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Introduction

Let be an elliptic curve de ned over a number eld and let ( , ) be its -function (see [67, § C.16] for an introduction). We know that if has potential complex multiplication (i.e. End ( ) Z) then ( , ) is an entire function, de ned over the whole complex plane C, which satis es a functional equation relating ( , ) to ( , 2 -) (in the "arithmetic" normalisation, that we will use in this paper). For example when = Q this functional equation implies that 4 2 ( , 0) = ( , 2) ∈ R >0 , where ∈ N denotes the conductor of (see [START_REF] Silverman | Advanced topics in the arithmetic of elliptic curves[END_REF]§ IV.10]).

The aim of this paper is to prove that the special value ( , 0) of the -function associated to an elliptic curve de ned over Q which has potential complex multiplication can be related to the Mahler measure

( ) := ∫ 1 0 ∫ 1 0 log| ( 2 1 , 2 2 )| 1 2 ∈ R
of a planar model ∈ Z[ , ] of the elliptic curve , as in the following theorem.

Theorem 1.1 (see Theorem 4.7). Let be an elliptic curve de ned over Q such that End( Q ) O for some imaginary quadratic eld . Then there exists a polynomial ∈ Z[ , ] such that:

• its zero locus ↩→ G 2 is birationally equivalent to ;

• ( ) = ( , 0) + log| | for two explicit numbers ∈ Q × and ∈ Q × de ned in [START_REF] Chai | Complex multiplication and lifting problems[END_REF].

Theorem 1.1 ts into the vast landscape of Boyd's conjectures (see Question 1.7), which are precisely concerned with the relations between special values of -functions and Mahler measures of polynomials (see Section 1.1 for a brief historical review).

Before moving on, two remarks about Theorem 1.1 are in order.

Remark 1.2. The polynomial appearing in Theorem 1.1 will in general not be tempered (see [12, Section 2] and [START_REF] Villegas | Modular Mahler measures. I[END_REF]Section 8]). Tempered polynomials have been traditionally the main focus of research on Boyd's conjectures, because for these polynomials the coordinate symbol { , } ∈ 2 M ( , Q(2)) extends to an element of 2 M ( , Q(2)), where denotes a desingularisation of a compacti cation of . Nevertheless, in recent years more and more attention has been given to Mahler measures of non-tempered polynomials (see [START_REF] Lalín | Further explorations of Boyd's conjectures and a conductor 21 elliptic curve[END_REF], [START_REF] Lalín | The Mahler measure for arbitrary tori[END_REF], [START_REF] Meemark | Mahler measures of a family of non-tempered polynomials and Boyd's conjectures[END_REF], [START_REF] Giard | Mahler measure of a non-tempered Weierstrass form[END_REF]) and our Theorem 1.1 ts into this history of examples. More precisely, in our case is an elliptic curve and the zeros and poles of and are torsion points. This helps to obtain a relation between ( ) and ( , 0) despite the fact that is not tempered, because it allows to nd a symbol

Motivation and historical remarks

-functions and height theory have been two leading subjects in arithmetic geometry: the rst ones are analytic counterparts of arithmetic and automorphic objects, and the second ones provide a way of measuring the complexity of these geometric objects.

Most -functions are de ned using an Euler product (i.e. a product indexed by prime ideals or closed points) which converges only for some complex numbers ∈ C, typically the ones such that ( ) > for some ≥ 1. It is expected that such an Euler product should be analytically continued to a meromorphic function belonging to the Selberg class S (see [START_REF] Perelli | A survey of the Selberg class of -functions. I[END_REF]). This class consists of functions ∈ S which admit an expansion as a Dirichlet series and as an Euler product in some half-plane, which are almost entire (i.e. ( -1) ( ) is entire for some ∈ N) and satisfy a suitable functional equation and a suitable "growth condition" (known as Ramanujan hypothesis).

Functions belonging to S are known to enjoy a variety of properties, including the fact that they can be recovered from the collection of their special values at the integers. More precisely, if : C → C is a meromorphic function we de ne its special value at 0 ∈ C as * ( 0 ) := lim

→ 0 ( -0 ) -ord 0 ( ) ( ) ∈ C × (1) 
where ord 0 ( ) ∈ Z is the unique integer such that the limit (1) exists and is di erent from zero. We have then the following result, which is due to Deninger.

Theorem 1.4 (see [START_REF] Deninger | How to recover an -series from its values at almost all positive integers. Some remarks on a formula of Ramanujan[END_REF]Theorem 2.1]). There exists a class of holomorphic functions C such that:

• for every ∈ S and every ∈ N such that ( -1) ( ) is holomorphic we have that ( -1) ( ) ∈ C;

• for every 0 ∈ Z the map C → (C × ) Z ≥ 0 de ned by ↦ → { * ( )} ≥ 0 is injective.

Theorem 1.4 provides a very strong reason to study special values of functions in the Selberg class. Since the functions in the Selberg class satisfy a functional equation, we may restrict ourselves to the study of special values at non-positive integers, for which we usually have cleaner formulas.

Remark 1.5. Functions in the Selberg class are normalised "analytically", i.e. they satisfy a functional equation which relates to 1-. Another possible way of normalising -functions associated to arithmetic or automorphic object implies that ( ) is related by the (conjectural) functional equation to ∨ (1-), for some "dual" -function ∨ . This often implies that ( ) is related to ( -) for some integer ∈ N, e.g. ( , ) is related to ( , 2 -) for the -function associated to an elliptic curve. In the rest of this paper we will use this "arithmetic" normalisation of -functions. This does not alter the conclusion of Theorem 1.4, i.e. -functions which are normalised arithmetically can still be reconstructed from their special values.

The study of special values of -functions which come from arithmetic objects (that are conjectured to belong to the Selberg class) was initiated by Euler's proof of the identity (1 -) = -for every ∈ N ≥1 (see [START_REF] Neukirch | Algebraic number theory[END_REF]Theorem VII.1.8]) and by Dirichlet's proof of the (analytic) class number formula (see [START_REF] Neukirch | Algebraic number theory[END_REF]Corollary VII.5.11]). This formula relates the special value * (0) to the regulator ∈ R, which can be seen as a height measuring the complexity of the number eld (see [START_REF] Pazuki | Heights and regulators of number elds and elliptic curves[END_REF]).

Other examples of links between values of -functions and heights are given by the conjectural formulas of Birch and Swinnerton-Dyer (see [START_REF] Tate | On the conjectures of Birch and Swinnerton-Dyer and a geometric analog[END_REF]) and Colmez (see [START_REF] Colmez | Périodes des variétés abéliennes à multiplication complexe[END_REF]). These formulas t into bigger landscapes of conjectures on special values of -functions:

• the formula of Birch and Swinnerton-Dyer is generalised by the Tamagawa number conjecture of Bloch and Kato (see [START_REF] Bloch | -functions and Tamagawa numbers of motives[END_REF], [START_REF] Fontaine | Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions[END_REF]), which followed work of Beilinson (see [START_REF] Beilinson | Higher regulators and values of -functions[END_REF]);

• the formula of Colmez has been recently generalised by Maillot and Rössler (see [START_REF] Maillot | Conjectures on the logarithmic derivatives of Artin L-functions II[END_REF]).

This paper studies another type of height which is conjectured to be related to special values of -functions, which is de ned as follows.

De nition 1.6. The Mahler measure of a Laurent polynomial ∈ C[ ±1 1 , . . . , ±1 ] \ {0} is de ned as

( ) := ∫ T log| | T = ∫ 1 0 • • • ∫ 1 0 log| ( 2 1 , . . . , 2 )| 1 . . . (2) 
where T := ( 1 ) is the real -torus and T := 1

(2 )

1 1 ∧ • • • ∧ is the unique Haar measure on T such that T (T ) = 1.
The integral appearing in (2) is always convergent, ( ) ∈ R ≥0 whenever ∈ Z[ ±1 1 , . . . , ±1 ] and there is an explicit classi cation of all the polynomials such that ( ) = 0 (see [START_REF] Everest | Heights of Polynomials and Entropy in Algebraic Dynamics[END_REF]Chapter 3]). Moreover, Mahler's measure of polynomials in one variable is linked to the logarithmic Weil height of algebraic numbers (see [START_REF] Bombieri | Heights in Diophantine Geometry[END_REF]Proposition 1.6.6]) and therefore to questions of Diophantine nature, such as Lehmer's problem. This asks whether or not the set { ( ) : ∈ Z[ ]} \ {0} ⊆ R >0 has a minimum, and it seems that it could be approached by studying the Mahler measure of polynomials in multiple variables (see [START_REF] Smyth | Closed sets of Mahler measures[END_REF]). These Mahler measures appear to be far more mysterious than their one-variable counterparts: in particular, they appear to be related to special values of -functions.

The two initial examples of these relationships are given by ( + + 1) = * ( -3 , -1)

( + + + 1) = -14 * (-2) where -3 : (Z/3Z) × → C × ±1 ↦ → ±1 (3) 
and have been proved by Smyth (see [START_REF] Smyth | On measures of polynomials in several variables[END_REF], [START_REF] Boyd | Speculations concerning the range of Mahler's measure[END_REF]Appendix 1]). These initial successes led to an extensive search for more relations between Mahler measures and special values of -functions, which culminated with the pioneering work [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF]. The numerical observations contained in Boyd's paper lead naturally to the following question.

