �x α : A×K → C× as in Theorem 4.1, with M = K . Then we
have that F (E[I ]) = F · HI ,O for every invertible ideal I ⊆ O such that I ⊆ fφ ∩ O, where fφ ⊆ OK
is the conductor of the Hecke character φ : A×K → C× de�ned by φ(s) := α(s) · s−1∞ .

Proof. The containment HI ,O ⊆ F (E[I ]) is given by Theorem A.7. Observe moreover that K ⊆ F
is an abelian extension, since F ⊆ F (Etors) ⊆ Kab by assumption. Hence to prove that F (E[I ]) ⊆
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F · HI ,O it is su�cient to show that every I -torsion point of E is �xed by [s,K], for any s ∈ A×K
such that [s,K]

��
HI,O
= Id. Moreover, it su�ces to consider only those s ∈ A×K such that s∞ = 1

and s ∈ UI ,O , where UI ,O ≤ A×K is the subgroup de�ned in (18). This follows from the fact that
[UI ,O,K] = Gal(Kab/HI ,O) and K×∞ ⊆ ker([·,K]) ∩UI ,O by De�nition A.1 and Lemma A.4.

Fix then s ∈ UI ,O with s∞ = 1. To study the action of [s,K] on E[I ], we �x an invertible ideal
a ⊆ O ⊆ C and a complex uniformisation ξ : C/a −→∼ E(C), which exists by [32, Proposition 4.8].
Take a torsion point P ∈ E[I ], and let z ∈ (a : I ) be any element such that ξ (z) = P , where
z ∈ (a : I )/a denotes the image of z in the quotient. Since s ∈ K× · NH/K (A×H ), we have that

P [s,K] = ξ (z)[s,K] = ξ
(
(α(s) s−1) · z

)
which follows from applying Theorem 4.1 with M = K . This can be applied because

s ∈ UI ,O ⊆ UO ⊆ K× ·UO = K× · NH/K (A×H )
where the last equality is given by Lemma A.4.

To conclude, it su�ces to show that s−1 · z = z and α(s) = 1. Notice that s−1 · a = a because
a ⊆ O is invertible and sp ∈ O×p for every rational prime p ∈ N. The equality s−1 · z = z then
follows from the fact that, for every prime p ∈ N, we have s−1p z − z ∈ ap because z ∈ (a : I ) and
s−1p ∈ 1 + I Op . To prove the equality α(s) = 1, notice that for every prime p ∈ N we have

1 + I Op ⊆
∏
w |p

w∈M0
K

(1 + fφ OKw )

since I ⊆ fφ ∩ O by assumption. This implies that φp(sp) = 1 for every prime p ∈ N. Indeed
sp ∈ 1 + I Op by the de�nition of UI ,O and for every w ∈ M0

K we have that φw (1 + fφ OKw ) = 1
because fφ is the conductor of φ. Since s∞ = 1 we get that α(s) = φ(s) = 1, as was to be
shown. �

Remark 4.4. Theorem 4.3 has been proved by Coates and Wiles (see [9, Lemma 3]) if O = OK
is a maximal order of class number one. Their result has been generalised in the PhD thesis of
Kuhman (see [15, Chapter II, Lemma 3]) to maximal orders O = OK , under the hypothesis that
F ⊆ HI ,OK .

Theorem 4.3 has a partial converse, as we show in the following proposition.

Proposition 4.5. Let O be an order in an imaginary quadratic �eld K and F ⊇ K be an abelian
extension. Let E/F be an elliptic curve with complex multiplication by the order O. Suppose that
there exists an invertible ideal I ⊆ O such that F (E[I ]) = F · HI ,O and I ∩ Z = NZ with N > 2 if
j(E) , 0 or N > 3 if j(E) = 0. Then F (Etors) = Kab.

Proof. It is su�cient to prove that F (Etors) ⊆ Kab, since the other inclusion follows from the
class �eld theory of imaginary quadratic �elds and the fact that K ⊆ F is abelian.

Fix an embedding K ↪→ C and let ξ : C/Λ −→∼ E(C) be a complex parametrization for E,
where Λ ⊆ K is a lattice. Take σ ∈ Aut(C/Kab). By [32, Theorem 5.4] with s = 1, there exists a
complex parametrization ξ ′ : C/Λ −→∼ E(C) such that the following diagram

E(C) E(C)

K/Λ

σ

ξ ξ ′
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commutes. This means that σ acts on Etors as an automorphism γ = ξ ′ ◦ ξ−1 ∈ Aut(E) � O×. In
particular, for any point P ∈ E[I ] we have
(12) γ (P) = σ (P) = P

since by assumption F (E[I ]) = F · HI ,O ⊆ Kab. Notice now that if j(E) , 0, 1728 we have
Aut(E) = {±1} and equality (12) can occur for γ = −1 only when I ∩ Z = 2Z. Similarly,
if j(E) = 1728 or j(E) = 0 one sees that a non-trivial element of Aut(E) can possibly �x only
points of E[2] or points of E[2]∪E[3], respectively. Our assumptions on I allow then to conclude
that γ must be the identity on E.

We have shown that every complex automorphism which �xes the maximal abelian exten-
sion of K �xes also the torsion points of E. We conclude that F (Etors) ⊆ Kab and this �nishes
the proof. �

As a consequence of Proposition 4.5 we deduce that, for an elliptic curve E with complex
multiplication by an order O in an imaginary quadratic �eld K which is de�ned over the ring
class �eld HO , the whole family of division �elds {HO(E[p∞])}p is linearly disjoint over HO as
soon as the extension K ⊆ HO(Etors) is not abelian.

Corollary 4.6. Let O be an order inside an imaginary quadratic �eldK , and let E/HO be an elliptic
curve with complex multiplication by O. Then we have that

|AutO(Etors) : Im(ρE)| =
{
|O× |, if K ⊆ HO(Etors) is abelian,
1, otherwise.

In particular, if HO(Etors) * Kab then all the Galois representations ρE,pn de�ned in Lemma 3.1 are
isomorphisms, and the family of division �elds {HO(E[p∞])}p is linearly disjoint over HO .

Proof. Suppose thatK ⊆ HO(Etors) is not abelian. SinceHO(Etors) ⊆ H ab
O this shows in particular

that K , HO and hence that j(E) < {0, 1728}. Then Proposition 4.5 shows that
HO(E[N ]) , HN ,O

for every N ∈ N with N ≥ 2. Since j(E) < {0, 1728} this implies that the Galois representation
ρE,N : Gal(HO(E[N ])/HO) → (O/NO)×

introduced in Lemma 3.1 is an isomorphism for every N ∈ Z≥1. Hence the family of division
�elds {HO(E[p∞])}p is linearly disjoint over HO and Im(ρE) = AutO(Etors).

