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Abstract 

We model trait selection by deriving and comparing models for direct trait selection and selection that is 

mediated by interspecific interactions. The purpose is to model the two selection forces simultaneously, in 

order to account for potential trait covariance in the estimation procedure when including multiple trait 

values. In addition, we identify those traits most important for selection forces, and the role of flooding 

duration.  A Bayesian modelling approach is applied and fitted to plant species cover including stochastic 

variable selection, to test the importance of individual traits on selection forces. We used pin-point data 

from wet grasslands of the French Atlantic Coast. Our results show that trait selection forces are driven by 

direct selection and, to a minor extent, by selection mediated by interspecific interactions. Of the tested 

traits leaf dry matter content (LDMC) and specific leaf area (SLA), seemed most important for selection 

forces. We find a significant effect of flooding on selection forces. Parameter covariance analysis revealed 

flooding to be most strongly correlated with direct selection forces. The method has less critical 

assumptions regarding the geographical limit of the ecological environment than a traditional filtering 

approach, and allows weighting traits simultaneously and accounting for their covariance. Inference is easy 

to obtain from the posterior parameter distributions of the Bayesian estimation. Thus, the Bayesian 

method presented is very objective. A program architecture is supplied in the R-programming language.    
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Introduction 1 

Local species assemblages made off local communities results from the selection of the regional species 2 

pool by various filters. 3 

Lortie et al. (2004) describes three filters, going from the coarse to the fine scale. The first filter is a 4 

spatial/geographical filter, which provides a boundary limiting the spread of the species, for example the 5 

sea or a mountain chain. The second level is a physiological filter, caused by environemental conditions 6 

filtered   plant species according to their respective tolerance. Finally, the biotic filter works by plant-plant 7 

interaction by competition, symbiosis and facilitation. In praxis, all three levels must interact to some 8 

extent, and also vary with a stochastic component, physiological and biotic filters interacted(Shipley (2010) 9 

. 10 

. For example, a drought intolerant plant will also compete less in a dry environment , whereas less intuitive 11 

pattern of biotic interaction issues have also been find along elevation gradient (see e.g. Damgaard et al 12 

2017, Oecologia. A Any modeling aiming to predict  plant abundance pattern in environmental gradient 13 

within their community must thus include both filters, and their effect at the adequate spatial scales. 14 

Functional traits (Garnier et al., 2016) is a way to quantify the adaptative species’response to constraint , 15 

from plant community to larger levels of organization, i.e. across environmental gradients. At the same 16 

time  knowing the species composition on the community level they may be applied in models of spatial 17 

interaction on the finest scale by traits. Thus, traits in models can work on different spatial resolutions.              18 

In ecology, traits can be defined as measures of expected genetic heritable abilities of different species or 19 

performance under idealized conditions having no restrains (McGill and Brown, 2007). Most often, the 20 

traits refer to a pool of individuals in the environment rather than a single subject (Violle et al., 2007).  21 

Traits are often applied in the study of selection forces of plant populations in a two-step process. Firstly, 22 

through a survey the species of a habitat are identified, and, secondly, the distributional properties of their 23 

traits are studied as a proxy for the filtering (pass through) facilitated by selection forces (Keddy, 1992, 24 
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Loranger et al. 2016). This is done by comparing observed trait pattern with a global species trait 25 

distributional reference. If the variance of the local environment is less than expected by random sampling 26 

in a null model (Bernard-Verdier et al., 2012), trait values are driven in a direction towards a common 27 

stable equilibrium. If the variance is higher than at random, then the traits are selected in divergent 28 

directions. The outcome of such a method depends on specification of the global trait pool and the 29 

geographical area under investigation, the first of which it is critical to define properly because it serves as 30 

an ecological reference model (Gotelli and Graves, 1996). The temporal stage of the area is also important, 31 

since pioneering species will perform differently in different stages of succession. If the subjective 32 

definition of the null model is biased relative to the “correct” one, then all successive results are influenced. 33 

In addition, it can be difficult to distinguish which part of selection is due to niche partitioning and which is 34 

due to interspecific competition (Adler et al., 2013), since both can result in the same trait distribution. 35 

Another weakness of modelling each trait separately is that it neglects trait interaction and studies 36 

selection forces of traits independently of each other. However, since traits are in fact multivariate 37 

measures of potential plant performance, it seems reasonable to assume that they simultaneously will have 38 

an impact on the outcome of the selection process (Garnier et al., 2016, P. 11 and 20). Studies using traits 39 

often look at species diversity and its relation to trait variation (Dwyer and Laughlin, 2017). Because trait 40 

variation and species richness seem not to be related in a simple linear way, covariance among trait, i.e. the 41 

fact that traits express the same property or interact in a synergistic way, becomes important. Therefore, 42 

new methods are required that look at traits simultaneously and integrate them in the selection process. 43 

Traits are often surrogates, and initial exclusion of traits can be made e.g. by principal components analysis 44 

(Bernard-Verdier et al., 2012; Johnson and Wichern, 2007), to reduce the number of model variables and 45 

make parameter estimation easier. While a principal components analysis is an objective measure of 46 

correlation, data variables need to be seen in a framework where the outcome of species competition 47 

interaction is also included and confounding effects can be studied. Lavorel and Garnier (2002) underline 48 

this point by differentiating traits that are causes/drivers of the pattern that we observe in nature (effect 49 
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traits) or merely a phenotype resulting from a response to affect and stress induced to the environments 50 

(response traits).    51 

As pointed out by Mather (1953), the selection forces may be divided into three possible outcomes: 52 

directional, disruptive and stabilizing selection. If we assume that the original quantity of interest – for 53 

example height of individuals over an area, is symmetrically distributed around a mean, then stabilizing 54 

selection will result in the same mean, but less variance, i.e. the heights will become less dispersed. 55 

Directional selection, on the other hand, will shift both the mean, but also the frequency in form of 56 

skewness. The reason for this is that selection forces act differently on the extreme values of the initial 57 

distribution. Disruptive selection tends to multimodality of the resulting distribution, i.e. more new optima. 58 

Any model of selection forces must capture these theoretical outcomes.   59 

For this purpose, Damgaard (2016) presented a method based on theoretical justifications and assumptions 60 

about the competitive processes using nonlinear models. These models make it possible to:   61 