Question 1.7 (Boyd). Let ∈ Z[ ±1 1 , . . . , ±1 ] be a Laurent polynomial such that ( ) ≠ 0. Let ↩→ G ,Q be the zero locus of , ←↪ be a compacti cation of and be a desingularisation of . Let ℓ ∈ Z be a prime number and let H -1 ℓ ( ) := H -1 ét (( ) Q ; Q ℓ ) denote the Galois representation given by the ℓ-adic étale cohomology of (see [START_REF]The Stacks project authors[END_REF]Chapter 03N1]). Let nally ∈ R × be the real number

:= * (H -1 ℓ ( ), 0) ( )
which is de ned assuming that the Euler product de ning (H -1 ℓ ( ), ) can be analytically continued until = 0. When is it true that ∈ Q × ? Remark 1.8. Usual conjectures on -functions imply that (H -1 ℓ ( ), ) should not depend on the choice of the prime ℓ (see [START_REF] Taylor | Galois representations[END_REF]Conjecture 1.3]). Moreover, the special value * (H -1 ℓ ( ), 0) should be related to (H -1 ℓ ( ), ) by the functional equation (see [36, § 4.3.2]). Hence Question 1.7 asks when the Mahler measure ( ) of a polynomial ∈ Z[ ±1 1 , . . . , ±1 ] is related to special values of -functions at = , where is the number of variables of . Remark 1.9. Question 1.7 does not explain Smyth's results [START_REF] Besser | -adic Mahler measures[END_REF]. These and other computations can be explained using an idea of Maillot (see [14, § 8]) concerning the reciprocal polynomial * ( 1 , . . . , ) := ( -1 1 , . . . , -1 ) (see [START_REF] Lalín | An algebraic integration for Mahler measure[END_REF] and the forthcoming work [START_REF] Brunault | A motivic interpretation of Maillot's trick[END_REF]).

Several works have answered positively to Question 1.7, mostly using one of the following techniques:

• functional equations for Mahler's measure of families of polynomials, which relate ( ) to some kind of special function (often, hypergeometric) that is known to have a link to the special value (see [START_REF] Lalín | Functional equations for Mahler measures of genus-one curves[END_REF], [START_REF] Rogers | Hypergeometric Formulas for Lattice Sums and Mahler Measures[END_REF], [START_REF] Rogers | From L-series of elliptic curves to Mahler measures[END_REF], [START_REF] Rogers | On the Mahler Measure of 1+X+1/X+Y +1/Y[END_REF]);

• explicit formulas for the regulator of modular functions (typically, modular units), which allow to relate it directly to the special value, and thus provide new ways of proving Beilinson's conjecture in speci c cases (see [START_REF] Zudilin | Regulator of modular units and Mahler measures[END_REF], [START_REF] Brunault | Regulators of Siegel units and applications[END_REF], [START_REF] Brunault | Régulateurs modulaires explicites via la méthode de Rogers-Zudilin[END_REF]);

• relations between di erent kinds of regulators, which allow to reduce some identities to other previously proved ones (see [START_REF] Lalín | The Mahler measure of a Weierstrass form[END_REF], [START_REF] Lalín | Regulator proofs for Boyd's identities on genus 2 curves[END_REF]).

For a survey of these techniques and for a history of Mahler's measure we highly recommend the forthcoming book [START_REF] Brunault | Many Variations of Mahler Measures: A lasting symphony[END_REF].

Our contribution and future research

Let us explain how our main result Theorem 1.1 ts into the history outlined in Section 1.1. First of all, Theorem 1.1 provides a positive answer to Question 1.7 up to a logarithmic factor for an in nite number of elliptic curves. To be fair, we should observe that there are only nitely many elliptic curves with potential complex multiplication de ned over Q up to twist, i.e. up to isomorphisms de ned over Q. Hence Theorem 1.1 can be also seen as a step towards a positive answer to the following question. Question 1.10 (Twisting Boyd's conjectures). Let ∈ Z[ ±1 1 , . . . , ±1 ] be a Laurent polynomial such that ( ) ≠ 0 and * (H -1 ℓ ( ), 0)/ ( ) ∈ Q × . Let be a smooth, projective variety such that there exists an isomorphism

Q ∼ -→ ( ) Q . Does there exist a Laurent polynomial ∈ Z[ ±1 1 , . . . , ±1
] such that is birational to and * (H -1 ℓ ( ), 0)/ ( ) ∈ Q × ? Another element of novelty in this work is that we start from the elliptic curve and then subsequently look for a model of whose Mahler measure would be related to the special value ( , 0). This di ers from most of the past research, which usually starts from a polynomial (or from a family of polynomials , such as : + -1 + + -1 + ) and then uses the techniques outlined in Section 1.1 to provide a link between the Mahler measure ( ) (or the family of Mahler measures ( )) and the special value * (H -1 ℓ ( ), 0) (or the family of special values * (H -1 ℓ ( ), 0)). Let us explain what is the strategy behind the proof of Theorem 1.1. We know, thanks to the work of Deninger and Wingberg (see [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]) and Rohrlich (see [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF]), that for every elliptic curve as in the statement of Theorem 1.1 there exist many pairs of functions , ∈ Q( ) such that the regulator of the Milnor symbol { , } is related to the special value ( , 0). We prove in Section 3 that Q( ) = Q( , ), generalising a result of Brunault (see [START_REF] Brunault | Parametrizing elliptic curves by modular units[END_REF]). This allows us to construct the polynomial ∈ Z[ , ] as the minimal polynomial of and . Finally, we can prove Theorem 1.1 by relating the regulator of { , } to the Mahler measure of , and this is done in Section 4 using some generalisations of the seminal work of Deninger (see [START_REF] Deninger | Deligne periods of mixed motives, -theory and the entropy of certain Z -actions[END_REF]).

Let us conclude this section with some questions which will serve as a guide for future research.

Question 1.11. Can we remove the logarithm from Theorem 1.1? More precisely, given an elliptic curve de ned over Q and such that End Q ( ) O , does there exist a polynomial ∈ Z[ , ] such that is birationally equivalent to and ( ) = ( , 0) for some ∈ Q × ? Remark 1.12. A positive answer to Question 1.11 would be the rst instance of a complete positive answer to Question 1.7 for an in nite family of -functions. We believe that the great freedom allowed in the choice of the two functions , ∈ Q( ) which give rise to the polynomial in Theorem 1.1 will enable us to answer Question 1.11 in the positive. Question 1.13. Can we simplify the polynomials appearing in Theorem 1.1 to get something of smaller degree? Question 1.14. Can the techniques of this paper be generalised to polynomials ∈ Z[ , ] such that ˜ has higher genus? Remark 1.15. The most natural way to approach Question 1.14 would be to prove a higher-dimensional analogue of Rohrlich's result (see Theorem 3.1). This has been recently achieved for Siegel varieties (using modular techniques, and without any mention of complex multiplication) in [START_REF] Lemma | On higher regulators of Siegel threefolds II: the connection to the special value[END_REF] and [START_REF] Cauchi | On Higher regulators of Siegel varieties[END_REF].

Outline of the paper

To conclude this introductory section, let us give an outline of the paper: Section 2 recalls some necessary preliminaries, Section 3 constructs the minimal polynomial ∈ Z[ , ] associated to a CM elliptic curve and Section 4 contains the computation of the Mahler measure ( ). We also include an appendix as a reference for a proof of Deuring concerning the relation between the conductor of a CM elliptic curve and the conductor of the associated Hecke character.

SECTION 2

Preliminaries

The aim of this section is to provide various preliminaries that will be needed in the rest of the paper, concerning elliptic curves with complex multiplication (see Section 2.1), motivic cohomology (see Section 2.2) and Deligne cohomology of curves (see Section 2.3). Notation 2.1. For us N denotes the monoid of natural numbers, so 0 ∈ N. Moreover, for every ∈ Z we write Z ≥ := { ∈ Z : ≥ }.

Elliptic curves with complex multiplication

We will use this section to recall some useful facts about elliptic curves with complex multiplication, following mainly [66, Chapter II] and [START_REF] Lang | Elliptic functions[END_REF]Chapter 10]. We will also recall some facts and de nitions coming from [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF].

Let be an elliptic curve de ned over Q which has potential complex multiplication in the sense of Definition A.2. Then there exists a unique imaginary quadratic eld , a unique order O ⊆ O and a unique isomorphism

[ ] : O ∼ -→ End( Q ) such that [ ] * ( ) =
for every ∈ O, where ∈ Ω 1 denotes the invariant di erential of (see [START_REF] Silverman | Advanced topics in the arithmetic of elliptic curves[END_REF]Proposition 1.1]). Moreover, we know that O belongs to the nite list of imaginary quadratic orders such that Pic(O) = 1 (see [START_REF] Cox | Primes of the form 2 + 2[END_REF]Theorem 7.30] and [START_REF] Cox | Primes of the form 2 + 2[END_REF]Theorem 11.1]).

Remark 2.2. In this paper we will only consider elliptic curves de ned over Q which have potential complex multiplication by the maximal order O of an imaginary quadratic eld , i.e. such that End( Q ) O . We believe nevertheless that most of our results will hold in the general case.