Suppose now that K ⊆ HO(Etors) is abelian. Then Theorem 4.3 shows that there exists N ∈ N
such that for every M ∈ N with N | M we have that HO(E[M]) = HM,O . Combining this with
Theorem A.6 we get that [AutO(Etors) : Im(ρE)] ≥ |O× |. However, Theorem A.6 and Theo-
rem A.7 imply that [AutO(Etors) : Im(ρE)] ≤ |O× |, which allows us to conclude. �

Remark 4.7. The previous Corollary 4.6 generalises [20, Theorem 1.3], whose proof will appear
in the forthcoming work [18]. Indeed, if E/Q is an elliptic curve with complex multiplication by
an order O in an imaginary quadratic �eld K then we clearly have that K(Etors) ⊆ Kab, hence
Corollary 4.6 shows that the Galois representation ρE : Gal(K(Etors)/K) ↪→ Ô× is not surjective.
Let now ρ̃E : Gal(Q/Q) → Nδ ,ϕ be the Galois representation associated to the elliptic curve E

over Q, whereNδ ,ϕ ⊆ GL2(Ẑ) is the subgroup de�ned by Lozano-Robledo in [20, Theorem 1.1].
Then [20, Theorem 1.1.(2)] and Corollary 4.6 show that

[Nδ ,ϕ : Im(ρ̃E)] = [Ô× : Im(ρE)] = |O× |
hence we get that ρ̃E is not surjective. In particular, if j(E) = 1728 as in [20, Theorem 1.3] we
get that [Nδ ,ϕ : Im(ρ̃E)] = 4.
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We have seen that, for a CM elliptic curve E de�ned over an abelian extension F of the CM
�eld K , having a minimal division �eld is essentially equivalent to the property that torsion
points of E generate abelian extensions of K (and not only of F ). It seems then natural to ask
whether for a �xed order O in an imaginary quadratic �eld K there exists any elliptic curve E
with complex multiplication by O and de�ned over the ring class �eldHO (the smallest possible
�eld of de�nition for E) with the property that HO(Etors) = Kab. This question is discussed by
Shimura in [32, Page 217]. Here the author proves that, if O = OK is a maximal order whose
discriminant is a square mod 3, then there exists an elliptic curve E/HO such thatHO(Etors) = Kab.
The next theorem generalises this result to arbitrary imaginary quadratic orders.

Theorem 4.8. Let O be an order in an imaginary quadratic �eld K and let j ∈ HO be the j-
invariant of any elliptic curve with complex multiplication by O. Then there exist in�nitely many
elliptic curves E/HO with j(E) = j but non-isomorphic over HO , and such that HO(Etors) = Kab.

Proof. When O has class number 1 the statement is trivially true. We may then assume that
Pic(O) , {1}, and in particular that j , 0, 1728.

Let E0/HO be any elliptic curve with j(E) = j, and let p ∈ N be a prime satisfying
1 p ≡ 3 mod 4;
2 p does not divide fO · NHO/Q(fE0), where fO := |OK : O| denotes the conductor of the

order O and fE0 ⊆ OHO is the conductor ideal of the elliptic curve E0;
3 p splits completely in K .

There are in�nitely many such primes. Indeed, it clearly su�ces to show that there are in�nitely
many primes satisfying conditions 1 and 3 , which are equivalent to(

−4
p

)
= −1 and

(
∆K

p

)
= 1

respectively; here ∆K ∈ Z denotes the absolute discriminant of the imaginary quadratic �eld
K . The existence of an in�nity of primes such that the above conditions hold then follows from
Dirichlet’s theorem on primes in arithmetic progression (see [26, Chapter VII, Theorem 5.14]),
noticing that ∆K , −4,−8 by the assumption Pic(O) , {1}.

Let p ⊆ O be a prime ideal lying over p and note that p is invertible by condition 2 . We
de�ne a new elliptic curve Ep over HO as follows: consider the division �eld HO(E0[p]). By
Proposition 3.3 there is an isomorphism

Gal(HO(E0[p])/HO) � (O/pO)× � F×p
where the last isomorphism follows from the fact that p splits in K . In particular, the group
Gal(HO(E0[p])/HO) is cyclic of order p − 1, so HO ⊆ HO(E0[p]) contains unique sub-extensions
of degree (p − 1)/2 and of degree 2 over HO . The �rst one is necessarily the ray class �eld Hp,O
(see Theorem A.7), the second one is of the form HO(

√
α) for some element α = αp ∈ H×O . By

condition 1 , the integer p−1 is not divisible by 4, hence these two extensions must be linearly
disjoint over HO . We deduce that HO(E0[p]) = Hp,O(

√
α). We set Ep := E(α)0 , where E(α)0 denotes

the twist of E0 by α ∈ H×O .
By Proposition 5.1, which will be proved in the next section, the Galois representation

ρEp,p : Gal(HO(Ep[p])/HO) ↪→ (O/pO)×

is not surjective. This in particular implies that HO(Ep[p]) = Hp,O . It follows from Proposi-
tion 4.5 that HO((Ep) tors ) = Kab.

To conclude the proof, we want to show that the in�nitely many elliptic curves Ep with
p ⊆ O chosen as above, are pairwise non-isomorphic over HO . To do so, it su�ces to prove
that the �elds HO(

√
αp) associated to the quadratic twists are pairwise distinct. But this follows
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from Proposition 3.2 and Proposition 3.3, which show that the extension HO ⊆ HO(
√
αp) is

rami�ed at all primes of HO lying above p and unrami�ed at all primes of HO which do not
divide p · fEp · OHO , because HO(

√
αp) ⊆ HO(E0[p]). This �nishes the proof. �

We conclude this section by remarking that, under the assumption that Pic(O) , {1}, not all
CM elliptic curves E/HO with j(E) = j as in Theorem 4.8 have the property that HO(Etors) = Kab.
We prove this by detailing upon and generalising a remark of Shimura (see [32, Pages 217-218]).

Theorem 4.9. Let O be an order in an imaginary quadratic �eld K such that Pic(O) , {1}, and
�x j ∈ HO to be the j-invariant of any elliptic curve with complex multiplication by O. Then there
exist in�nitely many elliptic curves E/HO with j(E) = j but non-isomorphic overHO , and such that
HO(Etors) , Kab.

Proof. Fix an elliptic curve E0 de�ned over HO such that j(E0) = j and HO((E0)tors) = Kab. We
know that in�nitely many such elliptic curves E0 exist by Theorem 4.8. We observe now that
for every α ∈ H×O such that the extension K ⊆ HO(

√
α) is not abelian, we have that

HO((E(α)0 )tors) , Kab

where E(α)0 denotes the quadratic twist of E0 by α ∈ H×O . Indeed, Theorem 4.3 shows that
HO(E0[N ]) = HN ,O for some N ∈ N, and this combined with Proposition 5.1, which will be
proved in the next section, implies that HO(E(α)0 [N ]) = HN ,O(

√
α) * Kab.

In order to conclude the proof it is thus su�cient to show that there exist in�nitely many
α ∈ H×O such that

√
α < Kab and the elliptic curves E(α)0 are pairwise not isomorphic over HO .

This is equivalent to say that there exist in�nitely many distinct quadratic extensions of HO
which are not abelian over K . This can be shown, for instance, as follows.

Since Pic(O) , {1} we have that K , HO . Hence Chebotarëv’s density theorem shows that
there exists r ∈ Z≥2 and an in�nite set of prime ideals Λ0 = {pj ⊆ OK }j∈N such that for every
index j ∈ Nwe have that 2 < pj andpj ·OHO = P1,j · · ·Pr ,j whereP1,j , . . . ,Pr ,j ⊆ OHO are distinct
prime ideals. Fix now an index j0 ∈ N (e.g. j0 = 0), and take any element α0 ∈ P1,j0\(P2

1,j0∪P2,j0).
Now, elementary rami�cation theory of quadratic extensions (see for instance [13, Chapter I,
Theorem 6.3]) shows that the extension HO ⊆ HO(

√
α0) rami�es at P1,j0 but not at P2,j0 . This

implies that the extension K ⊆ HO(
√
α0) is not Galois, hence in particular not abelian. Now, let

Γ0 be the �nite set of prime ideals ofOK dividing NHO/K (α0) and putΛ1 := Λ0\Γ0, which is still an
in�nite set. Fix an index j1 ∈ N such that pj1 ∈ Λ1 and take any element α1 ∈ P1,j1 \(P2

1,j1∪P2,j1).
Again K ⊆ HO(

√
α1) is a non-abelian extension. Moreover we have that HO(

√
α0) , HO(

√
α1)

since the prime P1,j1 rami�es in the extension HO ⊆ HO(
√
α1), but the same prime does not

ramify in HO ⊆ HO(
√
α0). Repeating this process, we construct an in�nite set of pairwise

distinct quadratic extensions {HO ⊆ HO(
√
αj) : j ∈ N} that are non-abelian over K . This

concludes the proof. �

5. Entanglement in the family of division fields of CM elliptic curves over Q

Let E/Q be an elliptic curve with complex multiplication by an order in an imaginary qua-
dratic �eld K . The aim of this section is to explicitly determine the image of the natural map

(13) Gal(K(Etors)/K) ↪→
∏
q

Gal(K(E[q∞])/K)

where the product runs over all rational primes q ∈ N and K(E[q∞]) denotes the compositum
of the q-power division �elds of E/K . In other words, we want to analyse the entanglement
in the family of Galois extensions {K(E[q∞])}q over K . The conclusion of this study will be
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Theorem 5.5, which provides a complete description of the image of (13) for all CM elliptic
curves E/Q such that j(E) < {0, 1728}.

