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A new form of the elliptic relaxation equation to account for wall effects
in RANS modeling

Rémi Manceau and Kemal Hanjalic?
Department of Applied Physics, Thermofluids Section, Delft University of Technology, Lorentzweg 1,
P.O. Box 5046, 2600 GA, Delft, The Netherlands

(Received 12 January 2000; accepted 5 June 2000

Different methods for improving the behavior in the logarithmic layer of the elliptic relaxation
equation, which enable the extension of Reynolds stress models or eddy viscosity models down to
the wall, are tested in a channel flow at,R&90 and compared with direct numerical simulation
(DNS) data. Firsta priori tests are performed in order to confirm the improvement predicted by the
theory, either with the RottalP (isotropization of productionmodel or the Speziale—Sarkar—
Gatski (SSG model as the source term of the elliptic relaxation equation. The best form of the
model is then used for full simulations, in Durbin second moment closure or in the frame of the
v°—f model. It is shown that the results can be significantly improved, in particular by using a
formulation based on the refinement of the modeling of the two-point correlations involved in the
redistribution term. ©2000 American Institute of Physics. [S1070-663(00)50709-0

INTRODUCTION weaker than the second one: the blocking of the velocity
fluctuations normal to the wall due to wall impermeability,
One of the most important unclosed terms appearing inwhich enforces a splatting of the near wall eddy structure,
the Reynolds stress transport equation is the redistributivenaking the turbulence field highly anisotropic and forcing it
term arising from pressure fluctuations. Almost all modelsto approach the two-component limit. It is this blockage ef-
for this term used so far are based on the pioneering propdect, which is of an elliptic nature, that is assumed to be
sitions of Chotr? and Rotta which consist in expressing the modeled by the elliptic relaxation approach.
redistribution as an algebraic expression of mean quantities In order to correct this shortcoming of the model, Wiz-
of the flow. This approach was originally introduced for manet al. proposed different new formulations of the opera-
high-Reynolds number regions, and is based on the quasihter, using arbitrary corrections. Manceaual.*® used a dif-
mogeneity and locality assumptions that are only valid “notferent route to reach the same purpose: they showed, by a
too close to solid boundaries’In order to extend models direct numerical simulatiofDNS) channel flow database
down to the wall, damping functions or nonlinear terms areanalysis, that the spurious behavior of the operator is due to
usually introduced. However, seeking to reproduce the neathe intuitive assumptions used by Durbinwhich do not
wall behavior of turbulence by introducing complex correc-account for the asymmetry of the two-point correlations in-
tion terms appears somewhat inconsistent when the basuolved in the integral equation of the redistribution term.
assumptions are not valid in this regibhOn the contrary, Using an asymmetric correlation function, they derived a
the elliptic relaxation approaéf} is based on a theoretical new formulation of the operator, which does not exhibit the
analysis and a simple modeling of the two-point correlationssame amplification as the original one.
involved in the integral form of the redistribution term, and ~ The purpose of this work is to confirm this theoretical
does not use the previously quoted Chou's assumptiongesult by computationsA priori tests are first performed, in
Models based on this approach, and in particularithe f ~ Order to determine the effect of thg elliptic operator on the
model® reduced to three transport equations, have been sugource term[RottatIP (isotropization of production or
cessfully applied in a number of different situatidhs?® Speziale—Sarkar—GatsSG model for different forms of
Wizmanet al.** emphasized that the behavior of the el- this oper_ator. Full S|mu_lat|ons in a channgl are then per-
liptic relaxation operator in the logarithmic layer is not fully formed with the formulations proposed by Wizmetral. and
satisfactory, since it induces an amplification of the redistri-Vi@nceauet al., either in the frame of a second moment clo-
bution. Indeed, in this region, the total damping of the redisSure or of thev®—f model. These computations allow the
tribution is the result of a balance between two phenomenggvaluation of the improvement due to the elimination of the
The first one is the reflection of the pressure fluctuations byPurious amplification exhibited by the original model.
the solid wall, which, contrary to the common belief, en-
hances the pressure scrambling effects that tend to make the
turbulence more isotropic. However, this effect is much |. THEORETICAL BACKGROUND

A. The original model
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_(?p _,9p the difference between the viscous diffusion and the

p¢i*j = Ui U (1) dissipation in the vicinity of the wall. This enables the

! ' reproduction of the correct asymptotic behaviors of

Using the integral solution of the Poisson equation satisfied the different components of the Reynolds stress and

by the fluctuating pressure, this term can be expressed as of the two-component limit of turbulence.