1) Decide which of the three types of fundamental selection forces described by Mather that are 62 

supported by the data.   63 

2) Differentiate between the direct selection forces originating from traits alone and selection that is 64 

mediated by interspecific interactions.         65 

We make the first practical implementation of the method of Damgaard in order to study the empirical 66 

process of trait selection. The models of Damgaard are essentially modifier functions made according to 67 

our expectation on different types of directional selection. In addition, a term involving species interaction 68 

is applied. The general form of the model is:  69 

Equation 1                                   𝑞𝑞´ = 𝑞𝑞 ∗ 𝐹𝐹 ∗ 𝐶𝐶   70 

Where 𝑞𝑞´ is the quantitative outcome of selection forces collected in a survey, e.g. observed cover, and 𝑞𝑞 is 71 

the cover in the previous year. 𝐹𝐹 is the expression of the direct trait selection forces, and 𝐶𝐶 is an expression 72 
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of selection that is mediated by interspecific interactions. We give different examples of modifier functions 73 

and put them into the context of the selection forces. Adler et al. (2013) advocate that any model of 74 

competition should include spatial as well as temporal variation in the environment and its resources in 75 

order to incorporate the carrying capacity of the plant species (niche differentiation) and competitive 76 

pressure caused by the spatial pattern (Wyszomirski and Weiner, 2009). We therefore model the spatial 77 

scale at two levels, firstly at a landscape level with a flooding gradient in order to include the effect of 78 

hydrology on species interaction and the impact of change in the species ecological and physical amplitude 79 

(Bernard-Verdier et al., 2012). This is a proxy variable for the realized and fundamental niche (Harper, 80 

1977). Secondly, we model at a plot level where species interactions could be present. Hence, we include 81 

both niche differentiation and competitive effects. The mathematical formulation is important for the 82 

spatial incorporation of spatial effect, and this is done by means of the 𝐹𝐹 ∗ 𝐶𝐶 terms, which will be described 83 

more in detail later.  We apply a Bayesian framework, as it allows for inference of the model parameters 84 

using their posterior distribution without dubious assumptions or mathematical approximations of the joint 85 

distribution of model parameters  (Montgomery et al., 2006, p. 546).     86 

The objectives of the study are:  87 

a) To develop and fit a model of the selection forces in a natural environment, which include space, 88 

time and multiple traits.   89 

b) To test whether direct selection forces and selection that is mediated by interspecific interactions 90 

are important for species abundance.    91 

c) To see whether hydrology has an impact on the selection forces.92 
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Materials and Methods  93 

Sampling design  94 

The data was collected using the pin-point method, where a frame 25*25 cm contain points positioned 95 

along the diagonal of the frame located with 4 cm apart yielding 17 pin-points per frame for 70 plots. At 96 

each point, a needle was positioned vertically towards the ground and a plant species was recorded, if it 97 

touched the needle. The fraction of the plant relative to all recorded species in the grid could then be 98 

calculated and applied as plant cover (𝑞𝑞).    99 

Measurements in the first period took place from 23-29 October 2008 and in the second period from 19-20 100 

October 2009. We made the assumption that plot cover of species between the years could be regarded as 101 

paired observations, despite the fact that it was not measured exactly at the same time of the year. This 102 

has previously been tested using the data in the current study and has proven to be a valid approach 103 

(Damgaard et al., 2016). 104 

Study area and data 105 

The data was collected in the Marais poitevin marshland on the French Atlantic coast (46°26N, 1°13W). The 106 

marshland is grazed by cattle and horse, and the plots were fenced to prevent grazing doing the study 107 

period. The plant community is dominated by different grass species, mainly Agrostis Stolonifera (L.) (51 % 108 

of pinpoint observations) and Cynosurus Cristatus (L.) (Around 13 %). A summary is given in Figure 1 and 109 

the right column of Table 1. The mean precipitation falls in the winter, with a surplus of 220 mm 110 

precipitation when accounting for evapotranspiration. The summer has a deficit of 300-350 mm (Amiaud et 111 

al., 1998). The average of the minimum*, and maximum** temperatures in the four seasons are 112 

respectively (winter 3*,9.7**:  spring 6.3*,15**, summer 13*,23.3**, autum:8.7*,17**) (taken from the 113 

city La-Rochelle – France) (Climatedata.eu, 2017). Damgaard et al. (2016) gives a more detailed description 114 

of the study site.    115 
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For each plot, the traits were measured and an average abundance was taken as a general estimate of trait 116 

performance for each species in the data, though other methods using a probability weighted average 117 

could also have been used (Bernard-Verdier et al., 2012). The trait values can be seen in Table 1. We 118 

selected the species trait values specific leaf area (SLA), measured on one-side divided by its oven dry mass 119 

(m2/kg), leaf dry matter content (LDMC) (mg/g), calculated as the ratio between oven-dry mass of leaf 120 

divided by its water saturated mass, and vegetative height (m), defined as distance between the top of the 121 

species and the ground.   122 

These traits are considered important measures of plant fitness (Dwyer and Laughlin, 2017) on for example 123 

vegetative growth (LDMC), light competition (Vegetation height), and respirational processes (SLA). For the 124 

species Plantago major (L.), the LDMC was missing and set to the average during the calculations.   125 

Flooding impacts/constrains plant performance and plant interaction due to its role in the main plant´s 126 

determinant process through e.g. photo synthesis, transpiration and diffusion of gases in the root system. 127 

The Sum Exceedance Value (SEV) (Swetnam et al., 1998) was applied as a proxy for flooding. It is calculated 128 

by counting the number of days during the year that the water level exceeds a threshold that causes stress 129 

due to aeration and multiplying these numbers by the difference in observed and threshold water levels, 130 

followed by summation.  131 

In the grassland, the soil conductivity peaks where the flooding is of intermediate duration. Thus, though 132 

SEV is a measure of aeration and water shortage, aspects regarding salinity are also incorporated. The 133 

calculations of SEV was done as specified by Damgaard et al.  (2016). Because we collected cover data in 134 

two periods, some species only appeared in one year, indicating ingrowth or mortality. In order to utilize 135 

the collected data information and avoid bias by removing species that are rare in the area, or missing due 136 

to the probabilistic nature of the sampling design, we set missing cover values close to 0 and assumed SEV 137 

to be constant for those observations. A motivation for including hydrology in studies of cover from the 138 

French wet grasslands can be found in Damgaard et al. (2016) and Violle et al. (2011), who found strong 139 
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significant correlations between observed species cover and hydrology in the same data. Selection may 140 

therefore depend on hydrology.    141 

Model, estimation and evaluation 142 

A phenotype under selection may be summarized by its empirical density function. We can interpret the 143 

selection forces as functions to modify this distribution. Depending on the shape of the modifying function, 144 

the selection forces change the moments of the phenotype distribution (Harper, 1977, 758-760 ; Westoby, 145 