Observe that there is essentially no di�erence in considering the division �elds of the elliptic
curve E/Q and of its base change E/K , becauseQ(E[n]) = K(E[n]) for every n > 2 as explained in
Remark 3.8. In particular, the family of division �elds {Q(E[q∞])}q is always entangled over Q,
but there are elliptic curves for which it is linearly disjoint overK , as we will see in Theorem 5.5.

We brie�y outline the strategy of our proof: since E is de�ned overQwe have that |Pic(O)| =
[Q(j(E)) : Q] = 1 (see [11, Proposition 13.2]) which implies that the elliptic curve E has complex
multiplication by one of the thirteen imaginary quadratic orders O of class number 1, listed in
[11, Theorem 7.30]. For each of these orders O, we �rst �nd an elliptic curve E0/Q with complex
multiplication by O such that |fE0 | ∈ N is minimal among all the conductors1 of elliptic curves
de�ned over Q which have complex multiplication by O. We then proceed to compute the
full entanglement in the family of division �elds of E0/K , using Theorem 1.1, Theorem 4.3, and
Proposition 5.3. Since O is an order of class number 1 and j(E) < {0, 1728}, we have that E is a
quadratic twist of E0. We then use Proposition 5.1, which describes how Galois representations
attached to CM elliptic curves behave under quadratic twisting, to determine the complete
entanglement in the family of division �elds of E/K .

In order to state Proposition 5.1 we introduce the following notation: given an elliptic curve
E de�ned over a number �eld F and an element α ∈ F×, we denote by E(α) the twist of E by α ,
as described in [34, Chapter X, § 5]. We recall that two twists E(α) and E(α

′) are isomorphic over
F if and only if α and α ′ represent the same class in F×/(F×)2, i.e. if and only if F (

√
α) = F (

√
α ′).

Proposition 5.1. Let O be an order of discriminant ∆O < −4 in an imaginary quadratic �eld
K , and let HO be the ring class �eld of K relative to the order O. Consider an elliptic curve E/HO
with complex multiplication by O and �x α ∈ H×O . Then for every invertible ideal I ⊆ O the
surjectivity of the Galois representation ρE,I de�ned in Lemma 3.1 determines the surjectivity of
ρE(α ),I as follows:

1 if ρE,I is surjective, then ρE(α ),I is surjective if and only if

HO(E[I ]) , HI ,O(
√
α)

where HI ,O is the ray class �eld of K modulo I relative to O, de�ned in De�nition A.1;
2 if ρE,I is not surjective, then ρE(α ),I is surjective if and only if

HO(E[I ]) ∩ HO(
√
α) = HO .

Proof. First of all, observe that ρE,I (respectively ρE(α ),I ) has maximal image if and only if there
exists σ ∈ Gal(Q/HO) such that ρE,I (σ ) = −1 ∈ (O/I )× (respectively ρE(α ),I (σ ) = −1). Indeed,
HO(E[I ]) contains the ray class �eldHI ,O , which is generated overHO by the values of the Weber
function hE : E � E/Aut(E) � P1 at I -torsion points (see Theorem A.7). Since hE([ε](P)) = hE(P)
for every P ∈ E[I ] and ε ∈ {±1} = O× � Aut(E), we see that ρE,I induces the identi�cation
(14) Gal(HO(E[I ])/HI ,O) � Im(π×I ) ∩ Im(ρE,I ) = {±1} ∩ Im(ρE,I ) ⊆ (O/I )×

where π×I : O× → (O/I )× denotes the map induced by the quotient πI : O � O/I . Hence ρE,I is
surjective if and only if −1 ∈ Im(ρE,I ), and the same holds for ρE(α ),I . Moreover ρE(α ),I is linked
to ρE,I , after choosing compatible generators of E[I ] and E(α)[I ] as O/I -modules, by the formula
(15) ρE(α ),I = ρE,I · χα
where χα : Gal(Q/HO) → {±1} ⊆ (O/I )× is the quadratic character associated to HO(

√
α).

1The symbol |fA | ∈ N denotes the positive generator of the conductor ideal fA ⊆ Z of an elliptic curve A/Q
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To prove 1 suppose that ρE,I has maximal image. First, assume that HO(E[I ]) , HI ,O(
√
α).

Then, either HO(
√
α) ∩ HO(E[I ]) = HO or we have HO(

√
α) ⊆ HI ,O . In the �rst case, we can

certainly �nd σ ∈ Gal(Q/HO) acting trivially on HO(
√
α) and such that ρE,I (σ ) = −1. Hence we

can use (15) to see that ρE(α ),I (σ ) = ρE,I (σ ) · χα (σ ) = −1. This implies, by the initial discussion,
that ρE(α ),I has maximal image. In the second case, any σ ∈ Gal(Q/HO) with ρE,I (σ ) = −1 will
act trivially on HI ,O ⊇ HO(

√
α) by (14). As before, we can use (15) to conclude that ρE(α ),I has

maximal image.
Assume now that HO(E[I ]) = HI ,O(

√
α). This implies that the extensions HO ⊆ HO(

√
α) and

HO ⊆ HI ,O are linearly disjoint over HO , because ρE,I has maximal image. In particular

Gal(HO(E[I ])/HO) � Gal(HI ,O/HO) × Gal(HO(
√
α)/HO).

We deduce that any σ ∈ Gal(Q/HO) with ρE,I (σ ) = −1, being the identity on HI ,O by (14), must
act non-trivially on HO(

√
α). Then (15) gives

ρE(α ),I (σ ) = ρE,I (σ ) · χα (σ ) = 1

and this su�ces to see that ρE(α ),I is non-maximal. This concludes the proof of 1 .
The proof of 2 can be carried out in a similar fashion. First of all, notice that the non-

maximality of ρE,I and (14) imply that HI ,O = HO(E[I ]). Now, by (15) the only possibility for
ρE(α ),I to be surjective in this case is to �nd an automorphism σ ∈ Gal(Q/HO) with ρE,I (σ ) = 1
and χα (σ ) = −1, which is clearly impossible if HO(

√
α) ⊆ HO(E[I ]) = HI ,O . On the other hand,

if HO(E[I ]) ∩ HO(
√
α) = HO one can certainly �nd σ ∈ Gal(Q/HO) such that χα (σ ) = −1 and

ρE,I (σ ) = 1, which shows by (15) that ρE(α ),I has maximal image. �

Remark 5.2. Let E be an elliptic curve with complex multiplication by an imaginary quadratic
order O of discriminant ∆O , and suppose that E is de�ned over the ring class �eld HO . Fix a
rational prime p ∈ N such that p - 2∆O and p ≡ ±1 mod 9 if ∆O = −3. Then the recent work
[20] of Lozano-Robledo, and in particular [20, Theorem 4.4.(5)] and [20, Theorem 7.11], show
that for every α ∈ H×O and every n ∈ N, the Galois representation ρE,pn is surjective if and only
if ρE(α ),pn is surjective. If moreover ∆O < −4 then one can combine 1 of Proposition 5.1 with
Remark 3.6 to show that HO(E[pn]) , Hpn ,O(

√
α) for every α ∈ HO and every n ∈ Z≥1.