Notation 2.3. Let be an elliptic curve de ned over Q, having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . We introduce the following notation:

• := O ×
is the group of units, which is nite;

• (R) 0 ⊆ (C) denotes the connected component of the identity of the real Lie group (R);

• ( R /R) ∈ {±1} is de ned as ( R /R) := -sign( ), if ≠ 0 (i.e. ( ) ≠ 1728) -sign( ), if = 0 (i.e. ( ) = 1728)
for any short Weierstrass equation 2 = 3 + + de ning (see [66, Proposition V.2.2]);

• ⊆ is a fractional ideal de ned as

:= O , if (disc( /Q) ≠ -4 ∧ ( R /R) = -1) ∨ (disc( /Q) = -4 ∧ 4 3 + 27 2 < 0) -1 /Q , otherwise
for any short Weierstrass equation 2 = 3 + + de ning (recall that the discriminant of such a Weierstrass equation is de ned as -16(4 3 + 27 2 )). Moreover, We now recall the existence of a particular complex uniformisation : C (C) for a CM elliptic curve de ned over Q, which is due to Rohrlich (see [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF]Page 377]). Proposition 2.4 (Rohrlich). For every embedding : ↩→ C and every orientation of (R) 0 there exists a unique surjective map of complex Lie groups : C (C) such that ker( ) = ( ), (R) ⊆ (R) and the induced isomorphism of real Lie groups R/Z ∼ -→ (R) 0 preserves the orientations.

Remark 2.5. To avoid unnecessary sign issues, whenever we have an elliptic curve de ned over Q which has potential complex multiplication we will x implicitly an embedding : ↩→ C and an orientation of (R) 0 .

Let us recall some more notation associated to an elliptic curve with potential complex multiplication. Notation 2.6. Let be an elliptic curve de ned over Q, having potential complex multiplication by O . We introduce the following notation:

• A denotes the ring of adèles of (see [54, Section VI.1]);

• : A × / × → × denotes the algebraic Hecke character associated to (see [START_REF] Schappacher | Periods of Hecke characters[END_REF]Section 1.1]). This Hecke character is related to by the fact that ( , ) = ( • , ) for any embedding : ↩→ C (see [START_REF] Milne | On the arithmetic of abelian varieties[END_REF]Page 187]);

•

⊆ O denotes the conductor of (see [START_REF] Neukirch | Algebraic number theory[END_REF]Section VII.6]);

• abusing notation, we denote also by : ( ) → × the classical algebraic Hecke character associated to (see [START_REF] Schappacher | Periods of Hecke characters[END_REF]Section 0.1]). Here ( ) denotes the group of fractional ideals of which are coprime to ;

• : (O / ) × → is the unique group homomorphism such that ( O ) = ( ) ( ) for every ∈ O coprime with the conductor . Here, by a slight abuse of notation, we denote by ∈ Gal( /Q) the element corresponding to the embedding : ↩→ C. We extend by zero to get a multiplicative map : O → ∪ {0}, and we observe that ( ) = ( ) for every ∈ O ;

• for every ∈ O such that ( ) = 0 we can de ne a map

: [ ] (C) → ∪ {0} ↦ → -1 ( )
where

[ ] := ker( [ ]
---→ ) denotes the group (scheme) of -torsion points. We observe that if / ∈ R (e.g. if = ) then ( ) = ( ) for every ∈ [ ] (C);

• by abuse of notation, for every ∈ O we write [ ] for the full group [ ] (C) of -torsion points.

Moreover, we denote by ( [ ]) the smallest extension of over which all the -torsion points are de ned;

• ∈ O is de ned as := N /Q ( ) min{ ∩ R >0 }/ .
We will later use the group of -torsion points [ ] (see Notation 2.3) to de ne a model for . In particular we will need the following description of the Galois action on these points.

Lemma 2.7 (see [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]Page 264]). We can describe the action of Gal( Let us introduce some more notation, including the de nition of the "diamond" operator ♦ and of the function R which appear in Theorem 4.7.

( [ ])/ ) on [ ]/ as Gal( ( [ ])/ ) × [ ]/ → [ ]/ ( , ) ↦ → [ ( ) -1 ( )] ( ) where 
Notation 2.9. Let be an elliptic curve over a eld . We introduce the following notation:

• for every function : → P 1 we denote by ⊆ ( ) the set of zeros and poles of , and by ∈ Z ≥1 ∪{∞} the least common multiple of the orders of the points in ;

• for every set of functions 1 , . . . , : → P 1 we de ne 1 ,..., ⊆ ( ) as 1 ,..., := =1 , and 1 ,..., ∈ Z ≥1 ∪ {∞} as 1 ,..., := lcm( 1 , . . . , );

• for every set of functions 1 , . . . , : → P 1 such that 1 ,..., ⊆ ( ) tors (which is equivalent to say that 1 ,..., ≠ ∞) and every point ∈ 1 ,..., we denote by ( ) 1 ,..., : → P 1 any function such that div( ( ) 1 ,..., ) = 1 ,..., (( ) -(0)). This function exists, and is uniquely determined up to constants; • for every divisor ∈ Q[ ( ) tors ] we de ne ord( ) ∈ Z ≥1 as the smallest natural number ∈ Z ≥1 such that is a principal divisor. More concretely, we can write uniquely as = 1

=1

( ) for some ∈ Z ≥1 and { } =1 ⊆ Z such that gcd( , ) = 1 for every ∈ {1, . . . , }. Then ord( ) equals the order of the point =1 ∈ ( ) tors .

Notation 2.10. We introduce the following notation:

• for every group acting on a set (from the left) we denote by ⊆ the orbit of any element ∈ , by \ the set of orbits and by Stab ( ) ≤ the stabiliser of any element ∈ ;

• for every eld we denote by := Gal( / ) its absolute Galois group;

• we recall that for every -variety the set ( ) is endowed with an action of , and we denote by [ ] := the orbits of this action. Moreover, we endow ( ) 2 := ( ) × ( ) with the diagonal action of , and we denote by [ , ] the orbits under this diagonal action;

• for every (smooth, projective) curve de ned over a eld we denote by the Jacobian of , with a chosen inclusion : ↩→ (see [START_REF] Milne | Jacobian varieties[END_REF]). Recall that for every , ∈ ( ) the di erence -:= ( ) -( ) ∈ ( ) does not depend on ;

• we observe that for every function ∈ ( ) its divisor div( ) ∈ Z[ ( )] is invariant under the action of G . This is to say that if div( ) = ∈ ( ) ( ) then = ( ) for every ∈ , hence we can write [ ] := for every Galois orbit [ ] ∈ \ ( );

• nally, we de ne the diamond operator ♦ :

(Z[ ( )] ) ⊗2 → Z[ \ ( )] by ∈ ( ) ( ) ♦ ∈ ( ) ( ) := [ , ] ∈ \ ( ) 2 [ ] [ ] | [ , ] | | [ -] | ( [ -] )
which coincides with the diamond operator de ned in the previous literature (see [START_REF] Lalín | The Mahler measure of a Weierstrass form[END_REF] and [START_REF] Lalín | The Mahler measure for arbitrary tori[END_REF]) for divisors supported on rational points.

Notation 2.11. Let be an elliptic curve de ned over Q, having potential complex multiplication by O . We introduce the following notation:

• for every point ∈ (Q) we de ne Ann O ( )

:= { ∈ O | [ ] ( ) = 0}, which is an O -ideal; • ∈ O is the unique generator of the ideal Ann O ( ) -1 ⊆ O such that ( -1
) ∈ ;

• we de ne a function

: (Q) tors → ↦ → 1 |Ann O ( ) (1 -( ))
where runs over all the prime ideals of O which divide Ann O ( );

• we de ne another function

R : (Q) tors → Q ↦ →          0, if Ann O ( ) ( ), if | Ann O ( ) and = ( ) + ( ), if | Ann O (
) and ≠ and we observe that for every ∈ (Q) tors we have that ord

( ) R ( ) ∈ Z, that R ( [-1] ( )) = -R ( ) and that R ( ( )) = R ( ) for every ∈ ; • we write R : Q[ (Q) tors ] → Q for the Q-linear extension of R : (Q) tors → Q, and we observe that it descends to a Q-linear map R : Q[ Q \ (Q) tors ] → Q.
Finally, let us recall a result proved recently by Campagna and the author which concerns division elds of elliptic curves with complex multiplication. This will be used in Section 3.2 to construct suitable functions on an elliptic curve with potential complex multiplication. Proposition 2.12 (see [START_REF] Campagna | Entanglement and rami cation properties of division elds of CM elliptic curves[END_REF]Corollary 1.3]). Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of some imaginary quadratic eld . Let moreover ∈ N be a prime number such that O is a prime ideal (i.e. is inert in ) and such that . Let nally ∈ N be any natural number such that . Then we have that ( [ ]) ∩ ( [ ]) = .

Motivic cohomology and tame symbols

Let be a number eld and be a curve over . The aim of this section is to recall the isomorphism 2

M ( ; Q(2)) ker ( ( ) × ⊗ Z Q) ⊗2 ⊗ (1 -) : ∈ ( ) × \ {1} - → ∈ | | ( ) × ⊗ Z Q { , } ↦ → ∈ | | ({ , }) (4) 
between the motivic cohomology Q-vector space 2 M ( ; Q(2)) and the kernel of the tame symbol map , obtained by gluing the maps

({ , }) := (-1) ord ( ) ord ( ) ord ( ) ord ( )
where { , } denotes the class of ⊗ in the quotient of ( ( ) × ⊗ Z Q) ⊗2 by the ideal generated by the elements of the form ⊗ (1 -), with ∈ ( ) × \ {1}.