1982). Also, the variance of the modifying function has an impact (Hara, 1984). For example, directional 146 

selection affects the mean and skewness of this distribution, whereas stabilizing selection will affect only 147 

the variance. Disruptive selection tends to affect both the mean and skewness. Damgaard (2016) made 148 

functions that are capable of doing this modification, and the model applied here is an extension of these 149 

methods seen in Equation 1. 𝐹𝐹 is a growth function for estimation of the direct selection forces originating 150 

from the 𝑥𝑥´𝑡𝑡ℎ trait , and 𝐶𝐶 an expression of the selection forces put on species with trait 𝑥𝑥 from competing 151 

species 𝑦𝑦. The idea is to separate direct selection from traits and the selection that is mediated by 152 

interspecific interactions into two, in order to model each of them individually. This allows complex models 153 

of the selection outcome. The terms 𝑞𝑞 and 𝑞𝑞´ are the covers in Year and Year+1. Summation was done over 154 

all m plots, for k traits.   155 

Equation 2 156 

 𝒒𝒒´𝒋𝒋 = 𝒒𝒒𝒋𝒋 ∑ �𝑭𝑭𝒌𝒌(𝒙𝒙,𝑺𝑺𝑺𝑺𝑺𝑺)�∑ 𝑪𝑪𝒌𝒌(𝒙𝒙,𝒚𝒚,𝑺𝑺𝑺𝑺𝑺𝑺)𝒒𝒒𝒕𝒕𝒌𝒌=𝒚𝒚𝒚𝒚∈𝛀𝛀 ��+ 𝜺𝜺𝒎𝒎
𝒌𝒌=𝟏𝟏  157 

Because 𝐹𝐹 and 𝐶𝐶 are jointly estimated in a one-step model, their interaction can be studied be means of 158 

the parameter correlations. The hydrology (𝑆𝑆𝑆𝑆𝑆𝑆) variable was included into each of the functions 𝐹𝐹 and 159 

𝐶𝐶 by a an easily interpretable linear term, as shown in Table 2. Also, the table contains all models tested in 160 

the study, with an explanation in the most left column of the table. Spatial patterns are modelled implicitly 161 

since the pin-point method is a spatial sampling procedure. Furthermore, the mathematical formulas of 162 
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Table 2 assumes different effect nonlinear (spatial) effects of the traits. For example Model 3 of Table 2 163 

contains the expression shown in Equation 3, where  𝐸𝐸𝐸𝐸𝐸𝐸 is the natural exponential function, 𝐻𝐻 is a term 164 

measuring hydrology and 𝑦𝑦 and 𝑥𝑥 denotes the traits observed in the pinpoint frame. The subtraction of the 165 

traits put implicit assumptions about their spatial interaction, which cannot be proved, but justified by 166 

statistical analysis. The other models of Table 2, put other assumptions on the spatial interaction such as a 167 

fraction (Model 4). In addition 𝐻𝐻 was assumed to enter as a multiple, in order to separate this term from 168 

separately from the trait term, but allow potential interaction to be studied. Hydrology is modelled per plot 169 

and therefore this is also a spatial measure. Inside the pinpoint frame, we made a mean-field assumption 170 

(Bolker and Pacala, 1999), thus we do not apply the needle positions in our analysis.  171 

Equation 3 172 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷_𝑘𝑘(𝑥𝑥,𝑦𝑦,𝐻𝐻) = 𝐸𝐸𝐸𝐸𝐸𝐸(−𝐻𝐻(𝑦𝑦 − 𝑥𝑥))) 173 

The model was estimated using the Metropolis algorithm (M) (Gelman et al., 2004, p. 289-290), a Markov 174 

chain Monte Carlo procedure (MCMC). This algorithm is simple and able to fit non-linear models. Complex 175 

interactions were analyzed by the joint model parameter distributions using Pearson correlations. In order 176 

to apply a normal distributed probability density function (PDF) logit transformations were made on 𝑞𝑞´𝑗𝑗  177 

and 𝑞𝑞𝑗𝑗. The M-algorithm requires a symmetric proposal function, hence we applied this when possible, in 178 

most cases a normal distribution. Since the variance parameters cannot be negative, a normal distribution 179 

with small variance was applied and, in the rare negative case, the proposal was set close to 0.   180 

The priors were assumed normal distributed, except for the variance, which was gamma distributed with 181 

both scale and rate parameters equal to 2, to avoid negative values. For all models, 150.000 simulations of 182 

the M-algorithm were made. After removing 10.000 burn-in observations the remaining observations were 183 

applied to model the joint and marginal posterior distributions.    184 

Model comparison was made using the Deviance Information Criteria (DIC) (Spiegelhalter et al., 2002; Zuur 185 

et al., 2009, p. 528) by application of the mean parameter of each marginal parameter distribution. To 186 
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evaluate the predictive performance and account for the dispersal of the marginal distributions, i.e. their 187 

variance, we made 15.000 simple random samples in the posterior distributions of the parameters, 188 

excluding the error term of the normal density describing the dependent variable. The empirical density of 189 

cover 𝑞𝑞´𝑗𝑗  was compared to the simulated cumulative empirical distribution using the Kolmogorov-Smirnof 190 

test (Massey, 1951).   191 

One assumption, which may be critical, is the additivity of the terms in Equation 2, but this can be justified 192 

by means of variable selection, which allows selecting the terms that have parameters significantly 193 

different from zero. We applied the variable selection proposed by Kuo and Mallick (KM) (1998). In short, 194 

the method of Kuo and Mallick introduces a multiplicative indicator to each model term. The indicator 195 

variable consist of two parts, a “0” part which is assumed non-stochastic and is named the spike,  and a “1” 196 

part (the slab) which has Bernoulli (Owen et al., 2009, 268) prior distribution. We extend Equation 2 to 197 

include the indicator 𝐼𝐼1. . 𝐼𝐼𝑘𝑘 variables as in Equation 4.     198 

Equation 4    199 

   𝒒𝒒´𝒋𝒋 = 𝒒𝒒𝒋𝒋 ∑ 𝑰𝑰𝒌𝒌 �𝑭𝑭𝒌𝒌(𝒙𝒙,𝑺𝑺𝑺𝑺𝑺𝑺)�∑ 𝑪𝑪𝒌𝒌(𝒙𝒙,𝒚𝒚,𝑺𝑺𝑺𝑺𝑺𝑺)𝒒𝒒𝒕𝒕𝒌𝒌=𝒚𝒚𝒚𝒚∈𝛀𝛀 �� + 𝜺𝜺𝒎𝒎
𝒌𝒌=𝟏𝟏  200 