We want now to derive some consequences of Proposition 5.1 when Pic(O) = 1, α ∈ Q× and
the elliptic curve E/K is the base change to the imaginary quadratic �eld K = HO of an elliptic
curve de�ned over Q. To do this, we need a formula originally due to Deuring that relates the
conductor of a CM elliptic curve de�ned overQ to the conductor of the unique Hecke character
φ : A×K → C× associated to its base change over K by Theorem 4.1.

Proposition 5.3 (Deuring). LetO ⊆ K be an order inside an imaginary quadratic �eldK . Let E be
an elliptic curve de�ned over Q(j(E)) with complex multiplication by O. Denote by φ : A×HO → C

×

the unique Hecke character associated by Theorem 4.1 to the base change of E over K(j(E)) = HO .
Then, letting j = j(E), one can write the conductor fE ⊆ OQ(j) of E as

fE = NK(j)/Q(j)(fφ) · δK(j)/Q(j)
where NK(j)/Q(j)(fφ) ⊆ OQ(j) denotes the relative norm of the conductor fφ ⊆ OK(j) of the Hecke
characterφ and δK(j)/Q(j) ⊆ OQ(j) denotes the relative discriminant ideal associated to the quadratic
extension Q(j) ⊆ K(j).
Proof. A modern proof of this formula can be obtained using [24, Theorem 3] and [30, Theo-
rem 12]. This is detailed in [27, Appendix A]. �
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We go back to study the consequences of Proposition 5.1. Let E/K be the base change to an
imaginary quadratic �eldK = HO of an elliptic curve E/Q of conductor fE ⊆ Z and with complex
multiplication by an order O of class number one and discriminant ∆O < −4. Fix also α ∈ Q×.
Under these assumptions we may assume that α = ∆ where ∆ = ∆F ∈ Z is the fundamental
discriminant associated to some quadratic extension Q ⊆ F . Since E(αβ) = (E(α))(β) for any
α , β ∈ Q×, we reduce the study of the Galois representation ρE(∆),pn for any prime p ∈ Z≥1 and
any n ∈ N to the following cases:

T.1 ∆ = (−1)(q−1)/2 q for some primeq ∈ Z≥3 withq - p fE . In this caseK(
√
∆)∩K(E[pn]) = K .

Indeed any prime q ⊆ OK such that q | qOK does not ramify in K ⊆ K(E[pn]), as follows
from Proposition 3.2 because q - p fE . On the other hand, any prime q | qOK rami�es
in K ⊆ K(

√
∆) since Proposition 5.3 shows that q - ∆K , where ∆K ∈ Z<0 denotes the

absolute discriminant of the imaginary quadratic �eld K . Thus Proposition 5.1 implies
that ρE(∆),pn will have maximal image independently from the behaviour of ρE,pn ;

T.2 p ≥ 3 and ∆ = (−1)(p−1)/2 p. In this case class �eld theory shows that

Q(
√
∆) ⊆ Q(µp) ⊆ Hpn ,O

where for every m ∈ N we let µm ⊆ Q denote the group of m-th roots of unity. Hence
Proposition 5.1 implies that ρE(∆),pn has maximal image if and only if ρE,pn does;

T.3 ∆ ∈ {−4,−8, 8} and 2 - p fE . In this case K(
√
∆) ∩ K(E[pn]) = K , as in T.1 , hence

Proposition 5.1 shows that ρE(∆),pn will have maximal image independently from the
behaviour of ρE,pn ;

T.4 ∆ ∈ {−4,−8, 8} and p = 2. In this case Q(
√
∆) ⊆ Q(µ |∆|) ⊆ H |∆|,O by class �eld theory.

Hence Proposition 5.1 implies that for every n ∈ N such that 2n ≥ |∆| the representation
ρE(∆),2n has maximal image if and only if ρE,2n does, similarly to what we proved in T.2 .

Remark 5.4. The previous discussion shows in particular that, under suitable hypotheses on ∆,
if the Galois representation ρE,pn is surjective then ρE(∆),pn is surjective. This might not be the
case if these assumptions on ∆ are not satis�ed, as it follows from Theorem 5.5.

We are now ready to study the entanglement of division �elds of CM elliptic curves E de�ned
over Q such that j(E) < {0, 1728}.

First of all, assume that E has complex multiplication by an orderO with gcd(∆O, 6) = 1. Here
∆O := f2O ∆K denotes the discriminant of O, where ∆K ∈ Z denotes the absolute discriminant
of K and fO := [OK : O] denotes the conductor of O. Since Pic(O) = {1} we have that O = OK
and ∆O = ∆K = −p where p ∈ N is a prime number such that p ≥ 7 and p ≡ 3 mod 4 (see
[11, Theorem 7.30]). Moreover E = E(∆)0 for some fundamental discriminant ∆ ∈ Z, where E0 is
one of the two elliptic curves with j(E0) = j(E) appearing in Table 1, which lists the CM elliptic
curves de�ned over Q whose conductor |fE | ∈ N is minimal among their twists.

Let us study the division �elds of E0, as a �rst step towards the analysis of the division �elds
of E. Theorem 1.1 provides a decomposition

(16) Gal(K((E0)tors)/K) �
∏
q

Gal(K(E0[q∞])/K)

where the product runs over all the rational primesq ∈ N. Indeed in this case the set SE0 appear-
ing in Theorem 1.1 consists of the single primep because |fE0 | = p2 as follows from an inspection
of Table 1. The isomorphism (16) shows that the family of division �elds {K(E0[q∞])}q is lin-
early disjoint overK , where q ∈ N runs over all the rational primes. Proposition 3.3 implies also
that Gal(K(E0[qm])/K) � (O/qmO)× for every prime q , p and everym ∈ N. On the other hand
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∆K fO j(E) |fE | Equations

−3 1 0 33 y2 + y = x3 − 7
y2 + y = x3

2 24 33 53 2232 y2 = x3 − 15x + 22
y2 = x3 − 135x − 594

3 −215 3 53 33 y2 + y = x3 − 30x + 63
y2 + y = x3 − 270x − 1708

-4 1 26 33 25 y2 = x3 − x
y2 = x3 + 4x

2 23 33 113 25 y2 = x3 − 11x − 14
y2 = x3 − 11x + 14

-7 1 −33 53 72 y2 + xy = x3 − x2 − 2x − 1
y2 + xy = x3 − x2 − 107x + 552

2 33 53 173 72 y2 + xy = x3 − x2 − 37x − 78
y2 + xy = x3 − x2 − 1822x + 30393

-8 1 26 53 28
y2 = x3 − x2 − 3x − 1
y2 = x3 + x2 − 3x + 1
y2 = x3 − x2 − 13x + 21
y2 = x3 + x2 − 13x − 21

-11 1 −215 112 y2 + y = x3 − x2 − 7x + 10
y2 + y = x3 − x2 − 887x − 10143

-19 1 −215 33 192 y2 + y = x3 − 38x + 90
y2 + y = x3 − 13718x − 619025

-43 1 −218 33 53 432 y2 + y = x3 − 860x + 9707
y2 + y = x3 − 1590140x − 771794326

-67 1 −215 33 53 113 672 y2 + y = x3 − 7370x + 243528
y2 + y = x3 − 33083930x − 73244287055

-163 1 −218 33 53 233 293 1632 y2 + y = x3 − 2174420x + 1234136692
y2 + y = x3 − 57772164980x − 5344733777551611

Table 1. Minimal Weierstrass equations of CM elliptic curves de�ned over Q
having the smallest conductor |fE | amongst all their twists, where |fE | ∈ N de-
notes the unique positive generator of the conductor ideal fE ⊆ Z.

we have that Gal(K(E0[pm])/K) � (O/pmO)×/{±1} for every m ∈ N. Indeed, it follows from
Proposition 5.3 that fφ0 = p, where p ⊆ O is the unique prime lying above p and φ0 : A×K → C×
is the unique Hecke character associated to E0 by Theorem 4.1. Hence Theorem 4.3 shows
that K(E0[pm]) = Hpm ,O for every m ∈ N, where Hpm ,O is the ray class �eld of K modulo pm

because O = OK . Hence we can conclude that Gal(K(E0[pm])/K) � (O/pmO)×/{±1} using
Theorem A.6.