First of all, recall that the bi-graded motivic cohomology groups M ( ; Λ( )) (which appear in (4) for = = 2) can be de ned as

M ( ; Λ( )) := Hom DM( ,Λ) (1 , 1 ( ) [ ])
for any ring Λ and any scheme (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Section 11.2]). Here, DM( , Λ) denotes the triangulated category of mixed motives over , as constructed in [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]. This is de ned as the A 1 -localisation of the derived category D(SH tr ( ; Λ)) of Λ-sheaves on which have transfers. It can be shown that there is a natural choice of tensor product which makes DM( , Λ) into a monoidal category, and we denote by 1 ∈ DM( , Λ) the unit for this monoidal structure. 

:= M ( ; Q( )) = Hom DM( ,Q) (1 , 1 ( ) [ 
]). Remark 2.14. Let us recall some properties of motivic cohomology, which will be useful in what follows:

• motivic cohomology commutes with disjoint unions. In particular if is a discrete scheme de ned over a eld then

, M ( ) ∈ | | , M (Spec( ( ))) (5) 
where ( ) ⊇ denotes the residue eld of at ;

• for every regular scheme we have that 1,1 M ( ) O ( ) × ⊗ Z Q (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Theorem 11.2.14]);

• we have that 2 , M (Spec( )) = 0 for every number eld and every , ∈ Z. This follows from the identi cation between rational motivic cohomology and -theory (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Corollary 14.2.14]) and from Borel's theorem on the -theory of number elds (see [START_REF] Soulé | Higher -theory of algebraic integers and the cohomology of arithmetic groups[END_REF] for a survey).

Recall now that, if :

↩→ is a closed immersion of pure co-dimension ∈ N (see [74, Section 04MS]) between schemes which are smooth, separated and of nite type over a common base then there is a long exact sequence (sometimes called localisation sequence or Gysin sequence) given by . . .

-1, M ( \ ( )) -2 , - M ( ) , M ( ) , M ( \ ( )) +1-2 , - M ( ) . . . * * (6) 
where : \ ( ) ↩→ denotes the open embedding which is complementary to (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Section 11.3.4]). Now, let us take = to be a regular, connected curve (de ned over a number eld ) and = = 2. Then if we use the properties of motivic cohomology recalled in Remark 2.14 in the localisation sequence [START_REF] Bombieri | Heights in Diophantine Geometry[END_REF] we get an exact sequence

0 → 2,2 M ( ) → 2,2 M ( \ ) - → 1,1 M ( ) → 3,2 M ( ) → 3,2 M ( \ ) → 0 (7)
for every nite set of closed points ⊆ . Moreover, we know again from Remark 2.14 that

1,1 M ( ) (5) 
∈ | | 1,1 M (Spec( ( ))) ∈ | | ( ) × ⊗ Z Q (8) 
which shows that if we let grow we get an exact sequence

0 → 2,2 M ( ) → 2,2 M ( ) - → ∈ | | ( ) × ⊗ Z Q → . . .
where ∈ denotes the generic point. We can now get the isomorphism (4) using the identi cation 2,2 M ( )

2,2 M (Spec( ( ))) ( ( ) × ⊗ Z Q) ⊗2 ⊗ (1 -) : ∉ {0, 1}
and its compatibility with localisation sequences in motivic cohomology and -theory, which identi es with . Now let us use what we have just recalled to construct elements in motivic cohomology.

Proposition 2.15. Let be a curve over a number eld and let ↩→ be a nite set of closed points. Assume that there exists 0 ∈ such that [ ( 0 ) : ] -[ ( ) : ] 0 ∈ ( ) tors for every ∈ . Then the natural restriction map 2,2 M ( ) → 2,2 M ( \ ) admits a natural retraction 2,2 M ( \ )

2,2 M ( ). Proof. Let ⊇ be a nite Galois extension, such that all the points of are -rational. Then the identi cation [START_REF] Bornhorn | Mahler-Maße und spezielle Werte von -Funktionen[END_REF] gives the isomorphism

1,1 M ( ) ∈ | | ( ) × ⊗ Z Q Q[ ] ⊗ Z ( ) × (9) 
where Q[ ] denotes the group of divisors with rational coe cients which are supported on . Now the exact sequence (7) induces a short exact sequence

0 → 2,2 M ( ) → 2,2
M (( \ ) ) -→ Im( ) → 0 and using Weil's reciprocity law (see [77, §6.12.1]) we can see that, under the isomorphism [START_REF] Bosch | Néron models[END_REF] we have that Im(

) ⊆ Q[ ] 0 ⊗ Z ( ) × , where Q[ ] 0 ⊆ Q[ ]
denotes the Q-vector space of divisors of degree zero. Moreover, we also have that Im(

) = Q[ ] 0 ⊗ Z ( ) × , because ts into the commutative diagram 2,2 M (( \ ) ) Q[ ] 0 ⊗ Z ( ) × 1,1 M (( \ ) ) ⊗ 1,1 M (Spec( )) (O × (( \ ) ) ⊗ Z Q) ⊗ Z ( ) × ∪ ∼ div ⊗ Id
and the divisor map

(O × (( \ ) ) ⊗ Z Q) ⊗ Z ( ) × div ⊗ Id -------→ Q[ ] 0 ⊗ Z ( ) ×
is surjective. This follows from the fact that we are taking rational coe cients, together with the assumption that there exists a point 0 ∈ such that [ ( 0 ) : ] -[ ( ) : ] 0 ∈ ( ) tors for every ∈ .

We have shown that

2,2 M (( \ ) ) 2,2 M ( ) ⊕ {O × (( \ ) ), ( ) × } where {O × (( \ ) ), ( ) × } ⊆ 2,2
M (( \ ) ) denotes the subspace of symbols { , } = { } ∪ { } where ∈ O × (( \ ) ) and ∈ ( ) × is a constant. To conclude we can use Galois descent for motivic cohomology (see [START_REF] Cisinski | Triangulated Categories of Mixed Motives[END_REF]Theorem 14.3.4]) to get an isomorphism 2,2

M ( \ ) 2,2 M ( ) ⊕ * ({O × (( \ ) ), ( ) × }) (10) 
where : ( \ ) → \ denotes the Galois covering induced by base change. Then the retraction 2,2

M ( \ ) 2,2
M ( ) is simply given by the projection onto the rst factor in the decomposition [START_REF] Bost | Introduction to compact Riemann surfaces, Jacobians, and abelian varieties[END_REF].

We can now use the retraction 2,2 M ( \ )

2,2 M ( ) given by Proposition 2.15 to get a map

O × ( \ ) ⊗2 ⊗ Z Q ∼ -→ 1,1 M ( \ ) ∪ -→ 2,2 M ( \ ) 2,2
M ( ) which can be used to construct elements in motivic cohomology. This is a generalisation of "Bloch's trick" (see Equation ( 14)) that we will use in Section 3 to construct elements in the motivic cohomology group 2,2 M ( ) associated to an elliptic curve de ned over Q which has potential complex multiplication.

Deligne-Beilinson cohomology of curves over the reals

In this section we recall the basic facts about Deligne-Beilinson cohomology groups of a smooth algebraic curve de ned over R. We will not discuss the general theory of Deligne-Beilinson cohomology. Su ce to say that the Deligne-Beilinson cohomology groups, denoted by , D , form a twisted Poincaré duality theory in the sense of [40, §8], which can be de ned as:

• the hypercohomology of a suitable complex of sheaves (see [34, De nition 2.9]);

• the sheaf cohomology of a suitable resolution of the previous complex (see [21, De nition 5.50]);

• the extension groups in the category of mixed Hodge structures (see [START_REF] Beilinson | Notes on absolute Hodge cohomology[END_REF]);

• the cohomology induced by a motivic spectrum (see [START_REF] Bunke | The Beilinson regulator is a map of ring spectra[END_REF]Section 6]).

Deligne cohomology groups are also the target of Beilinson's regulator maps ∞ : , M ( ) → , D ( ) which can be constructed in many di erent ways, according to the chosen de nition of motivic cohomology and Deligne cohomology (see [1, § 2], [35, § 8], [20, § 7], [START_REF] Brunault | Many Variations of Mahler Measures: A lasting symphony[END_REF]Appendix]).

We will only need the groups 1,1 D ( ) and 2,2 D ( ) for a smooth algebraic curve de ned over R. Hence we will only recall the de nition of , D ( ) for a smooth variety de ned over R or C, following [53, §7.3] (which is a special case of [21, De nition 5.50]). Notation 2.16. We need to introduce the following notation:

• an analytic space over R can be seen as a pair ( , ∞ ) where is a complex analytic space and ∞ : → is an anti-holomorphic involution (see [START_REF] Tognoli | Proprietà globali degli spazi analitici reali[END_REF]Teorema 14]). Moreover, a sheaf S on can also be seen as a pair (T , ) where T is a sheaf on and : * ∞ (T ) → T is an isomorphism whose inverse is * ∞ ( ); • for every algebraic variety over C we denote by (C) the usual complex analyti cation, given by the set of complex points endowed with the complex analytic topology. If is an algebraic variety over R we denote by an the real analytic space ( C (C), ∞ ) where ∞ is complex conjugation (on points);

• for every subgroup ⊆ C and every ∈ Z we denote by ( ) := (2 ) ⊆ C and by : C → R( ) the projection map given by ( ) := ( + (-1) )/2. If is a complex analytic space we denote by ( ) the constant sheaf with value ( ), and if = ( , ∞ ) is a real analytic space we denote by ( ) the pair ( ( ), ( )) where ( ) : * ∞ ( ( )) = ( ) → ( ) denotes complex conjugation (on coe cients);