The indicator variable enters the M-algorithm, and the preferred model is the one where the posterior 201 

inclusion probabilities of the indicator variable are higher than 0.5, i.e. the indicator variable enters in at 202 

least 50 % of the selected models, this is called the median probability model (Barbieri and Berger, 2004). 203 

To test the sensitivity of the Bernoulli distribution, we ran the selection including 30, 50 and 80 percent of 204 

the variables and found, using DIC, the best results with 80 % inclusion. This is due to the high number of 205 

model parameters, which seems sensitive to a sudden exclusion of a whole term, making it difficult to get 206 

acceptance in the M-algorithm. One advantage of the KM method is that it runs as an integrated part of the 207 

M-algorithm, and therefore the computation time is less than an all-possible subset test (Montgomery et 208 

al., 2006). Furthermore, contrary to the stochastic search variable selection method (SSVS) (George and 209 
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McCulloch, 1993) the KM method allows for priors with a mean other than 0, and no standardization of the 210 

variables is needed.  In order to improve the mixing properties of the chain, the chain value of the 211 

individual parameters that were multiplied to 𝐼𝐼𝑘𝑘 were retained whenever each of the terms 𝐼𝐼𝑘𝑘 of Equation 212 

4 was 0. In addition, when predictions were made from the mean parameter values we used a conservative 213 

approach so that the indicator variable parameter was included in the model whenever it appeared in more 214 

than 5 pct. of the MCMC simulations, i.e. 𝐼𝐼𝑘𝑘 were statistically significant at the 5 percent level. A program 215 

for model estimation and evaluation  was made in R (R Development Core Team, 2016), and a flowchart of 216 

the programs is available in the online Appendix A.1, which can be send on request.   217 

 218 

Results  219 

In Figure 1 the left side of the boxplots shows the cover for the different species in the first measurement 220 

period, and the right side is the change registered in the second. We see that many species show a change 221 

in cover bteewn the two periods, potentially due to selection forces, making further modelling attempts 222 

reasonable. Plots of SEV versus cover for different species (see Figure A. 2 in Appendix A.2) revealed strong 223 

trends and thus justify the inclusion of this variable in the model.   We noticed that some species however 224 

have almost the same cover. 225 

The chains produced by the MC-algorithm showed good mixing properties, though at least 10.000 burn-ins, 226 

were needed before the chain seemed to stabilize. Some correlations were present between the 227 

parameters, and this may be of general interest due to the biological nature of the model. The time for 228 

running the model seems limited by the term 𝐶𝐶𝑘𝑘 (Equation 2), which requires looping through all species on 229 

the plot level. Nevertheless, within 10 days we could compute more than 150.000 MCMC iterations on a 230 

standard PC 2.4 GHz processor of even the slowest model tested, making the method applicable to most 231 

practical implementations. For the more complicated models (Model 4-5), we manually calculated initial 232 

guesses in order reduce the burn-in period of the MCMC. Our experience is that few model parameters set 233 
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near to mean trait values are a good starting point. In addition, the variances of the posterior parameter 234 

histograms of Models 4 -5 seemed smaller, probably due to the formula using exponential in fractions, 235 

making only a narrow number of values reasonable.   236 

Generally, all models showed that direct selection forces where the most dominant, as adding the 𝐶𝐶𝑘𝑘 term 237 

(Equation 2) did not seem to offer much improvement, which can be seen by looking at the DIC values of 238 

Table 3. One interpretation of this result is that the model does not capture selection that is mediated by 239 

interspecific interactions, nor the potential nonlinearity of the cover. However, the model overall assumes 240 

linearity (𝑞𝑞´𝑗𝑗 times model terms), and a scatter plot of the covers in the two observed years revealed a 241 

linear tendency in the nonparametric Lowess-estimator with a strongly significant Pearson correlation 242 

(R=0.78)( see  the upper left subplot of Figure 2). However, if the models are suitable, their predictions 243 

should mimic that of the original data. The remaining subplots of Figure 2 show predictions against the 244 

independent variable (𝑞𝑞´𝑗𝑗 ) based on the mean parameter of the posterior MCMC -distributions. The 245 

header of the subplot identifies the different models.  246 

Notice that the full model and the KM-selected model are plotted in the same subplot, as shown in the 247 

Figure 2 legend. When looking at the trend lines, and residual plots (Appendix A.4), Model 3 (directional 248 

selection) gives the best predictions. The R2 ranges from -0.2 (model 5) to 0.77 (Model 3), showing that the 249 

best model gives R2 similar to the original data. Though model 5 with variable selection gave lower AAB and 250 

DIC, Model 3 seems to give the most reasonable predictions when looking at the subplot (Figure 2).   251 

For all models, the variable selected models gave less variation in the output, though judging from the DIC 252 

and AAB, and  were sometimes better than the full model (Table 3). However, when looking at the actual 253 

predictions, it became clear that in many cases this was due to reductions in variance (many 0 and 1 254 

predictions) and not due to effective better models. Especially the near to 0 predictions can give high DIC 255 

values because the raw data contains many near to 0 observations.  256 
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The predictive simulation using the Kolmogorow-Smirnow test is good supplement to the DIC and AAB, as 257 

the variation in prediction cover is tested against the observed cover. In Figure 3, boxplot of test-values 258 

confirms that Model 3 is the best model that includes selection that is mediated by interspecific 259 

interactions (𝐶𝐶𝑘𝑘 term,) because it has the lowest test value. It can be seen that the simpler version of Model 260 

3 (Model 1) excluding the 𝐶𝐶𝑘𝑘 term is the best according to the Kolmogorow-Smirnow test. This indicates 261 

that directional selection is important driver for species cover. Also, the grey boxplots show the same test 262 

results based on significant variable selected terms. There is a big difference between the original models 263 

and the variable selected models and, in most cases, it looks like the full models are better. Notice, 264 

however, that in all cases p-values obtained from the test were not significant (not shown), due to the 265 

sensitivity of the Kolmogorow-Smirnow test.     266 

 In Figure 4, the results of the variable selection procedure on the different 𝐼𝐼𝑘𝑘 terms of Equation 4 are 267 

shown. For each model we see the proportion of times that the MCMC procedure retains the trait value, to 268 

the total number of iterations excluding burn-ins. Thus if the bar has value 1, the trait is always retained, 269 

indicating that it is an important predictor, and the closer to 0 the less important. We see that for all 270 

models except Model 5, vegetation height is important, whereas LDMC and SLA are often not retained and, 271 

in many cases close to not significant at the 5 percent level. The fact that traits perform differently for 272 

different models shows that the competitive process can be driven by different traits in different ways. The 273 

best model (Model 3), contrary to other models, ranked LDMC as important. However, if we consider  274 

model performance as a conclusive tool, then we must trust the model that performs the best according to 275 