Let us now go back to the division �elds of E = E(∆)0 . We can assume that p - ∆ because
otherwise ∆ = −p ∆′ for some fundamental discriminant ∆′ ∈ Z, hence E �K E(∆

′)
0 since √−p ∈

K . Here the symbol �K means that the two elliptic curves E and E(∆
′)

0 , which are de�ned over
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Q, become isomorphic when base-changed to K . Observe that |fE | = (p ∆)2, which follows from
(15) and [40, § 10, Proposition 1] because |fE0 | is coprime with ∆. Now, Theorem 1.1 gives

Gal(K(Etors)/K) �
©­«
∏
q<S

Gal(K(E[q∞])/K)ª®¬ × Gal(K(E[S∞])/K)
with the product running over the rational primes q ∈ N such that q < S , where in this case
the �nite set S = SE ⊆ N appearing in Theorem 1.1 consists uniquely of the primes dividing
|fE | = (p ∆)2. Moreover, Gal(K(E[`m])/K) � (O/`mO)× for every prime ` ∈ N and everym ∈ N,
since T.1 and T.3 show that for every m ∈ N the Galois representation ρE,`m has maximal
image. On the other hand, Proposition 5.1 shows that K(E[pm]) = Hpm ,O(

√
∆) and

K(E[pm]) ∩ K(E[∆]) = K(
√
∆)

for every m ∈ Z≥1. Hence the family of division �elds {K(E[q∞])}q∈S is entangled over K , and
for every collection of integers {aq}q∈S ⊆ Z≥1 we get

Gal(L/K) �
∏

q∈S (O/qaqO)×

{±1}
where L is the compositum of all the division �elds K(E[qaq ]) for q ∈ S .

Let us now consider orders O such that gcd(∆O, 6) , 1. The analysis of the division �elds of
an elliptic curve E/Q having complex multiplication by O proceeds similarly to what happened
before, with the only exception of the order O = Z[

√
−3]. Indeed if

O ∈ {Z[3ζ3],Z[2i],Z[
√
−2],Z[

√
−7]}

where ζ3 := (−1 +
√
−3)/2 and i :=

√
−1, then all the elliptic curves E0 appearing in Table 1

with complex multiplication by O share the property that |fE0 | is a power of the unique rational
prime p ∈ N which rami�es in the quadratic extension Q ⊆ K . Hence Theorem 1.1 provides a
decomposition

Gal(K((E0)tors)/K) �
∏
q

Gal(K(E0[q∞])/K)

where the product runs over all rational primes q ∈ N, because in this case the �nite set SE0 ⊆ N
appearing in Theorem 1.1 consists of the single prime p. This shows that the division �elds of
E0 are linearly disjoint over K . Moreover, Proposition 3.3 implies that Gal(K(E0[qm])/K) �
(O/qmO)× for every rational prime q , p and everym ∈ N. On the other hand, Proposition 5.3
shows that fφ0 = pk is a power of the unique prime ideal p ⊆ OK lying over p, with k ≤
2 if O < {Z[2i],Z[

√
−2]} and k ≤ 6 otherwise. Hence Theorem 4.3 and Theorem A.6 give

Gal(K(E0[pm])/K) � (O/pm)×/{±1} for every m ∈ N such that m ≥ 1 if O < {Z[2i],Z[
√
−2]}

andm ≥ 3 otherwise.
Let now E/Q be any elliptic curve with complex multiplication by O. Since j(E) = j(E0) <
{0, 1728} we know that E = E(∆)0 for some fundamental discriminant ∆ ∈ Z. If O = Z[3ζ3] or
O = Z[

√
−7] we can assume that p - ∆ because √−p ∈ K . Hence Theorem 1.1 shows that

Gal(K(Etors)/K) �
©­«
∏
q<S

Gal(K(E[q∞])/K)ª®¬ × Gal(K(E[S∞])/K)
with the product running over the rational primes q ∈ N such that q < S , where in this case
the �nite set S = SE ⊆ N appearing in Theorem 1.1 consists uniquely of the primes dividing
|fE | = (p ∆)2. Exactly as before T.1 and T.3 show that Gal(K(E[`m])/K) � (O/`mO)× for every
prime ` ∈ N and every m ∈ N. Moreover, Proposition 5.1 shows that K(E[pm]) = Hpm ,O(

√
∆)
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and K(E[pm]) ∩ K(E[∆]) = K(
√
∆) for every m ∈ Z≥1. Hence the family of division �elds

{K(E[q∞])}q∈S is entangled over K , and for every collection of integers {aq}q∈S ⊆ Z≥1 we get

Gal(L/K) �
∏

q∈S (O/qaqO)×

{±1}
where L is the compositum of all the division �elds K(E[qaq ]) for q ∈ S .

Studying the entanglement in the family of division �elds of E becomes slightly more com-
plicated if O ∈ {Z[2i],Z[

√
−2]}. First of all, note that there exists a unique ∆2 ∈ {1,−4,−8, 8}

such that ∆ = ∆2 ∆
′ where ∆′ ∈ Z is an odd fundamental discriminant. We can now write

E = E(∆
′)

1 where E1 := E(∆2)
0 . One can check that if O = Z[

√
−2] then E1 is isomorphic to one

of the four elliptic curves with complex multiplication by Z[
√
−2] appearing in Table 1. On the

other hand, if O = Z[2i] then E1 can be either one of the two elliptic curves
y2 = x3 − 44x − 112
y2 = x3 − 44x + 112

or one of the two elliptic curves with complex multiplication by Z[2i] appearing in Table 1. In
each case it is not di�cult to see that |fE1 | ∈ N is a power of 2, which shows that the division
�elds of E1 behave similarly to the division �elds of E0. More precisely, Theorem 1.1 gives

Gal(K((E1)tors)/K) �
∏
q

Gal(K(E1[q∞])/K)

where the product runs over all the rational primes q ∈ N. This shows that the division �elds
of E1 are linearly disjoint over K . Moreover, Proposition 3.3 shows that Gal(K(E1[qm])/K) �
(O/qmO)× for every rational primeq ≥ 3 and everym ∈ N, and a combination of Proposition 5.3
and Theorem 4.3 gives Gal(K(E1[2m])/K) � (O/2mO)×/{±1} for everym ∈ N such thatm ≥ 3.
This concludes the analysis of the division �elds of E = E1 if ∆′ = 1. On the other hand, if
∆′ , 1 then |fE | = |fE1 | (∆′)2 where |fE1 | is a power of 2. Hence Theorem 1.1 shows that

Gal(K(Etors)/K) �
©­«
∏
q<S

Gal(K(E[q∞])/K)ª®¬ × Gal(K(E[S∞])/K)
with the product running over the rational primes q ∈ N such that q < S where S = SE denotes
the �nite set appearing in Theorem 1.1, which in this case consists of the primes dividing 2 ·∆′.
Similarly to what happened before, T.1 and T.4 show that Gal(K(E[`m])/K) � (O/`mO)× for
every prime ` ∈ N and every m ∈ N. Moreover, Proposition 5.1 gives K(E[2m]) = H2m ,O(

√
∆′)

and K(E[2m]) ∩ K(E[∆′]) = K(
√
∆′) for every m ≥ 3. Hence the family of division �elds

{K(E[q∞])}q∈S is entangled over K , and for all {aq}q∈S ⊆ Z≥1 with a2 ≥ 3 we get

Gal(L/K) �
∏

q∈S (O/qaqO)×

{±1}
where L is the compositum of all the division �elds K(E[qaq ]) for q ∈ S .