(i) In a part of the logarithmic region, too far from the

p¢ﬁ(x):J Wi (x,X )G (x,x") dV(X'), () wall to be under the influence of the boundary condi-

Q tions, the redistribution is amplified, as emphasized by

where Wizman et al.'* Indeed, all quasihomogeneous mod-

els ¢ih]- basically behave ag ! in this region, so that
using the standard logarithmic layer valuds
=u?/C¥2 and e=u/ky, the solution of Eq(9) is
fij=I'fj;, with the amplification factoF=1.51. Note
that this result is obtained assuming that the solution
is not affected by the boundary conditions.

Wi (x,x")=— Ui(X)sz—)z(X’)— Uj(X)sz—)z(X'), )

and G, is the Green function of the domain. Durbipro-
posed to define the correlation functid(x,x’) by
Wi (X)) =X, x) F(x,x"), (4) _ )
] ] . ] ] ] Thus, the overall benefit obtained from the use of the
and to model it by a simple isotropic exponential function gjjiptic relaxation equation is due to its boundary conditions
r that are “elliptically relaxed” up to the logarithmic layer.
f(x,x’)=exr{ - E)’ (5  The amplification arising from the elliptic operator is a side
effect that penalizes the predictions in the upper part of the
wherer =[x’ —x|| andL is the correlation length scale. logarithmic layer. The purpose of the next section is to show
Using the model(5) and assuming that the Green func- how this shortcoming can be corrected.
tion can be approximated by the free-space Green funtiion,

Eq. (2) becomes B. Correction of the logarithmic layer behavior
. ., exp(—r/L) , Manceauet al.'® showed that this behavior is a conse-
peij(X)=— jﬂ\lf”(x X') 4mr dv(x"). ©) quence of the fact that the anisotropy of the correlation func-

' o o tion f(x,x"), and, in particular, its asymmetry in the wall-
This expression involves exp(/L)/4ar, which is the free-  normal direction due to the strong inhomogeneity in the
space Green function associated with the operat&#* vicinity of the wall, is not accounted for by the model Eg.

+1/L%. Thus, Eq.(6) can be inverted to give (5). They proposed to use the gradient of the length scale to
L2 identify the main direction of inhomogeneity, in the follow-
¢ﬁ(x)_|—2v2¢ikj(x):_?\I;ij(x’x)_ (7) Ing manner:

Noting that in homogeneous situations, the second term on f(x,x’):ex% ' (10)

the left-hand side vanishes, the source term can be replaced L+B(X"=x)- VL)’

by any quasihomogeneous mod] , and Eq.(7) becomes  Considering the new term as a small correction and using a

¢i*j _ L2V2¢>i*j _ ¢ihj 7 (8) Taylor series expans_ion, a new form of the elliptic relaxation
equation can be derived:
which is calledelliptic relaxation equation. The length scale

L is modeled usually by k¥%¢ but bounded by the Kol- (1+16B8(VL)?)fij— L2V —8BLVL- Vi =f].

mogorov length scal€, C,»¥%¢** in order to avoid a sin- 1D

gularity at the wall(and also to reproduce the real behaviorThe amplification factol, obtained by the same method as
of the correlation length scale observed in DNS regdits used in Sec. | A, is, for this formulation,
The specificity of this model is that the redistributive
term is not given by an algebraic expression, but by a differ- _ 1
ential equation, which preserves the nonlocal character of 1+2(128-1)CiC, ¥’
this term. This enables the reproduction of the wall-blockin h fici hich d . h ¢
effect, provided that the correct boundary conditions are € coe d'c'egtﬁ' Wh Ic st?rmmesht esmognto dasymlgne-_
applied! which requires the resolution of the elliptic relax- ;[jr}]fflntro uf?e mdt N m; el, Caﬂ then ,f] adapted to o ta(;nl
ation equation for the functiofy;= ¢{/k instead of¢; : fiterent effects, depending on the quasinomogeneous mode
! ! used as the source term. For instance, with the SSG model,
fij—L2V2f, =1}, (9)  which predicts correctly the redistribution in the logarithmic
h_ ,h layer, B=1/12 can be chosen, in order to obtain a neutral
wheref;; = ¢;i/k. _
i j . . L model (I'=1). Note thatneutral means only here that the
The effect of the elliptic relaxation equation is two-fold. . ; ; s
operator is neutral, i.e., that the previously quoted “side ef-
(i) It enforces the correct damping of the redistribution atfect” is not exhibited; in this case, the effect of the elliptic
the wall, because of its boundary conditions. The lat-relaxation equation is only due to its boundary conditions.
ter are chosen in order that the redistribution balance¥Vith the Rotta-IP model, the overestimation of the redistri-