DIC and AAB. To this respect,  the bars from Model 3 in Figure 4  is showing that all traits have some 276 

importance, but that LDMC and SLA are most important, followed by vegetation height. It is interesting that 277 

vegetation height for Model 3 seems slightly less important than for all other models. It shows that relying 278 

on a single model and not covering all three types of selection forces may lead to wrong conclusions.      279 
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The Table 4 (lower half) showed the Pearson correlation coefficient between the parameters of Model 3. 280 

The t-test in the upper half shows that the parameters seem to be significantly correlated at the five 281 

percent level. The high correlations between parameters of the direct selection forces for the different 282 

traits indicate that they mimic the same property of plant performance.   283 

The results are showing  that hydrology seems important, since the parameters of the H term (𝐻𝐻 =284 

𝑎𝑎0𝑘𝑘+𝑎𝑎𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆) are significantly different from 0. Interestingly, when looking at the parameter estimates and 285 

their range in Table 5, we see that the terms 𝑎𝑎𝑘𝑘𝑘𝑘 and 𝑎𝑎0𝐹𝐹𝐹𝐹 are higher than their counterparts in the 286 

selection trait interaction term (𝑎𝑎𝑘𝑘𝑘𝑘  and 𝑎𝑎0𝐶𝐶𝐶𝐶). This indicates that the direct trait selection seems to be a 287 

more important driver for selection forces over a hydrological gradient than selection that is mediated by 288 

interspecific interactions, and they have a combined impact on cover, which is in agreement with 289 

Damgaard et al. (2016). The signs of the slope of the H term 𝑎𝑎𝑘𝑘 indicate that vegetation height and SLA 290 

have a small positive impact on cover when including hydrology, whereas LDMC has a small negative 291 

impact. The less flooded the area becomes, the more important the direct selection forces are, which was 292 

also found by Merlin et al. (2015). But, as can be seen from Table 5, the 50th percentiles are close to 0 and 293 

results should not be over interpreted. When looking at the similar terms from 𝑎𝑎𝑐𝑐, we see that hydrology 294 

has a negative impact on the selection that is mediated by interspecific interactions for vegetation height 295 

and SLA and no impact for LDMC.  296 

Discussion 297 

The model presented here are in line with community based models where environmental variables 298 

sometimes latent affect the selection favoring certain characteristics of plants. Certainly the study of 299 

environmental variables such as the role of hydrology on succession is not new (Kikuzawa, 1991), and traits 300 

may enter categorical classification as done in the Ellenberg numbers and CSR databases along ecological 301 

gradients using statistical measures of correlation (Franzaring et al., 2007). The filter approach is a model 302 

based extension of these explorative methods, and tends explain the actual trait distribution by 303 
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environmental/habitat filters that reduces the species pool followed by a limit to similarity filter. The latter 304 

ensures that each plant in the community have resources to live on, and no species becomes completely 305 

dominant (Garnier et al., 2016). Our approach is less subjective in estimation of the impact of traits on 306 

selection forces than a traditional filtering process, and does not require classification (numeric classes) as 307 

does for example the Ellenberg indicator. This is due to the simultaneous estimation, which “weights” the 308 

trait contributions to selection by means of parameters in the nonlinear models applied. As such, the 309 

method has some similarities with the much used structural equation modelling SEM (Weiher et al., 2011), 310 

since both account for contemporary correlations among the residuals/parameters of the models. The 311 

posterior parameter distribution may be applied to statistical inferences, and the correlation among 312 

parameters may be seen in a biological context. Furthermore, our method does not require any subjective 313 

definition of a null model. We cover all theoretical outcomes of selection a priori (see Table 2). This is, 314 

however, also a weakness  because such assumptions cannot be proven correct in a mathematical sense, 315 

but only falsified by empirical testing (Chalmers, 1999) in the spirit of the philosopher Popper (Collin, 2003). 316 

However, if we believe that the models represent expressions for directional, disruptive and stabilizing 317 

selection, then we can say that one selection process explains data better, and most likely this conclusion is 318 

valid on a broader scale. One way to minimize the risk of misinterpretations is by means of a flexible model 319 

that can take many forms. Generalized additive models (GAM) (Wood, 2006) allow for flexible modelling of 320 

the selection forces and are an alternative to this approach that remain to be tested. Our model can be 321 

characterized as a classical nonlinear model (Seber and Wild, 2003), with an assumed stochastic error 322 

component (normal). It therefore fit into a broad range of community based ecological models, with a 323 

customized deterministic term  (Bolker, 2008) in form of the nonlinear expressions of Table 2. In future 324 

applications incorporation of spatial information inside the pinpoint dataframe could be tested. A 325 

conditional autoregressive model (CAR) model is an obvious candidate for such a model and also works in 326 

the Baysian setting (Besag, 1974).   327 
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As pointed out in the literature (Damgaard and Weiner, 2017; Harper, 1977), selection forces needs to be 328 

seen simultaneously in spatio-temporal scale, as competition pressure changes over time, as does the 329 

spatial pattern due to succession in the plant cover. The importance of considering spatial and temporal 330 

patterns is also evident when studying the literature on community growth as well as individual growth 331 

models (Schabenberger, 1994; Schabenberger and Pierce, 2002). We only have two temporal 332 

measurements, while a longer time-series is preferred. However, the data applied as model input includes 333 

plots of plant communities at similar stages of succession, and therefore the concern of looking at only two 334 

periods is minor. In addition, if needed, in future the model can be extended to having more than one 335 

measurement period. This can, for example, be done by assuming that the observed change in paired 336 

observations collected in different periods can be pooled and used to increase the number of observations. 337 

This allows us to apply the basic model in Equation 1, but requires an assumption that the temporal 338 

development does not have a trend, since the pairs applied as input comes from different time periods. 339 