We are left with the analysis of the entanglement between the division �elds of an elliptic
curve E de�ned overQwhich has complex multiplication by O = Z[

√
−3]. As usual E = E(∆)0 for

some fundamental discriminant ∆ ∈ Z, where E0 is one of the two elliptic curves with complex
multiplication by Z[

√
−3] appearing in Table 1. In contrast to what we have seen before, here

|fE0 | = 22 32 is not a prime power. This forces us to study separately the division �eldsK(E0[2∞])
andK(E0[3∞]). First of all, one can compute that for any of the two possibilities for E0, given by
the Weierstrass equations y2 = x3 − 15x + 22 and y2 = x3 − 135x − 594, the representation ρE0,3
is not surjective, i.e. K(E0[3]) = H3,O = K( 3√2). This clearly shows that ρE0,3n is not surjective
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for every n ∈ Z≥1. Moreover, ρE0,2n is surjective for every n ∈ Z≥1. Indeed Theorem A.6 and
Theorem A.7 imply that����( O2nO )×���� = [H2n 3,O : K]

[H3,O : K]
=
[H2n 3,O : K]
[K(E0[3]) : K]

≤ [K(E0[2
n 3]) : K]

[K(E0[3]) : K]
≤ [K(E0[2n]) : K]

hence Lemma 3.1 shows that every inequality is actually an equality, and ρE0,2n is surjective.
This gives that K(E0[2n]) ∩K(E0[3m]) = K for every n,m ∈ Z≥1. These considerations together
with Theorem 1.1 and Proposition 3.3 give a decomposition

Gal(K((E0)tors)/K) �
∏
q

Gal(K(E0[q∞])/K)

where the product runs over all rational primes q ∈ N. Moreover, for everym ∈ N we get

Gal(K(E0[qm])/K) �
{
(O/qmO)×, if q , 3
(O/3mO)×/{±1}, if q = 3

and the family of division �elds {K(E[q∞])}q is linearly disjoint over K .
Let us go back to the division �elds of E = E(∆)0 , where we can assume that 3 - ∆ because√
−3 ∈ K . Write now ∆ = ∆2 ∆

′ as above, where ∆2 ∈ {1,−4,−8, 8} and ∆′ ∈ Z an odd
fundamental discriminant, and let E1 := E(∆2)

0 . Then T.4 shows that ρE1,2n is surjective for
every n ≥ 3. Moreover, ρE1,3n is surjective for every n ≥ 1, which follows from Proposition 5.1
after observing that K(E0[3]) ∩ K(

√
∆2) = K because [K(E0[3]) : K] = 3. These considerations,

together with Theorem 1.1, show that

Gal(K((E1)tors)/K) �
©­«
∏
q<S

Gal(K(E1[q∞])/K)
ª®¬ × Gal(K(E1[S∞])/K)

with the product running over the rational primes q ∈ N such that q < S where S = {2, 3} and
K(E1[S∞]) denotes the compositum of the division �elds K(E1[2∞]) and K(E1[3∞]). Moreover,
T.1 , T.2 and the previous considerations show that Gal(K(E1[`m])/K) � (O/`mO)× for every

prime ` ∈ N and everym ∈ N. Now, Proposition 5.1 shows thatK(E1[3m])∩K(E1[∆2]) = K(
√
∆2)

and K(E1[3m]) = H3m ,O(
√
∆2) for everym ∈ Z≥1. Hence K(E1[2∞]) and K(E1[3∞]) are entangled

over K , and for every pair of integers a,b ∈ Z≥1 we have that

Gal(L/K) � (O/2
aO)× × (O/3bO)×
{±1}

where L denotes the compositum of K(E1[2a]) and K(E1[3b]).
To conclude our analysis of the division �elds of E = E(∆)0 we can observe that E = E(∆

′)
1 and

that gcd(∆′, fE1) = gcd(∆′, 6) = 1. Hence Theorem 1.1 gives the decomposition

Gal(K(Etors)/K) �
©­«
∏
q<S

Gal(K(E[q∞])/K)ª®¬ × Gal(K(E[S∞])/K)
with the product running over the rational primes q ∈ N such that q < S where S ⊆ N de-
notes the �nite set of primes dividing 6∆′. Now, T.1 and T.2 show that Gal(K(E[`m])/K) �
(O/`m)× for all rational primes ` ∈ Z and all m ∈ N. Moreover, Proposition 5.1 shows that
K(E[3m]) ∩ K(E[∆]) = K(

√
∆) and K(E[3m]) = H3m ,O(

√
∆) for every m ∈ Z≥1. Hence the family

{K(E[q∞])}q∈S is entangled over K , and for every collection of integers {aq}q∈S ⊆ Z≥1 we get

Gal(L/K) �
∏

q∈S (O/qaqO)×

{±1}
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where L is the compositum of all the division �elds K(E[qaq ]) for q ∈ S .
The following theorem summarises the previous discussion. Recall that, for every rational

prime q ∈ N, we denote by K(E[q∞]) the compositum of all the division �elds {K(E[qn])}n∈N
associated to an elliptic curve E, and for every �nite set of primes S ⊆ Nwe denote byK(E[S∞])
the compositum of all the �elds {K(E[q∞])}q∈S .

Theorem 5.5. Let O be an order inside an imaginary quadratic �eld K such that Pic(O) = 1 and
∆O < −4. We introduce the following notation:

n = n(O) :=
{
4, if O ∈ {Z[2i],Z[

√
−2]}

2, otherwise
and

p ∈ N the unique prime ramifying in Q ⊆ K ,

p ⊆ OK the unique prime lying above p.

Label all the elliptic curves de�ned over Q which have complex multiplication by O as {Ar }r∈Z≥1
in such a way that |fAr | ≤ |fAr+1 | for every r ∈ Z≥1. Then |fAn | < |fAn+1 | and the properties of the
division �elds associated to the elliptic curve Ar depend on r as follows:

r ≤ n Disjointness: the family {K(Ar [q∞])}q , where q ∈ N runs over all the rational primes,
is linearly disjoint over K ;
Maximality: Gal(K(Ar [qm])/K) � (O/qmO)× for every prime q , p and everym ∈ N;
Minimality: Gal(K(Ar [pm])/K) � (O/pmO)×/{±1} for everym ≥ n − 1;

r > n Twist: there exists a unique r0 ≤ n and a unique fundamental discriminant ∆r ∈ Z
coprime with p such that Ar = A(∆r )r0 ;
Disjointess: there is a decomposition

Gal(K((Ar )tors)/K) �
©­«
∏
q<Sr

Gal(K(Ar [q∞])/K)
ª®¬ × Gal(K(Ar [S∞])/K)

where Sr ⊆ N denotes the �nite set of primes dividing p · ∆r and the product runs over
the rational primes q ∈ N such that q < Sr . This shows that the family

{K(Ar [S∞r ]) } ∪ {K(Ar [q∞]) }q<Sr
is linearly disjoint over K ;
Entanglement: for everym ∈ N such thatm ≥ n − 1 we have that

K(Ar [pm]) = Hpm ,O(
√
∆r ) and K(Ar [pm]) ∩ K(Ar [∆r ]) = K(

√
∆r )

which shows that the family {K(Ar [q∞])}q∈Sr is entangled over K ;
Maximality: Gal(K(Ar [qm])/K) � (O/qmO)× for every prime q ∈ N and everym ∈ N;
Minimality: for every collection of integers {aq}q∈Sr ⊆ Z≥1 with ap ≥ n − 1 we get

Gal(L/K) �
∏

q∈Sr (O/qaqO)
×

{±1}
where L is the compositum of all the division �elds K(Ar [qaq ]) for q ∈ Sr .