• for every smooth complex analytic space we denote by A •, ( ) the complex of smooth di erential forms with values in R( ). If is a smooth real analytic space given by the pair ( , ∞ ) we write A •, ( ) := A •, ( ) * ∞ where ( ) denotes again the action of complex conjugation on the coe cients of the di erential forms. If is an algebraic variety over C (respectively, over R) we write A •, ( ) := A •, ( (C)) (resp. A •, ( ) := A •, ( an ));

• a good compacti cation of a morphism : → of schemes (or analytic spaces) is a factorisation = • where : ↩→ is an open immersion, : → is proper and \ ( ) is a divisor with normal crossings. Moreover, if : → is smooth we assume that : → is also smooth. When = Spec( ) and is a eld of characteristic zero, we always have a good compacti cation, and any two good compacti cations are dominated by a third one (see [30, §3.2.II]). When is a smooth curve over a eld, then a good compacti cation is simply a smooth, proper curve with an open immersion : ↩→ such that \ ( ) is nite;

• if :
↩→ is a divisor with normal crossings on , and : \ ↩→ is the complementary open immersion, we denote by Ω • ⊆ * (Ω • \ ) the complex of sheaves of di erential forms with logarithmic singularities along (see [START_REF]The Stacks project authors[END_REF]De nition 0FUA]). This makes sense for schemes and also for analytic spaces. The global sections Ω • ( ) ⊆ Ω • \ ( \ ) can be interpreted as (algebraic, smooth or holomorphic) di erential forms on \ which have at worst logarithmic singularities "at in nity";

• for every smooth variety de ned over C and any good compacti cation ↩→ we de ne the complex

F • ( ↩→ ) := Ω • (C) ( \ ) (C) ( (C
)) which, up to quasi-isomorphism, is independent from the choice of a good compacti cation (see [21, Theorem 5.46]). For this reason, we will usually abuse notation and write F • ( ) := F • ( ↩→ );

• if is a smooth variety de ned over R and ↩→ is a good compacti cation we de ne the complex

F • ( ↩→ ) := F • C ↩→ C * ∞
and we will again abuse notation, denoting it by F • ( ).

De nition 2.17. Let be a smooth algebraic variety de ned over R or C. Then we de ne the Deligne cohomology groups

, D ( ) := {( , ) ∈ A -1, -1 ( ) ⊕ F ( ↩→ ) : ( ) = -1 ( )} (A -2, -1 ( ))
where ↩→ denotes any good compacti cation.

Remark 2.18. We have an explicit description (see [35, § 3, 10]) of the cup product

, D ( ) ⊗ , D ( ) → + , + D ( ) [( 1 , 1 )] ⊗ [( 2 , 2 )] ↦ → [( 1 ∧ ( 2 ) + (-1) ( 1 ) ∧ 2 , 1 ∧ 2 )]
and of Beilinson's regulator map 

∞ : O × ( ) ⊗ Z Q 1,1 M ( ) → 1,1 D ( ) ⊗ 1 ↦ → [(log| |, log( ))]
A , ( ) ⊗ A , ( ) → R ⊗ ↦ → 1 ( ) ∫ C (C)
∧ between di erential forms, which is related to the rst one by Poincaré duality (see [10, § A.2.5]).

Let now be a smooth curve over C, let ∈ C × and let ∈ O ( ) × . We can use the explicit descriptions provided by Remark 2.18 to compute the pairing of the regulator of the symbol { , } ∈ 2,2 M ( ) with a homology class ∈ 1 ( ; Z). To make this precise, let us recall some elements from the theory of Riemann surfaces, following [10, Appendix A].

Remark 2.20. Let be a complex compact Riemann surface of genus . Then the rst singular homology group 1 ( ; Z) supports an intersection pairing # : 1 ( ; Z) ⊗2 → Z which is bilinear and anti-symmetric. Moreover, 1 ( ; Z) Z 2 , where ∈ N denotes the genus of , and there exists a Z-basis { , } , =1,..., ⊆ 1 ( ; Z) which is symplectic, i.e. for every , ∈ {1, . . . , } we have that

# = # = 0 and # = ,
where , ∈ {0, 1} denotes Kronecker's symbol (i.e. , = 1 if and only if = ). Now, let ⊆ be a nite set of points and let : \ ↩→ denote the canonical inclusion. Then for every symplectic basis { , } ⊆ 1 ( ; Z) and every point ∈ \ there exist smooth loops { , : [0, 1] → \ } , =1,..., such that:

• (0) = (0) = (1) = (1)
= for every , ∈ {1, . . . , };

• (]0, 1[) ∩ (]0, 1[) = ∅ for every , ∈ {1, . . . , };

• [0,1[ and [0,1[ are injective for every , ∈ {1, . . . , };

• the vectors { (0), (0), ( 1), (1)} , ∈1,..., ⊆ ( ) are pairwise non-collinear;

• the loops • and • are representatives of the homology classes , ∈ 1 ( ; Z).

We will slightly abuse notation and denote by , ∈ 1 ( (C) \ ; Z) the classes associated to the loops , : [0, 1] → \ . Now, observe that the loops , correspond to a canonical dissection (Δ, ) of with ⊆ (Δ • ). More precisely, for every choice of { , } as above there exists a polygon Δ ⊆ R 2 with 4 edges, an open ⊆ R 2 such that Δ ⊆ and a surjective smooth map : such that Δ • is a di eomorphism onto \ where

:= ( [0, 1]) ∪ ( [0, 1])
is the union of all the loops given by and . Each loop or corresponds to precisely two edges of Δ under , which are glued together with the same orientation (see [START_REF] Bost | Introduction to compact Riemann surfaces, Jacobians, and abelian varieties[END_REF]Figure 23]).

To conclude observe that for every ∈ we can de ne a loop : [0, 1] → Δ \ -1 ( ) → \ , where the map [0, 1] → Δ \ -1 ( ) is a small circle around -1 ( ) connected to one vertex of Δ by a straight line. Let ∈ 1 ( \ ; Z) be the singular cohomology class associated to , which does not depend on the choice of the small circle if all the circles { } ∈ are pairwise disjoint and oriented coherently. Then we have an exact sequence 0

→ Z → Z → 1 ( (C) \ ; Z) → 1 ( (C); Z) → 0 { } ∈ ↦ → ∈ ( 11 
)
where the map Z → Z is the diagonal one. In particular, for every 0 ∈ the set { , , } , =1,...,

∈ \{ 0 }
is a basis of 1 ( \ ; Z). This can be easily shown using the Mayer-Vietoris exact sequence (see [71, § 4.6]).

Let us now use Remark 2.20 to compute the pairing that we announced.

Proposition 2.21. Let be a smooth, proper algebraic curve over C of genus , and let ⊆ (C) be a nite set of points. Let (Δ, ) be a canonical dissection of (C) such that ⊆ (Δ • ) and let , , be the homology classes associated to (Δ, ). Then we have that

∞ \ ({ , }), = ∞ \ ({ , }), = 0 (12) ∞ \ ({ , }), = log| ({ , })| = ord ( ) log| | ( 13 
)
for every ∈ C, every ∈ C( ) such that ⊆ , every , ∈ {1, . . . , } and every ∈ .

Proof. The computation [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF] follows from the fact that ∫ (C) (log( )) ∧ = 0, whereas ( 13) is an application of Jensen's formula, as explained in [START_REF] Villegas | Modular Mahler measures. I[END_REF]Page 25].

To conclude this preliminary section let us introduce some notations concerning the cohomology of elliptic curves de ned over the reals. Notation 2.22. Let be an elliptic curve de ned over R. We introduce the following notation:

• (R) 0 ⊆ (R) denotes the connected component of the identity; • ∈ F 1 ( ) the unique di erential form such that ∫ (R) 0 = 1. Observe that ∈ 1 ( an ; Q(1)) because 1 ( an ; Q) is generated by the homology class of (R) 0 ; • 1 ( (C); Q) -⊆ 1 ( (C); Q)
denotes the subspace of homology classes which are anti-invariant by complex conjugation;

• ∈ 1 ( (C); Q) -denotes the Poincaré dual of .

SECTION 3

Constructing the polynomials

The aim of this section is to associate to every elliptic curve de ned over Q which has potential complex multiplication by the ring of integers O of an imaginary quadratic eld the polynomial ∈ Z[ , ] appearing in Theorem 1.1. To do so, we will study pairs of functions , : → P 1 de ned in [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]Theorem 4.10] and [62, Page 384], and we will prove that Q( ) = Q( , ). Hence if we take ∈ Z[ , ] to be the minimal polynomial of and we will see immediately that is birational to , which was one of the conditions outlined in the statement of Theorem 1.1. The Mahler measure ( ) of will be related to ( , 0) in Section 4, which will give a complete proof of Theorem 1.1.

The pairs of functions , : → P 1 that we are looking for have the property that , ⊆ (Q) tors . Hence

, ∈ Z ≥1 and we can de ne, following Bloch (see [START_REF] Bloch | Higher regulators, algebraic -theory, and zeta functions of elliptic curves[END_REF]Proposition 10.1.1]), a motivic cohomology class

, := , { , } + ∈ , \{0} { ({ , }), ( ) , } ∈ 2,2 M ( ) (14) 
which has the remarkable property that ∞ ( , ), / ( , 0) ∈ Q (see Section 2 for all the relevant notation). This property is made explicit by the following result, which is due to Rohrlich.