This assumption may be reasonable in permanent grasslands dominated by perennial plant species (80 % of 340 

the species), which exist for centuries and are not submitted to disturbances. In some cases, this 341 

assumption is less plausible, for example in areas with human disturbance. The studied marshlands are 342 

actually grazed every year and grazing cessation over several years may lead to substantial and directional 343 

temporal change (Marion et al. 2010). The data collection required the studied area to be fenced for two 344 

years, but this is probably too short a duration to affect species interaction, though it cannot be concluded 345 

that this is not the case. The fact that the area has been grazed prior to the experiment may influence the 346 

results. For example height as a proxy for species competitive ability becomes less prominent, as grazing 347 

tend to minimize the height contrast between species (Diaz et al 2007). Also, the selective browsing by 348 

horses and cows will favor some species over others (Marion et al. 2010, Saatkamp et al. (2010), with some 349 

species-specific response according to their tolerance ability. The traits themselves are probably  selected 350 

for or against. For example thornes’ avoidance and preferred taste, as well as nutrient content may be 351 

drive non-random consumption of plants’ species by livestock and wild fauna (Milchunas and Noy-Meir, 352 
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2002). In addition to browsing, livestock  may spread nitrogen from excrements in a clustered way affecting 353 

nitrogen sensitive vegetation. In the positioning of the pinpoint frame, areas with visible excrements were 354 

avoided, to minimize such source of habitat heterogeneity. 355 

 If data allows for temporal classification, i.e. we can make a common point in time as reference start point 356 

of the plant community, then time (𝑡𝑡) can be added as a predictor (Equation 5). In addition, while our 357 

model additively includes several traits simultaneously, their covariance can be included in the future. This 358 

may e.g. be done by means of multiplication of two or more trait values, which can then enter the terms 359 

denoted 𝑥𝑥 and 𝑦𝑦 of Equation 5. The Bayesian approach allows for inclusion of many parameters even for 360 

small datasets, since the estimation procedure does not lose a degree of freedom such as a frequentist 361 

statistical estimation does. Due to running time of the MCMC, it may be advisable to make an initial 362 

reduction in the pool of traits available prior to MCMC.    363 

Equation 5 364 

𝑞𝑞´𝑗𝑗 = 𝑞𝑞𝑗𝑗 ��𝐹𝐹𝑘𝑘(𝑥𝑥, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡)�� 𝐶𝐶𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑡𝑡)𝑞𝑞𝑡𝑡𝑘𝑘=𝑦𝑦𝑦𝑦∈Ω
��+ 𝜀𝜀

𝑚𝑚

𝑘𝑘=1

 365 

The model architecture explicitly includes interspecific competition because it involves traits, but it ignores 366 

intraspecific competition. From a logical point of view, we cannot know if intraspecific competition will 367 

have an impact on the selection forces, and the model is therefore a simplification of reality. However, it 368 

has been recognized for long that the maintenance of species diversity in plant communities where the 369 

fundamental niches of several species overlap, required that interspecific competition  to be less intense 370 

than the intraspecific competition (e.g. Chesson 2000). Thus, intraspecific competition is significant, and 371 

other models combining these two effect can be developed. Models involving intraspecific competition 372 

have often the weakness that the huge number of model parameters makes inference from the model 373 

difficult. This can be one justification to ignore this effect and broadly focus on the outcome of selection. 374 
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Another argument is that trait contrasts are mainly expected to occur between species, which is then the 375 

main contrasts to focus on for predicting their effects along environmental gradients. 376 

Conclusion 377 

The model developed allows to investigate the importance of  direct trait selection and selection that is 378 

mediated by interspecific interactions. It was  tested using pin-point cover data from  grasslands of the 379 

French Atlantic Coast. We tested 5 main models, in addition to 5 sub models, using variable selection. With 380 

reference to the objectives of the study, we conclude that:  381 

a) All models can be fitted within reasonable time and are capable of using spatial as well as temporal 382 

effects. Many (in our case 3) trait values may be included, and their potential interaction can be 383 

modelled simultaneously and confounding statistical effects may be accounted for. The Bayesian 384 

approach allows for inferences to be made without assumptions of residual independence. The 385 

best model gave very similar predictions to the raw data, though some systematic residual patterns 386 

could be seen. Problems with observations of cover value 0 may have an impact on the model 387 

performance. 388 

b) The direct selection forces seem to dominate in the current data, which can be seen from the 389 

model predictions, indicating that selection is driven towards a new mean optimum value.  390 

c) Hydrology has an impact, most strongly in interaction with the direct trait selection forces and, to a 391 

minor extent, on the species interaction component. The forces of direct trait selection on the 392 

species cover are increasing with the reduction of the flooding duration/intensity. 393 

The model can be extended to include one or more interaction terms among trait values, thus including 394 

covariance among traits in the model output.  395 

 396 
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 512 

Figures  513 

 514 

Figure 1. Histograms on the left side are  showing the cover in percent for the different species in the first 515 
year of measurement. On the right side is the percentage change in cover between the two years of 516 
measurement for the same species. The abbreviation refers to the species abbreviation in Table 1. 517 
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 518 

Figure 2. Top left: The cover data entering the model as independent and dependent variable, with the 519 
nonparametric Lowess-estimator and the Pearson correlation. The remaining subplots: Cover data 520 
against the predicted values using means of the multivariate parameter distributions from MCMC of the 521 
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models in the subplot header (Table 2). The Lowess-estimators are based on the predictions of the full 522 
models.  523 

 524 

Figure 3. The test values of the Kolmogorow-Smirnow statistics when comparing the predicted cover 525 
distribution for each model with the observed empirical cover distribution. The full model is identified by 526 
its number and the variable selected model by the suffix “V” (gray color). Model numbers refer to Table 527 
2.  528 
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 531 

Figure 4. Barplot of the fraction of times that the indicator variable (trait) was included in the model 532 
(Equation 4), to the total number of MCMC iteration excluding burn-in. SLA, LDMC and Veg. h. 533 
(Vegetation height) shown in the legend, refers to the traits applied in the model.  534 
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Tables   538 

Table 1. The species trait values used in the study. Specific leaf area (SLA), Vegetative height (Veg. h),  539 
Leaf dry matter content (LDMC), Percent recorded of all pin-point recordings on the study area (%). 540 

 541 

Species   SLA (m²/kg) Veg. h. (m)  LDMC (mg/g) 
 