(12
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TABLE I. Summary of the logarithmic layer behavior of different formula- the termsf-h- andL taken from the DNS database. The exact
tions of the elliptic relaxation equation. 1] ’

boundary conditiorf;;= f2" is also applied at the wall. The
Model Equation Y r equation is solved in only one-half of the channel, a symme-
DA f _L2v2f. —fh ) 151 try boundary condition being used at the center.
wi1b f- V(L2 )= 1 0 1 Results obtained fof,,, with the RottarIP model as
) 1 the source termq&gz, are shown multiplied byk(¢3,

we fij—'-ZV'(L—z V(szij))zfn 2 0.75 =kf,,) in Fig. 1(a). First, it can be observed that the
M® (1+168(VL)?)f;;—L2V2f;; 2(128—-1) [0;1.51] Rotta+IP model, without the elliptic relaxation correction,

~8BLVL-Vf;=f] overestimates the redistribution in the logarithmic layer and
"Reference 6. gives totally wrong results in the buffer layer and the viscous
bReference 14. sublayer. In order to fairly compare the different formula-
‘Reference 15. tions, the coefficienC, is tuned in each case to correctly

predict the amplitude of the peak ¢f,. It can be seen that

) ) - the application of the original form of the elliptic relaxation
bution can be corrected by choosing a coefficifrgreater  gqyation(modelD in Table ) corrects the redistribution be-
than 1/12. In Table | are summarized the coefficienggven |4\ y* =50, but amplifies it in the logarithmic layer, as pre-

by different formulations of the elliptic relaxation equation, gicted by the theory. Since the source term overestimates the

v being defined by redistribution, formulations for which the theory predicts an
1 amplification factorI’ less than one are expected to give
I'= 1+ vC2C 32,2 yC2C_ 922" (13)  more satisfactory results. It can be seen in Fig) that the
M

W2 andM models, the latter witlB=0.25, give better results

The numerical value df is also given, withC, chosen such than the original one. Th model slightly better predicts
thatL =y in the logarithmic layer €, =C3*). Concerning  the redistribution below* =150, but still overestimates it in
the M formulation, an interval of amplification factors is the rest of the logarithmic layer.
given, since the coefficien8 can be chosen between zero Similar a priori tests have been performed with the SSG
and infinity. model as the source term. Results are shown in Fig). 1t

It must be emphasized that these theoretical results argan be seen that the SSG modeithout the elliptic relax-
obtained by a simple analysis that does not account foation correction, predicts correctlyss, in the logarithmic
boundary conditions, and is accordingly only valid in thelayer. Therefore, it is expected that a neutral modek(l)
infinite Reynolds number limit. The aim of the next sectionwill give better results associated with this source term. It
is to investigate numerically this behavior at finite Reynoldscan be seen in Fig. (i) that the neutral formulatioW1l

number. indeed gives good predictions. However, it induces a slight
reduction of¢3, in the logarithmic layer: this gap between
II. A PRIORI TESTS theory and numerical results could be expected in so far as

the theory is not strictly valid at this Reynolds number. As

The DNS data_ba_ééfor a channel flow at Re=590 is  o4ards thavl formulation, the deviation from the theoretical
used to perforna priori tests of the different formulations of ¢ it is surprisingly more significant. Indeed, it has ap-

the elliptic relaxation equation presented in Table I. These)o, e that with the theoretical neutral value of the coeffi-
tests consist in solving the equations given in Table | W'thcient (8=1/12), this model still induces an amplification of

0.04

(a) | - (b)