Theorem 3.1 (see [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF]). Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Let moreover , : → P 1 be two functions such that

, ⊆ (Q) tors . Then we have that ∞ ( , ), = R (div( )♦ div( )) ( , 0)
and , R (div( )♦ div( )) ∈ Z (see Section 2.3 and Section 2.1 for the relevant de nitions).

Hence to prove Beilinson's conjectures for the special value * ( , 0) = ( , 0) one has to show that for every CM elliptic curve de ned over Q we can nd a pair of functions , : → P 1 such that R (div( )♦ div( )) ≠ 0. This happens for many pairs of functions, as we will explain in Section 3.1 and Section 3.2.

Before doing that, let us make some remarks concerning the construction ( 14), which sometimes goes under the name of "Bloch's trick". Remark 3.2. It is easy to see that is bilinear, alternating and invariant by scaling, i.e.

,ℎ = ,ℎ + ,ℎ , and , = -, and , = 0 for every , ∈ Q( ) and ∈ Q. This shows that we have an alternating, bilinear pairing

[ , ] M : 2 Q[ (Q) tors ] 0,Gal(Q/Q) → 2 M ( ; Q(2)) 1 ∧ 2 ↦ → 1 , 2 (15) 
where 1 , 2 : → P 1 are any two functions such that div( ) = ord( ) (see Notation 2.9). Observe nally that for every 1 , 2 ∈ Q[ (Q) tors ] 0,Gal(Q/Q) we have that

[ 1 , 2 ] M = 1 2 [ 1 , 2 ] A
where [ , ] A is the pairing de ned in [33, Theorem 5.1].

Models of CM elliptic curves (according to Deninger and Wingberg)

The aim of this section is to construct the rst pair of functions , ∈ Q( ) of the kind described at the beginning of this section. Let us start with the following result, which is due to Deninger and Wingberg. Lemma 3.3 (see [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]Theorem 4.10]). Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Then there exist two functions , :

→ P 1 such that div( ) = ∈ [ ] (Q)\{0} (( ) -(0)) div( ) = ∈ [ ] (Q)/ (( [ ( )] ( )) -(0))
where ∈ {1, 2} denotes the order of the point

∈ [ ] (Q)/ [ ( )] ( ) ∈ [2] (Q). Moreover we have that R (div( )♦ div( )) = |disc( /Q)| = N /Q ( ) ∈ Z \ {0} (16) 
where is the base change of over and denotes the Hecke character de ned in Section 2.1.

Proof. The two divisors

∈ [ ] (Q)\{0} (( ) -(0)) and 2 ∈ [ ] (Q)/ (( [ ( )] ( )) -(0)) are elements of Q[ (Q) tors ] 0,Gal(Q/Q) ,
as it is clear from the explicit description of the Galois action on torsion points (see [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]Section 4] and Section 2.1). Moreover, the fact that [ ] (Q) is a group implies that

∈ [ ] (Q)\{0} = 0, if 2 N /Q ( ) ∈ [2] (Q)\{0} = 0, otherwise which follows from the fact that [2] (Q) (Z/2Z) 2 .
For similar reasons we have that

∈ [ ] (Q)/ [ ( )] ( ) ∈ [2] (Q)
which implies that we can nd two functions , : → P 1 as in the statement of the theorem. Now the identity ( 16) follows from the computations carried out in [33, Section 4], after having observed that the regulator used by Rohrlich is twice the regulator used by Deninger and Wingberg (see [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF]Page 371] and [33, Equation 1.8] for a comparison) and that div( ) is twice the divisor which appears in [START_REF] Deninger | On the Beilinson conjectures for elliptic curves with complex multiplication[END_REF]Theorem 4.10].

Remark 3.4. It would in principle be possible to prove the identity ( 16) using directly the de nition of R (see Notation 2.11). However this seems di cult, given the complexity of the divisors involved in Lemma 3.3.

We will now use an idea due to Brunault (see [START_REF] Brunault | Parametrizing elliptic curves by modular units[END_REF]Lemma 3.3]) to prove that Q( ) = Q( , ). Proof. Consider a sub-extension ( ) ⊆ ⊆ ( ). Two possibilities can occur:

• = ( ) for some function ∈ ( ), which implies that = ℎ • for some ℎ : P 1 → P 1 . We can assume, up to applying two homographies P 1 → P 1 , that (0) = ∞ and that ℎ(0) = 0. These homographies can be taken to be de ned over because 0 ∈ P 1 ( ) and (0) ∈ P 1 ( ). Then every zero of is a zero of , and the converse also applies because is not constant (hence it has some zero ∈ ) and de ned over (hence all the points ∈ = are zeros of ). Moreover ℎ(∞) = ℎ( (0)) = (0) = ∞, which implies that 0 is the unique pole of (since 0 is the unique pole of ). This implies that div( ) = for some ∈ × , which implies that = ( ).

• there is an isogeny : which induces an embedding * : ( ) ↩→ ( ) and we have that = * ( ( )). This implies that = • for some function ∈ ( ), which in turn implies that ( ) = ∞ for every ∈ ker( ). Hence is an isomorphism (because 0 is the unique pole of ) and thus = ( ).

This shows that ( ) ⊂ ( ) contains no proper sub-extensions. Now suppose that ( ) = ( ) for some points , ∈ ( ) tors . Then we have that

| | = [ ( ) : ( )] = [ ( ) : ( )] = | |
(see [START_REF] Fulton | Algebraic curves. Advanced Book Classics[END_REF]Proposition 8.4]) and that = + + for some ∈ GL 2 ( ) and since both and have 0 as their unique pole we must have that = 0. Hence we get Proof. We know that [Q( ) : [START_REF] Fulton | Algebraic curves. Advanced Book Classics[END_REF]Proposition 8.4]), which implies that deg ( )

| | + 1 ≥ ∈ ( - 
Q( )] = | [ ] (Q) \ {0}| = N /Q ( ) -1 (see
= N /Q ( ) -1. Moreover, [Q( ) : Q( )] < [Q( ) : Q( )] because | [ ] (Q)/ | < | [ ] (Q)|.
We also have that Q( ) = Q( ) where = [ ( 0 )] ( 0 ) for any 0 ∈ [ ] (Q). Indeed, we know that for every ∈ [ ] (Q) there exists ∈ (O / ) × such that = [ -1 ] ( ), because [ ] (Q) is a free (O / )module of dimension one (see [56, Lemma 1]). We can now use Lemma 2.7 to see that

div( ) = ∈ [ ] (Q)/ (( [ ( )] ( )) -(0)) = = ∈ ( O / ) × / ( [ ([ -1 ] ( 0 ))] ( [ -1 ] ( 0 ))) -(0) = = ∈ ( O / ) × / ( [ -1 ( ) ( )] ( )) -(0) = = ∈Gal( ( [ ] (Q))/ ) (( ( [ ( )] ( ))) -(0)) = ∈ (( ) -(0)) = div( )
which implies that = for some ∈ Q × . Now to conclude that Q( ) = Q( , ) we can apply Lemma 3.5, using the fact that Q 

( ) ≠ Q( ) since [Q( ) : Q( )] = [Q( ) : Q( )] < [Q( ) : Q( )].
:= { ∈ [ ] (Q) | ( ) = 0} = | ≠1 (Q) = | O ∈Spec( O ) (Q)
which shows that | | can be computed using an inclusion-exclusion principle.

Models of CM elliptic curves (according to Rohrlich)

Let us turn our attention to the pair(s) of functions , constructed by Rohrlich. We keep again using the notation introduced in Section 2.

Lemma 3.8 (see [START_REF] Rohrlich | Elliptic curves and values of -functions[END_REF]). Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Let ∈ N be a prime such that and O is also prime. Let moreover ∈ N be an integer such that

-1 | O | for some ∈ N
where denotes the base change of to and all the other terms are de ned in Section 2.1.

SECTION 4

Computing the Mahler measure

The aim of this section is to complete the proof of Theorem 1.1, taking as ∈ Z[ , ] a slightly modi ed version of the polynomials that we de ned in Section 3. To do so observe that for every ring and every ∈ Z ≥1 the ring of Laurent polynomials [ ±1 1 , . . . , ±1 ] = Γ(G , , O G , ) supports the action of the group

( × ) +1 × Aut(G ) ( × ) +1 × Z GL (Z)
where : GL (Z) → Aut(Z ) is the obvious isomorphism and the actions of where for every z ∈ Z we de ne z := 1 1 • • • . For every ∈ ( × ) +1 × Aut(G ) we will write := * and v ∈ ( × ) +1 , w ∈ Z , ∈ GL (Z) are the corresponding components. 

( ) div( ) = div( ) div( ) (22) 
(div( )♦ div( )) = det( ) (div( )♦ div( )) (23) 
which follows simply from the fact that ♦ is bilinear and that is odd.

Before moving on, let us introduce some last pieces of notation. 

G 2 (C) → R 2 is de ned by : G 2 (C) → R 2 ( , ) ↦ → (log| |, log| |)
and it deserves this name because for every Laurent polynomial ∈ C[ ±1 , ±1 ] the set ( (C)) ⊆ R 2 is given by a bounded region to which are attached some "tentacles" going towards in nity (see [START_REF] Gel | Discriminants, resultants, and multidimensional determinants[END_REF]Page 194] for a picture). In particular, the complement R 2 \ ( (C)) has at least one unbounded connected component (see [START_REF] Gel | Discriminants, resultants, and multidimensional determinants[END_REF]Corollary 6.1.8]).