% 

Alopecurus bulbosus (Abul) 28.6 0.28 215.1 0.06 
Alopecurus geniculatus (Agen) 27.55 0.3 211.95  0.13 
Agrostis stolonifera (Asto) 29.3 0.11 309.9 51.53 
Bromus commutatus (Bcom) 28.6 0.5 253.9 1.67 
Bellis perennis (Bper) 27.9 0.045 131 0.25 
Baldellia ranunculoides (Bran) 27.48 0.13 98.46 0.03 
Cynosurus cristatus (Ccri) 22.3 0.55 248.5 13.45 
Carex divisa (Cdiv) 13.5 0.49 230.2 3.84 
Cerastium glomeratum (Cglo) 35.07 0.15 576.3 0.00 
Cirsium vulgare (Cvul) 15.7 0.9 140.72 0.09 
Eleocharis palustris (Epal) 8.5 0.53 265.1 0.07 
Elymus repens (Erep) 21.5 0.75 301.2 1.67 
Galium debile (Gdeb) 39.6 0.21 197.7 0.85 
Gaudinia fragilis (Gfra) 31.28 0.28 235.35 1.73 
Glyceria fluitans (Gflu) 36.7 0.5 218.7 0.72 
Hordeum secalinum (Hsec) 29.3 0.33 269.1 6.90 
Juncus articulatus (Jart) 11.86 0.19 193.85 0.31 
Juncus gerardi (Jger) 10.2 0.33 256 1.04 
Leontodon automnalis (Laut) 25.91 0.07 157.74 0.03 
Lolium perenne (Lper) 26.7 0.13 227 7.15 
Mentha pulegium (Mpul) 33.9 0.17 136.5 0.03 
Oenanthe fistulosa (Ofis) 36.6 0.43 140 0.85 
Poa annua (Pann) 35.28 0.14 262 0.06 
Plantago major (Pmaj) 28.8 0.07 222.031 0.03 
Poa trivialis (Ptri) 30.1 0.25 257.2 2.67 
Sonchus asper (Sasp) 24.7 0.18 123.67 0.16 
Trifolium resupinatum (Tres) 35.9 0.14 146.8 0.26 
Trifolium squamosum (Tsqu) 35.5 0.4 158.6 0.03 
Vulpia bromoides (Vbro) 30.5 0.1 254.4 4.37 

 542 

1The data is the mean of traits since no data is available for the species. 543 
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Table 2. The different kinds of selection models considered denoted by suffix 𝒔𝒔 in the model. 𝑭𝑭 is the function that capture selection 544 
forces due to the trait. 𝑪𝑪 is a function to model selection that is mediated by interspecific interactions for traits 𝒙𝒙 (subject) and 𝒚𝒚 545 
(competitor) for the k´th trait. 𝑯𝑯 is the hydrology measure (SEV). 𝒂𝒂𝟎𝟎, 𝒂𝒂,𝒃𝒃𝟎𝟎, 𝒃𝒃,𝒅𝒅,𝒎𝒎 and 𝒛𝒛 are model parameters, and their suffix (k) 546 
indicates the trait they are made for. 𝑫𝑫𝑫𝑫𝑫𝑫 is directional selection, 𝑺𝑺𝑺𝑺 is stabilizing selection, 𝑫𝑫𝑫𝑫𝑫𝑫 is disruptive selection. 𝑬𝑬𝑬𝑬𝑬𝑬 is the 547 
natural exponential.  548 

Model explanation Trait selection Trait selection interaction Hydrology Explanation  
1.  Only subject trait, no 

interaction 
(directional selection) 

𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷_𝑘𝑘(𝑥𝑥, 𝑆𝑆𝑆𝑆𝑆𝑆)
= 𝐻𝐻𝑏𝑏0𝑘𝑘𝑥𝑥 + 𝑏𝑏𝑘𝑘 

None   
𝐻𝐻
= 𝑎𝑎0𝑘𝑘𝑘𝑘+𝑎𝑎𝑘𝑘𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 

Relative high or low trait values are 
selected.    

2.  Only subject traits, no 
interaction (stabilizing 
selection) 

𝐹𝐹𝑆𝑆𝑆𝑆_𝑘𝑘(𝑆𝑆𝑆𝑆𝑆𝑆)
= 𝐻𝐻(𝑥𝑥 − 𝑧𝑧𝑘𝑘)2 + 𝑏𝑏𝑘𝑘 

None 𝐻𝐻
= 𝑎𝑎0𝑘𝑘𝑘𝑘+𝑎𝑎𝑘𝑘𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 

Intermediate trait values will be 
selected, reducing the variance 
around the mean. 

3.  Directional selection 𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷_𝑘𝑘(𝑥𝑥, 𝑆𝑆𝑆𝑆𝑆𝑆)
= 𝐻𝐻𝑏𝑏𝑜𝑜𝑥𝑥 + 𝑏𝑏𝑘𝑘 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷_𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑆𝑆𝑆𝑆𝑆𝑆)
= 𝐸𝐸𝐸𝐸𝐸𝐸(−𝐻𝐻(𝑦𝑦
− 𝑥𝑥))) 

𝐻𝐻
= 𝑎𝑎0𝑘𝑘𝑘𝑘+𝑎𝑎𝑘𝑘𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 

Either high or low trait values are 
selected.  

4.   Stabilizing selection 𝐹𝐹𝑆𝑆𝑆𝑆_𝑘𝑘(𝑥𝑥, 𝑆𝑆𝑆𝑆𝑆𝑆)
= 𝐻𝐻(𝑥𝑥 − 𝑧𝑧𝑘𝑘))2
+ 𝑏𝑏𝑘𝑘 

𝐶𝐶𝑆𝑆𝑆𝑆_𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑆𝑆𝑆𝑆𝑆𝑆)

=
𝐸𝐸𝐸𝐸𝐸𝐸(𝐻𝐻(𝑦𝑦 − 𝑑𝑑𝑘𝑘)2)
𝐸𝐸𝐸𝐸𝐸𝐸(𝐻𝐻(𝑥𝑥 − 𝑑𝑑𝑘𝑘)2)) 

𝐻𝐻
= 𝑎𝑎0𝑘𝑘𝑘𝑘+𝑎𝑎𝑘𝑘𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 

Intermediate trait values are selected. 
The mean of the frequency will 
remain unchanged, and the variance 
will decrease   

5.   Disruptive selection 𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷_𝑘𝑘(𝑥𝑥, 𝑆𝑆𝑆𝑆𝑆𝑆)
= 𝐻𝐻(𝑥𝑥 − 𝑧𝑧𝑘𝑘)2 + 𝑏𝑏𝑘𝑘 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷_𝑘𝑘(𝑥𝑥,𝑦𝑦, 𝑆𝑆𝑆𝑆𝑆𝑆) = ((1 −

𝑚𝑚𝑘𝑘) 1−𝐸𝐸𝐸𝐸𝐸𝐸�𝐻𝐻∗(𝑦𝑦−𝑧𝑧𝑘𝑘)2�
1−𝐸𝐸𝐸𝐸𝐸𝐸(𝐻𝐻∗(𝑥𝑥−𝑧𝑧𝑘𝑘)2))

+ 𝑚𝑚𝑘𝑘)  

𝐻𝐻
= 𝑎𝑎0𝑘𝑘𝑘𝑘+𝑎𝑎𝑘𝑘𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆 

Extreme intermediate trait values are 
seelcted. Change the trait frequency 
from uni to bimodal   