Remark 5.6. Fix an imaginary quadratic order O having trivial class group Pic(O) = {1}, con-
ductor fO , 2 and discriminant ∆O < −4. Let n = n(O) ∈ {2, 4} be as in Theorem 5.5. We
observe that, for every r > n, the set Sr appearing in Theorem 5.5 coincides with the set of
primes S = {p : p | bAr } appearing in Theorem 1.1. This shows that, even �xing the �eld of def-
inition, the number of entangled division �elds of an elliptic curve with complex multiplication
can be arbitrary large, as we already pointed out in Remark 3.7.
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Remark 5.7. We exclude the two orders Z[i] and Z[ζ3] in the statement of Theorem 5.5 because
elliptic curves having complex multiplication by these orders admit quartic (respectively sex-
tic) twists (as explained in [34, Chapter X, Proposition 5.4]). To study these we would need a
generalisation of Proposition 5.1, which will be subject of future investigations.

Appendix A. Ray class fields for orders

The aim of this appendix is to study certain abelian extensions HI ,O of a number �eld F
associated to ideals I ⊆ O contained in a general order O ⊆ F . We call the extension HI ,O the
ray class �eld modulo I for the order O. This de�nition generalises the one given by Söhngen
in [37] and Stevenhagen in [38, § 4], who restrict their attention to imaginary quadratic �elds.
The material present in this appendix is probably well known to the experts, but the authors
have included it here since they have been unable to �nd a suitable reference.

A.1. The general theory. In this section we de�ne the ray class �eldsHI ,O and we study their
Galois groups. The notation used for lattices and idèles is the one established in Section 4.

De�nition A.1. Let F be a number �eld, let O ⊆ OF be an order and let I ⊆ O be a non-zero
ideal. Then we de�ne the ray class �eld of F modulo I relative to the order O as

(17) HI ,O := (F ab)[UI,O ,F ] ⊆ F ab

where [·, F ] : A×F → Gal(F ab/F ) is the global Artin map and UI ,O ⊆ A×F is the subgroup

(18) UI ,O :=
{
s ∈ A×F

��� sp ∈ (
O×p ∩ (1 + I · Op)

)
for all rational primes p ∈ N

}
de�ned using the decomposition (11), where

(19) Op := lim←−−
n∈N

O
pnO � O ⊗Z Zp

denotes the completion of O with respect to the ideal p O.

When I = N · O for some N ∈ Z≥1 we denote UI ,O by UN ,O , and we write UO := U1,O .
Analogously, we will write HN ,O in place of HN ·O,O , and we will denote by HO := H1,O the ring
class �eld of O.

Remark A.2. When O = OF is the ring of integers, the ray class �elds HI ,OF coincide with the
usual ray class �elds of F modulo I (see [26, Chapter VI, De�nition 6.2]). Moreover, when F = K
is an imaginary quadratic �eld, the ray class �elds HI ,O have been de�ned by Söhngen in [37].
This work is exposed in great detail by Schertz in [28, §3.3], and if I = N · O for some N ∈ N the
construction of HI ,O = HN ,O has been reformulated using an adelic language by Stevenhagen
in [38, § 4]. Finally, the ring class �elds HO have been studied for general number �elds F by
Lv and Deng in [23] and by Yi and Lv in [42].

Remark A.3. It is clear from the de�nition that for every pair of ideals I ⊆ J ⊆ O we have
that UI ,O ⊆ UJ ,O , which implies that HI ,O ⊇ H J ,O . In particular, HO ⊆ HI ,O for every ideal
I ⊆ O. Similarly, for every pair of orders O1 ⊆ O2 ⊆ F and every ideal I ⊆ O1 we have that
UI ,O1 ⊆ UI ·O2,O2 , which gives the containment HI ,O1 ⊇ HI ·O2,O2 generalising the Anordnungssatz
explained in [38, Page 169]. In particular for every order O ⊆ F and every ideal I ⊆ O we get
the following inclusions

HI ·OF ,OF HI ,O HI ·fO ·OF ,OF

F HOF HO HfO ,OF

⊆ ⊆

⊆

⊆

⊆ ⊆

⊆ ⊆
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where fO := (O : OF ) = {α ∈ F | αOF ⊆ O} ⊆ O is the conductor ofO, which is the biggest ideal
of OF contained in O. This shows, applying [26, Chapter VI, Corollary 6.6], that the extension
F ⊆ HI ,O is unrami�ed outside the set of primes dividing I · fO · OF .

We describe now the Galois groups of the abelian extensions F ⊆ HI ,O .

Lemma A.4. Let F be a number �eld, O ⊆ OF be an order and I ⊆ O be a non-zero ideal. Then
F× ·UI ,O ⊆ A×F is a closed subgroup of �nite index and, after identifying the group

F×∞ := (F ⊗Q R)× �
∏
v∈M∞F

F×v

with its image under the natural inclusion F×∞ ↪→ A×F , one has
F× · F×∞ ⊆ ker([·, F ]) ⊆ F× ·UI ,O = F× · NHI,O/F (A

×
HI,O
)

where NHI,O/F : A
×
HI,O
→ A×F denotes the idelic norm map. Moreover, there is an isomorphism

(20) Gal(HI ,O/F ) �
A×F

F× ·UI ,O
induced by the global Artin map.

Proof. The fact that F× · UI ,O is closed of �nite index follows from [26, Chapter VI, Proposi-
tion 1.8], because UI ·fO ·OF ,OF ⊆ UI ,O . Moreover, by de�nition F×∞ ⊆ UI ,O , so the inclusions
F× · F×∞ ⊆ ker([·, F ]) ⊆ F× ·UI ,O follow from the fact that F× ·UI ,O is closed in A×F and ker([·, F ])
is the closure of F× · F×∞ inside A×F , as explained in [2, Chapter IX]. The global reciprocity law
[26, Chapter VI, Theorem 6.1] now gives (20) and shows that F× · NHI,O/F (A×HI,O

) ⊆ A×F is also
a closed subgroup of �nite index containing the kernel of the Artin map and �xing precisely
the �eld HI ,O . Then by Galois theory we must have F× · UI ,O = F× · NHI,O/F (A×HI,O

) and this
concludes the proof. �

The previous description can be made more explicit by dividing the extension F ⊆ HI ,O in
the two sub-extensions F ⊆ HO and HO ⊆ HI ,O .

Proposition A.5. Let O be an order inside a number �eld F . Then

Gal(HO/F ) � Pic(O)
where Pic(O) denotes the class group of the order O.
Proof. Combine [42, Theorem and De�nition 2.11] and [42, Theorem 4.2]. �

Theorem A.6. Let F be a number �eld, O ⊆ OF be an order and I ⊆ O be a non-zero ideal. Then

Gal(HI ,O/HO) �
(O/I )×
π×I (O×)

where π×I : O× → (O/I )× is the map induced by the projection πI : O � O/I .
Proof. First of all, we see that

Gal(HI ,O/HO) = ker
(
Gal(HI ,O/F )� Gal(HO/F )

) (a)
� ker

(
A×F

F× ·UI ,O
�

A×F
F× ·UO

)
�

�
F× ·UO
F× ·UI ,O

�
F× ·UO/F×
F× ·UI ,O/F×

(b)
�

UO/(F× ∩UO)
(UI ,O · (F× ∩UO))/(F× ∩UO)

�

�
UO

UI ,O · (F× ∩UO)
(c)
=

UO
UI ,O · O×
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where (a) comes from Lemma A.4, (b) holds because UI ,O ⊆ UO and (c) follows from the fact
that F× ∩UO = O×.