Using the action of ( × ) +1 × Aut(G ) we can transform any Laurent polynomial to make the Deninger path (see De nition 4.3) avoid the unit torus and the set of singular points. This can be done combining work of Besser and Deninger (see [START_REF] Besser | -adic Mahler measures[END_REF]Fact 2.1]) and Bornhorn (see [START_REF] Bornhorn | Mahler-Maße und spezielle Werte von -Funktionen[END_REF]Lemma 5.2.8] and [7, Lemma 1.7]). 

(Q × ) 3 × Aut(G 2 ) such that ∈ 1 + Z[ , ], (C) ∩ T 2 = ∅ and ∩ sing (C) = ∅,
∈ Q[ , ]. Now, observe that there exist , ∈ Q × such that if ˜ ( , ) := ( , ) then ˜ (C) ∩ T 2 = ∅.
To show this we can use the amoeba map : G 2 (C) → R 2 (see Remark 4.4). Indeed, ˜ (C) ∩ T 2 = ∅ is equivalent to say that 0 ∉ ( ˜ (C)). Moreover, we know that ( ˜ (C)) = , ( ( (C))), where , : R 2 → R 2 denotes the translation by the vector -(log| |, log| |). Hence we can use the fact that R 2 \ ( (C)) has at least one unbounded connected component to see that there exist , ∈ Q × su ciently large such that ˜ (C) ∩ T 2 = ∅.

Now, let us write ( sing (C)) = {( ( ) 1 , ( ) 2 )} =1 and = 1 + =1 ( ) for some polynomials { } =1 ⊆ Z[ ]. Let nally ∈ N be any natural number such that ≥ max {deg ( )} =1 ∪ ( ) 2 / ( ) 1 : ( ) 1 ≠ 0 =1 and let us take ∈ (Q × ) 3 × Aut(G 2 ) to be v = 1 , , , w = (-, --) and = 1 + 1 0 1 -1 -1 + 1 .
Then the fact that ∈ 1 + Z[ , ] and (C) ∩ T 2 = ∅ follow from the previous discussions, whereas ∩ sing (C) = ∅ follows from [8, Lemma 5.2.8] (see also [7,Lemma 1.7]).

Remark 4.6. If we start from a tempered polynomial ∈ Q[ ±1 , ±1 ] the resulting polynomial will in general not be tempered anymore, because we are scaling its variables and therefore its coe cients. Nevertheless, the functions , will still be supported on torsion points, thanks to [START_REF] Campagna | Entanglement and rami cation properties of division elds of CM elliptic curves[END_REF], and ( , ) ≠ 0, thanks to [START_REF] Cauchi | On Higher regulators of Siegel varieties[END_REF]. Hence we will still be able to apply Theorem 3.1, and we will nd a relation between the Mahler measure of and the -value ( , 0) despite the fact that is not tempered.

We are now ready to prove our main theorem.

Theorem 4.7 (see Theorem 1.1). Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Let , ∈ Q( ) be any pair of functions such that [ ] which exists and is unique thanks to the exact sequence [START_REF] Bourdon | Torsion points and Galois representations on CM elliptic curves[END_REF]. Finally, de ne

Q( ) = Q( , ), , ⊆ (Q) tors and ∞ ( , ), ≠ 0. Let ∈ Q[ ±1 , ±1 ]
:= R (div( ˜ )♦ div( ˜ )) ˜ , ˜ ∈ Q := ∈ ˜ , ˜ \{0} ({ ˜ , ˜ }) ∈ Q × ( 24 
)
where ˜ , ˜ ∈ Q( ) are given by ˜ := and ˜ := (see Remark 4.1). Then is birational to and ( ) = ( , 0) + log| | with ≠ 0 for a suitable choice of .

algebras End( ) Q fall within Albert's classi cation of division Q-algebras with a positive involution (see [24, § 1.3.6]).

Recall now that if is a simple algebra over a eld then its center Z( ) is isomorphic to a eld ⊇ and [ : ( )] is a square. Hence we can de ne the reduced degree = is a semi-simple -algebra we de ne [ : ] red := [ : ] red . Using this notation, we have that [End( ) Q : Q] red ≤ 2 dim( ) and we know that [End( ) Q : Q] red = 2 dim( ) if and only if for every ∈ {1, . . . , } there exists a totally imaginary number eld which contains a totally real sub-eld + ⊆ such that [ : + ] = 2 and ↩→ End( ) Q . Such types of number elds are called CM elds, in view of the following de nition.

De nition A.2. Let be an abelian variety over a eld . Then we say that has complex multiplication if [End( ) Q : Q] red = 2 dim( ) and we say that it has potential complex multiplication if there exists a nite extension ⊇ such that has complex multiplication.

Remark A.3. Let be an abelian variety over a eld , which has complex multiplication. Then we know from Albert's classi cation that either End( ) Q = or char( ) > 0 and End( ) Q is a non-split quaternion algebra.

We see that if an abelian variety de ned over a eld has potential complex multiplication then we have an embedding ↩→ End( ) Q , where is a CM algebra, i.e. a product of CM elds. If char( ) = 0 we have an action of on the tangent space of at the origin. This determines a CM type of , i.e. a collection of algebra homomorphisms Φ ⊆ Hom Q ( , C) such that Φ ∩ Φ = ∅ and Φ ∪ Φ = Hom Q ( , C), where Φ is obtained from Φ by composing with complex conjugation. If is a CM algebra and Φ ⊆ Hom Q ( , C) is a CM type we call ( , Φ) a CM pair. Moreover, acts as well on the spaces of di erential forms de ned on , and this action can be used to study the eld where acquires complex multiplication. This is summarised in the following proposition.

Proposition A.4. Let be an abelian variety de ned over a eld of characteristic zero, which has complex multiplication by a CM algebra = 1 × • • • × . Let Φ be the CM type induced on each , and let ( * , Φ * ) be the re ex CM pairs (see [START_REF] Shimura | Abelian varieties with complex multiplication and modular functions[END_REF]Section 8.3]). Then there is an embedding * ↩→ for every ∈ {1, . . . , }.

Conversely, suppose that is a simple abelian variety de ned over a eld of characteristic zero, such that End( ) for some nite extension ⊇ and some CM eld . Then End( ) Q = End( ) Q for every sub-eld ⊆ such that ⊇ and ⊇ ( * ). Here ( * , Φ * ) is the re ex CM pair of ( , Φ), where Φ is the CM type induced by complex multiplication on , and : ↩→ is the embedding given in the previous paragraph.

Proof. See [65, Chapter II, Proposition 30].

We can now come to the issue of relating the conductor of an abelian variety with potential complex multiplication to the conductor of the corresponding Hecke character. The main theorem that we are going to use is the following one, which is essentially due to Milne.

Theorem A.5 (Milne). Let be an abelian variety de ned over a number eld , let ⊇ be a nite Galois extension and suppose that has complex multiplication by the CM algebra ↩→ End( ) Q . Let = dim( ), = [ : ] and assume that ∩ End( ) Q is a eld and that [ : ∩ End( ) Q ] = . Then we have that Proof. Since [ : Q] = 2 it is immediate to see that | 2 . Then the theorem follows from [52, Theorem 3] and from the two formulas = 2 (see [START_REF] Serre | Good reduction of abelian varieties[END_REF]Theorem 12]) and N / ( ) = N / ( ) disc( / ) 2 (see [START_REF] Milne | On the arithmetic of abelian varieties[END_REF]Theorem 1]). In the second formula, N / ( ) denotes the Weil restriction of an abelian variety de ned over (see [START_REF] Bosch | Néron models[END_REF]Section 7.6] and [START_REF] Conrad | Pseudo-reductive groups[END_REF]Section A.5]).

As Milne already states in [START_REF] Milne | On the arithmetic of abelian varieties[END_REF], this theorem applies in particular when is simple (over ) and is the smallest Galois extension of such that End( ) Q contains the center of End( ) Q . This is exactly the situation of Proposition A.1, which gives us a modern proof of Deuring's result.

- 1 /

 1 Q := { ∈ | Tr( O ) ⊆ Z} denotes the inverse of the di erent ideal associated to the extension Q ⊆ (see [54, Section III.2]); • ∈ is any generator of as an O -module;

  ⊆ ( [ ]) denotes the ray class eld of relative to O (see [54, De nition VI.6.2]) and : Gal( / ) ∼ -→ (O / ) × / denotes the isomorphism which follows from [66, Theorem II.5.6].Remark 2.8. Since is clearly a module over End( ) we have that [ ] is a module over O / , and thus it makes sense to act over [ ]/ by ( ) -1 ∈ (O / ) × / . Moreover, the action of ( ) over [ ]/ is either given by the identity or by the zero map.

  Finally, [ ] : DM( , Λ) → DM( , Λ) denotes the shift functor (coming from the fact that DM( , Λ) is triangulated), and ( ) : DM( , Λ) → DM( , Λ) denotes the Tate twist (see [25, Section 1.1.d]). Notation 2.13. From now on, let us use the notation , M ( )

  which gives us the equality ∞ ({ , }) = [(log| | arg( ) -log| | arg( ), 0)]. Remark 2.19. For every -dimensional smooth algebraic variety over R or C we have an integration pairing , : F ( ) ⊗ ( (C); R) → C ⊗ ↦ → , := ∫ between di erential forms and singular homology classes. If is proper then there is another pairing

Lemma 3 . 5 .