 549 
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 550 

Table 3. The suffixes are DG= Direct growth, SS= Stabilizing selection, DIS= Disruptive selection. DIC = Deviance Information Criteria (smaller is 551 
better). AAB = Average absolute bias. The model numbers refer to Table 2. In [] the best model including at least 1 of the terms for the three traits. 552 
In () the average model performance is given including all traits.    553 

 DIC AAB 

1) Coveryear=Coveryear-1*FDIR(x,SEV) [5.96e+06](1.4e+08 ) [4.31](4.51) 

2) Coveryear=Coveryear-1*FSS(x,SEV) [1.95e+05](1.02e+12) [2.76](57.85) 

3) Coveryear=Coveryear-1*FDIR(x,SEV)*CDIR(x,y,SEV) [1.88e+04](1.93e+04) [4.33](4.57) 

4) Coveryear=Coveryear-1*FST(x,SEV)*CST(x,y,SEV) [5.62e+04](1.34e+24) [4.24](1285553.44) 

5) Coveryear=Coveryear-1*FDIS(x,SEV)*CDIS(x,y, SEV) [8.45e+03](8.38e+05) [0.10](-84.25) 

 554 

  555 
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Table 4. In the lower half, the Pearson correlations between the parameters of the best performing model. In the upper half the p-value of a t-test 556 
testing the correlation. The suffix refers to the traits of Table 1, and the parameters are referring to Model 3 of Table 2. 557 

 558 

559 

 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎  𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒂𝒂𝟎𝟎𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝒈𝒈𝒉𝒉   𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝝈𝝈 

𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎  
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.05 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.77 0.45 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
0.58 0.44 -0.50 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
0.28 0.47 -0.22 0.66 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝒈𝒈𝒉𝒉   
0.76 0.10 -0.65 0.86 0.58 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.21 -0.25 0.15 -0.51 -0.57 -0.23 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.57 -0.09 0.69 -0.87 -0.31 -0.77 0.47 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.70 0.29 -0.63 0.97 0.60 0.92 -0.39 -0.90 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
0.33 0.58 -0.19 0.67 0.89 0.51 -0.49 -0.30 0.59 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
-0.58 -0.60 0.36 -0.95 -0.78 -0.82 0.43 0.71 -0.92 -0.78 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
-0.67 -0.29 0.58 -0.96 -0.58 -0.93 0.41 0.89 -0.95 -0.53 0.89 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.59 0.32 0.88 -0.49 -0.46 -0.56 0.42 0.57 -0.58 -0.46 0.41 0.49 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.68 0.36 -0.40 0.81 0.70 0.88 -0.15 -0.57 0.80 0.59 -0.85 -0.87 -0.30 1.00 0.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.54 -0.47 -0.36 -0.25 -0.04 0.14 0.65 0.29 -0.12 -0.04 0.18 0.12 -0.24 0.16 1.00 0.00 0.00 0.00 0.00 

𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 
-0.27 -0.11 0.36 -0.70 -0.06 -0.60 0.36 0.87 -0.70 0.03 0.51 0.75 0.14 -0.46 0.49 1.00 0.00 0.00 0.00 

𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 
-0.83 -0.01 0.49 -0.50 -0.22 -0.73 -0.30 0.45 -0.56 -0.12 0.50 0.67 0.20 -0.79 -0.50 0.38 1.00 0.00 0.00 

𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 
0.68 -0.09 -0.61 0.71 0.22 0.89 -0.04 -0.80 0.81 0.09 -0.60 -0.84 -0.36 0.73 0.08 -0.79 -0.77 1.00 0.00 

𝝈𝝈 
0.69 -0.41 -0.47 0.10 -0.24 0.47 0.64 -0.23 0.25 -0.32 -0.05 -0.31 -0.08 0.42 0.66 -0.25 -0.84 0.67 1.00  
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 560 

Table 5. The quantiles of the parameters for Model 3 of Table 2, and the probability of the parameter 561 
being larger than 0. In [] the estimates from the variable selected model.   562 

 Paramete

 

   2.5%                   50% 97.5% P(X>0) 

 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎  
0.017 0.063 0.074 1 

 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.03 0.037 0.069 1 

 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.036 -0.011 0.002 0.16 

 𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
-0.027 -0.009 0.008 0.07 

 𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
0.001 0.001 0.002 0.99 

 𝒂𝒂𝑭𝑭𝑭𝑭𝑭𝑭𝒈𝒈𝒉𝒉   
0 0 0.001 1 

 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.009 0.009 0.009 1 

 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.001 0.001 0.002 1 

 𝒃𝒃𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.006 -0.006 -0.002 0 

 𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
0[] 0.004 0.004 1 

 𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
0.003 0.005 0.005 1 

 𝒃𝒃𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 
0.003 0.004 0.004 1 

 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
0.006 0.009 0.009 1 

 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.005 -0.004 0.001 0.07 

 𝒂𝒂𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 
-0.002 -0.001 0 0.02 

 𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 
-0.001 -0.001 -0.001 0 

 𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 
0 0 0 0.01 

 𝒂𝒂𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 
-0.001 0.001 0.001 0.72 

 𝝈𝝈 
1.004 1.012 1.012 1 

563 
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Appendix A.1 564 

 565 

 566 

Figure A. 1. Flowchart of the program architecture made in the study.  567 

File containing trait values of type xlsx File containing the observed pinpoint, cover data in dummy form (o-1) 

 for two years observed on plot and species basic of type xlsx. 

File likelihoodfunction5: Calculate the cover for each species on plot basis and make the  

Required imputations for missing data point.    

Model file 1-5: Performs the MCMC, parameters to be set are explained in the program.   

DIC Calculation of DIC for 

 the five models. If addional traits 

 are entered program needs to  

be updated with new parameters. 

Master execution file: This file executes all programs for a specified model, using the below subprograms.     

Posterior predictive checking.  

Performs the posterior predictive  

checking for a specified model with histograms 

 and Kolmogorow-Smirnow test against the empirical data.  

Plots of chain valuesfor 

 a given burn-in period. 
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 568 

Appendix A.2 569 

 570 

 571 

Figure A. 2. The Lowess estimate of the SEV for different cover values. Each line represent a species, with different color.   572 
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Appendix A.3573 

 574 
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Figure A.3 1. Residual plots of the models shown in Table 2 identified by the title of the subplots. The 575 
horizontal line is corresponding to a complete match between model observed cover. Continues in Figure 576 
A.3 2.    577 

Appendix A.4 578 

 579 

 580 
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Figure A.3 2.  Residual plots (continued from Figure A.3 1) of the models shown in Table 2 identified by 582 
the title of the subplots. The horizontal line is corresponding to a complete match between model 583 
observed cover.   584 
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