Now, observe that F×∞ ⊆ O, where F∞ := F ⊗Q R �
∏

w |∞ Fw ↪→ A×F . Moreover, we have

(21)
UO
F×∞

�
∏
p∈N
O×p �

∏
p∈N

lim←−−
n∈N

(
O

pnO

)×
� lim←−−

N∈Z≥1

(
O
NO

)×
� Ô×

where the products run over the rational primes p ∈ N, and Op is the ring de�ned in (19). In
the chain of isomorphisms (21) the ring Ô is the pro�nite completion of O, i.e.

(22) Ô := lim←−−
N∈Z≥1

O
NO �

∏
p∈N
Op �

∏
p⊆O
Op

where the second product runs over all the non-zero prime ideals p ⊆ O and Op := lim←−−n∈N O/p
n

is the completion ofO at the primep. The second isomorphism appearing in (22) can be obtained
by applying [12, Corollary 7.6] to R = Zp and A = Op . This gives the decomposition

Op �
∏
p⊇p
Op

where the product runs over all primes p ⊆ O lying above p.
Under the isomorphism (21) the subgroup UI ,O/F×∞ ⊆ UO/F×∞ � Ô× is identi�ed with the

kernel of the map π̂I× : Ô× → (Ô/I Ô)× induced by the projection π̂I : Ô � Ô/I Ô. Hence

Gal(HI ,O/HO) �
UO

UI ,O · O×
�

UO/F×∞
(UI ,O · O×)/F∞×

�
Ô×

ker(π̂I×) · O×
�
(Ô/I Ô)×

π̂I
×(O×)

because π̂I× is surjective. This surjectivity is shown by the factorisation

Ô×
(
Ô/I Ô

)×
∏
p⊇I
O×p

π̂I
×

where the �rst map Ô× � ∏
p⊇I O×p is surjective as follows from (22), and the second map∏
p⊇I
O×p �

∏
p⊇I

( Op
IOp

)×
�

(
Ô
I Ô

)×
is surjective by [8, Corollary 2.3], which can be applied since the ring

∏
p⊇I Op has �nitely many

maximal ideals.
To �nish our proof we need to show that

(Ô/I Ô)×

π̂I
×(O×)

�
(O/I )×
π×I (O×)

.
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To do this recall that πI and π̂I are related by the commutative diagram

O O/I ∏
p⊇I

O(p)
IO(p)

Ô Ô/I Ô ∏
p⊇I

Op
IOp

πI γ

β

π̂I α
∼

where α is the isomorphism coming from the decomposition (22), and β and γ are the maps
induced by the natural inclusions O ⊆ O(p) ⊆ Op. Moreover the products run over all the
prime ideals p ⊆ O such that p ⊇ I , and O(p) denotes the localisation of O at the prime p.

Hence to conclude it is su�cient to observe that γ is an isomorphism by [26, Chapter I,
Proposition 12.3], and β is an isomorphism because O is a one-dimensional Noetherian domain
(see [26, Chapter I, Proposition 12.2]). More explicitly, for any prime p ⊆ O such that p ⊇ I we
have that p · O(p) =

√
I · O(p) because O(p) is a one-dimensional local ring. Hence [3, Chapter II,

§ 2.6, Proposition 15] shows that O(p)/IO(p) is complete with respect to pO(p). Thus we can
conclude that O(p)/IO(p) is isomorphic to Op/IOp using the exactness of completion, which
holds because O(p) is Noetherian (see [12, Lemma 7.15]). �

A.2. Ray class �elds for imaginary quadratic orders. Since the de�nition of the ray class
�elds HI ,O is somehow implicit, a natural question would be to provide an explicit set of gen-
erators for the extension F ⊆ HI ,O . This can be done when F = K is an imaginary quadratic
�eld, and I ⊆ O is invertible, using the Weber function hE : E � E/Aut(E) � P1 associated to
any elliptic curve E/C which has complex multiplication by O, as explained in the following
theorem.

Theorem A.7. Let O be an order inside an imaginary quadratic �eld K ⊆ C, and let I ⊆ O be
an invertible ideal. Then we have that

HI ,O = HO(hE(E[I ])) = K(j(E), hE(E[I ]))
for any elliptic curve E/C such that End(E) � O. In particular, if E is an elliptic curve de�ned over
a number �eld F such that EndF (E) � O then HI ,O ⊆ F (E[I ]).
Proof. By the previous discussion, we can assume that j(E) < {0, 1728}, because in this case O =
OK . Fix a generator P of E[I ] as a module over O/I , which exists by Lemma 3.1 because I ⊆ O
is invertible. Then HO(hE(E[I ])) = HO(hE(P)), as one can see by writing every endomorphism
of E in the standard form described in [41, § 2.9] and applying [16, Chapter I, Theorem 7].

Let now ξ : C/a −→∼ E(C) be a complex parametrisation, where a ⊆ O is an invertible ideal
(see [32, Proposition 4.8]). Fix moreover z ∈ (a : I ) ⊆ K ⊆ C such that ξ (z) = P , where z := az/a
denotes the image of z in the quotient K/a ⊆ C/a. Then [32, Theorem 5.5] shows that

HO(hE(P)) = (Kab)[WP ,K]

whereWP ⊆ A×K is the subgroup de�ned byWP :=
{
s ∈ A×K

�� s · a = a, s · z = z
}
. In particular,

we recall that for any s ∈ A×K such that s ·a = a the notation s ·z stands for the image of z ∈ K/a
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under the map K/a −→s · K/a. This map is de�ned by the commutative diagram

K

a

K

s · a
K

a

⊕
p∈M0

Q

Kp

ap

⊕
p∈M0

Q

Kp

spap

⊕
p∈M0

Q

Kp

ap

s ·

∼ ∼

=

∼

(sp · )p
=

where ap := a ⊗Z Zp = a Op for any rational prime p ∈ N. Since HO = K(j(E)) the theorem will
follow from the equalityWP = UI ,O , where UI ,O ⊆ A×K is the subgroup de�ned in (18).

To prove the inclusion UI ,O ⊆ WP take any s ∈ UI ,O . Then s · a = a because spap = ap for
every rational prime p ∈ N, since by de�nition sp ∈ O×p . Moreover, s · z = z because z ∈ (a : I )
and sp ∈ 1 + IOp for every rational prime p ∈ N, which implies that (sp − 1)z ∈ ap . This shows
that UI ,O ⊆Wz

To prove the opposite inclusionWP ⊆ UI ,O �x any rational prime p ∈ N and take s ∈WP , so
that s · a = a and s · z = z. Since a ⊆ O is invertible we have that a · (O : a) = O and

s · O = s · (a · (O : a)) = (s · a) · (O : a) = a · (O : a) = O
which shows that sp ∈ O×p . Let us now prove that sp ∈ 1 + I · Op . Since I ⊆ O and a ⊆ O are
both invertible we have that I · (O : a) · (a : I ) = O, so that we can write 1 =

∑J
j=1 αjβjτj with

αj ∈ I , βj ∈ (O : a) and τj ∈ (a : I ). Notice that s ·τj = τj for every j ∈ {1, . . . , J } because s ·z = z
and P = ξ (z) generates E[I ] as a module over O/I . Hence sp − 1 ∈ I · Op because we can write

sp − 1 =
J∑

j=1
αj βj (sp τj − τj)

where sp τj − τj ∈ ap = a Op and βj(sp τj − τj) ∈ Op since βj ∈ (O : a) for every j ∈ {1, . . . , J }.
Thus we have shown that sp ∈ O×p and sp ∈ 1 + I · Op for every prime p ∈ N, which gives
WP ⊆ UI ,O as we wanted to prove. �

Remark A.8. The explicit description of the ray class �elds given in Theorem A.7 shows that
HI ,O coincides with the ray class �eld de�ned by Söhngen in [37] using the classical language
of class �eld theory (see [26, Chapter IV, §7]). A more recent exposition of the work of Söhngen
can be found in [28, Theorem 6.2.3].
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