 35 Let be an elliptic curve de ned over a eld . For every ∈ ( ) tors let := Gal( / ) and let ∈ ( ) be any function such that div() = ∈ (( ) -(0))where ∈ Z ≥1 is the order of the point ∈ ∈ ( ) tors . Then we have that: 1. the extension ( ) ⊂ ( ) contains no proper sub-extensions; 2. if ( ) = ( ) for some points , ∈ ( ) tors and char( ) = 0 then | | = | |.

  for some ∈ Z ≥1 . But then | (since is the order of ∈ ∈ ( ) tors ) and thus = (because = ℎ • ). Hence =

Theorem 3 . 6 .

 36 -Hurwitz formula (see[74, Section 0C1B]) for the covering : → P 1 . This implies that = = 1 and thus that | | = | |. Let be an elliptic curve de ned over Q having potential complex multiplication by the ring of integers O of an imaginary quadratic eld . Let moreover , ∈ Q( ) be as inLemma 3.3. Then we have that Q( ) = Q( , ) and deg ( ) = N /Q ( ) -1, where ∈ Z[ , ] denotes any minimal polynomial for and .

Remark 3 . 7 .

 37 We know that deg ( ) = N /Q ( ) -1. Computing deg ( ) is harder, but it can be done if we know | [ ] (Q)/ | (which depends on gcd(N /Q ( ), | |)) and | |, where

v∈

  = ( 0 , . . . , ) ∈ ( × ) +1 w = ( 1 , . . . , ) ∈ Z GL (Z) on a Laurent polynomial ∈ [ ±1 1 , . . . , ±1 ] are given by v * := 0 ( 1 1 , . . . , ) w * := w * := ( m 1 , . . . , m ).

Remark 4 . 1 .

 41 Let be a eld, let ∈ [ ±1 , ±1 ] and let ∈ ( × ) 3 × Aut(G 2 ). Then we have an isomorphism ∼ -→ between the zero loci of and inside G 2 . This induces an isomorphism ( ) ∼ -→ ( ) between the function elds of the desingularisations of their compacti cations, which identi es the functions , ∈ ( ) with := and := , where , , , ∈ Z are such that = . Let now := denote the Jacobian of (see Notation 2.10), let ≤ ( ) denote any subgroup such that , ⊆ and let : Q[ ] → Q be any Q-linear map which is odd, i.e. such that ((-)) = -(( )) for every ∈ . Then we have that , = , and div

Notation 4 . 2 .

 42 For every Laurent polynomial ∈ C[ ±1 , ±1 ] we denote by ↩→ G 2 its zero locus, by ←↪ a compacti cation of and by a desingularization of . Moreover, we denote by sing ↩→ the closed subset of singular points and by reg := \ sing its open complement. De nition 4.3 (see [31, Assumptions 3.2]). Let ∈ C[ ±1 , ±1 ] be any Laurent polynomial. Then we de ne a path := {( , ) ∈ (C) | | | = 1, | | ≤ 1} and we denote by [ ] ∈ 1 ( (C), ; Z) its class in singular homology.

Remark 4 . 4 (

 44 Amoeba map). The amoeba map :

Lemma 4 . 5 .

 45 Let ∈ Q[ ±1 , ±1 ] be any Laurent polynomial. Then there exists ∈

  be a minimal polynomial for , and let := for any ∈ (Q × ) 3 × Aut(G 2 ) satisfying the conditions of Lemma 4.5. Let ∈ Q × be de ned by the identity [ * ( * ( ))] = (-) , where denotes the open embedding : reg ↩→ \ , and denotes the open embedding : \ , ↩→ . Let moreover {[ ]} ∈ , ⊆ 1 ( (C) \ , ; Z) be the homology classes associated to small loops around each point ∈, , let [ 1 ], [ 2 ] ∈ 1 ( (C) \ , ; Z) be such that the set {[ ]} 2 =1 ∪ {[ ]} ∈ , generates 1 ( (C) \ , ; Z) and let { } ∈ , \{0} ⊆ Z and { } 2=1 ⊆ Z be de ned by the decomposition

[

  : ] red := [ : ( )] [ : ] ∈ N and if

| 2

 2 and for every : ↩→ C we have that = N / ( ) disc( / ) 2 / , where denotes the Hecke character associated to and (see [64, Section 7]), denotes the conductor of (see [52, § 1.(b)]) and denotes the conductor of the Hecke character (see [54, Section VII.6]).

  where T 2 ⊆ G 2 (C) denotes the real unit torus.

	Proof. First of all observe that we can write =	(( ( +	2 )) +	1 ) for some , , ∈ Z, ∈ Q × and
	1 , 2 ∈ Q[ , ]. Indeed, rst of all we can write =	for some	∈ Q[ , ] and , ∈ Z such that
	,	=	. Hence we can write for some ∈ Q[ , ], which implies that we can write = + 1 for some , 1 ∈ Q[ , ]. Finally, there exists ∈ Z such that = + 2 for some ∈ Q × and
	2			
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Then there exist two functions , : → P 1 such that

where for every ∈ Z ≥1 we de ne := Gal(Q/Q) (1/ ) ⊆ [ ] (Q) and ∈ Z ≥1 to be the order of the torsion point ∈ ∈ [ ] (Q). Finally, we have that

Proof. First of all, observe that such a number ∈ N exists because -1 | , which follows from Deuring's formula (see Proposition A.1) and the fact that ord ( ) ≠ 1 for every prime ∈ N. Now observe that

Let us now turn to the proof of [START_REF] Brunault | A motivic interpretation of Maillot's trick[END_REF]. First of all, it is evident from the de nition that , which implies that for every

12). This implies that

because {(0, 0), ( (1/ ), 0), (0, (1/ )), ( (1/ ), (1/ ))} is a full set of representatives for the diagonal action of Gal(Q/Q) on × . We have moreover that R ( (-

because (1/ ) ∈ (R), no prime ideal | is coprime to and Ann O ( (1/ )) = . Finally, we have that

because Ann O ( (1/( ))) = and the only prime which divides and is coprime with is O , for which we have that 19), ( 20) and ( 21) we obtain [START_REF] Brunault | A motivic interpretation of Maillot's trick[END_REF].

Remark 3.9. Observe that ∈ {1, 2, 3, 4, 6} for every ∈ Z ≥1 , which follows from the complete characterisation of the possible rational torsion subgroups (Q) tors associated to an elliptic curve de ned over Q which has potential complex multiplication (see [START_REF] Olson | Points of nite order on elliptic curves with complex multiplication[END_REF]).

Remark 3.10. If we take ∈ Z ≥1 such that | O we know that ( [ ] (Q)) coincides with the ray class eld of relative to the modulus O (see [26, Lemma 3]). Hence in this case we do not need to use Proposition 2.12 to prove Lemma 3.8.

We can now prove the analogue of Theorem 3.6 for Rohrlich's functions. Proof. We see from Lemma 3.5 Proof. Recall rst of all that ˜ , ˜ = , . Observe moreover that [ * ( * ( ))], ∈ 1 ( (C); Q) -Q which implies that ∈ Q exists. We have now the following chain of identities:

where denotes the open embedding : reg ↩→ . To explain these identities we observe that ( 25) is an application of [START_REF] Deninger | Deligne periods of mixed motives, -theory and the entropy of certain Z -actions[END_REF]Theorem 3.4], using the fact that * = 1 and ( 26) is a consequence of the fact that ⊆ reg (C). Moreover, [START_REF] Colmez | Périodes des variétés abéliennes à multiplication complexe[END_REF] follows from the fact that * ({ , }) = * ({ ˜ , ˜ }) and ( 28) follows from the de nition of ˜ , ˜ . Finally, (29) follows from Proposition 2.21 and (30) follows from Theorem 3.1. [START_REF] Boyd | Mahler's measure and special values of -functions[END_REF]Page 48]). Clearly, the same holds if we take | | > 1 in the set on the right and if we change with . In other words, if the amoeba ( (C)) does not intersect all the four semi-axes we have that = 0. Nevertheless, it is clear that we can translate the amoeba su ciently enough so that, with a convenient rotation, it will intersect all the four semi-axes. When this happens, we will have that ≠ 0. Remark 4.8. Pairs of functions like the ones described in the statement of Theorem 4.7 are given by the constructions of Deninger and Wingberg (see Lemma 3.3) and Rohrlich (see Lemma 3.8).

Now observe that

APPENDIX A

Conductors of abelian varieties with complex multiplication

The aim of this appendix is to provide references for the theory of complex multiplication, and for a proof of the following result, which is due to Deuring.

Proposition A.1 (Deuring). Let be an elliptic curve de ned over Q( ) where = ( ). Suppose that End Q ( ) O for some order O ⊆ O inside an imaginary quadratic eld . Then we have that

where ⊆ O Q( ) denotes the conductor ideal of , : A × ( ) → C × denotes the Hecke character associated to , with conductor ⊆ O ( ) , and disc( ( )/Q( )) ⊆ O Q( ) denotes the discriminant of the extension Q( ) ⊆ ( ).

Let us recall rst of all the notion of complex multiplication (see [24, Chapter 1] for an excellent introduction). Every abelian variety de ned over a eld is isogenous to a unique product 1 1 × • • • × , where each is simple, i.e. it does not have any non-trivial abelian sub-variety. Hence we have an isomorphism of Q-algebras End(

and every choice of polarisation → ∨ endows the Q-algebra End( ) Q with a positive involution. Since is simple then End( ) Q is a simple division algebra, i.e. End( ) Q does not have any non-trivial two-sided ideal and for every , ∈ End( ) Q there exists a unique pair , ∈ End( ) Q such that = = . Hence the