0.03 -3 0.03 4%

*& 0.02
S

*&N 0.02
-

0.01 o

>

100 200 300 400 500 600 V 100 200 300 400 500 600

FIG. 1. A priori tests in a channel flow at Re590. (a) Tests with the Rott&lP model as the source term:, source termjﬁz‘2 without using the elliptic
relaxation equation®, ¢3, from the DNS;, original model(D); — — —, Wizmanet al. second model\{/2); ——, Manceauet al. model with 5=0.25.
(b) Tests with the SSG model as the source tetmsource termi>g2 without using the elliptic relaxation equatio®, ¢%, from the DNS;[J, original model
(D); — — —, Wizmanet al. neutral model {V1); ——, Manceauet al. model (M) with 8=0.17.
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(®) 1

yt yt
FIG. 2. Test of the influence of varying the coeﬁi_ci@lt_withihe o_riginal formulationD mode). (a) Velocity profile: O, DNS;——, C,=0.2; — — —,
C_=0.27.(b) Reynolds stresses. Symbols: DNS?; v ?, Aw?;*uv); —, C,=0.2; — — —, C_=0.27.

the redistribution in the logarithmic layer; the coefficient thatdifference originates from the fact thﬁjs/k does not re-
gives the best prediction, shown in Fig(bl, is actually  produce exactly the correct behavioraf in the vicinity of
B=0.17, i.e., twice the theoretical neutral value. Howeverthe wall.
results froma priori tests must always be treated with cau- The aim of this section is to investigate the influence of
tion, and full tests must be performed to investigate, in parthe form of the elliptic relaxation equation. The problem is
ticular, the value of3 to be chosen. solved by a simple 1D code, using finite difference approxi-

Nevertheless, these tests give some interesting indicanation. The equations are solved by imposing the friction
tions about the behavior of the different formulations. It ap-velocity u.. First, the original form of the model, with the
pears that the SSG modebhich gives a reasonably correct coefficients used by Wizmaeat al.,'* is tested. It can be seen
prediction of the redistribution in the logarithmic layer, and in Figs. 2a) and 2b) that this model reproduces accurately
had been widely applied with success in various complexhe logarithmic layer, but not the buffer layer. Figur&)2
flows) is a better source term for elliptic relaxation modelsshows that the mean velocity in the buffer layer is underes-
than the Rotta IP model. Accordingly, the next section will timated, and Fig. @) that the peak ofi? is too low. This
be dedicated to tests of full Reynolds stress models using thgroplem can only be solved by increasing the coeffic@nt
SSG model as the source term and neutral formulations Gfhich induces a decrease of the redistribution in the buffer
the elliptic operator. layer. The drawback is the deterioration of the prediction of

the mean velocity in the logarithmic layer.
Figures 3a) and 3b) show that with the neutral formu-

Ill. FULL REYNOLDS STRESS MODEL lations of the elliptic relaxation equation, namely tiél
. . . . _ model and theVl model with 3=1/12, the peak ofi> can be
In this section, S|mglat|ons are performed with a full correctly reproduced by increasing the coeffici€nt, with-
Reynolds stress model, in the same case of the channel flo

at Re=590. The equations of the model are given in Appen-é%t spoiling the mean velocity logarithmic profile. This en-

. ) ables the correct prediction of the mean velocity in both the
?AX t/—}.hThe SdSGt.moldeI ItS uléeg ;S thebso/L_Jrrcr:]e teﬁ?}n Nite ¢ buffer layer and the logarithmic layer. Note that, contrary to
that the quadratic slow ter@,k deviobg)/T has been kept o priori tests, the full computation with th&! model
in the model, even though it is known to only slightly im-

- e has been performed with the theoretical neutral coefficient
prove the predictions and to make the model stiff in compu- P

. : . o =1/12. In this case, it gives a solution almost indistinguish-
tations. Following Durbirf, a part of the dissipationg;; p=1 9 9

L . . able from the one given by th&/1 model.
—uyjelk, is '”C'“de‘?' inkf;; . This leads to the gppearance As regards the numerical stability, the neutral formula-
of u;u;/kT—2/35;; /T in the source term of the elliptic relax-

i e tions appear slightly more stable than the original one. For
ation Eq.(A2) and to the modification of the boundary con- jystance, initializing the simulation by coarse empirical for-
ditions for f;;. Indeed, they are chosen such thkdf; bal-

) -1 SUL mulas, the more stable formulation is W& one that admits
ances the difference between the dissipatign and the

S . o ) time steps up tat™ =15 without diverging. The upper limit
molecular diffusionDj; in the vicinity of the wall. Since 5 At =12 for theM formulation andAt* =9 for the origi-

eij—Uiuje/k is included inkf;;, the latter must balance ng| (D) one.

uiujs/k—D{;, which can be achievéd® by using the It can be concluded that the use of neutral models leads
boundary condition$,,=0, f = —20v%v?ley?, f33=0,and to significant improvements of the predictions with the SSG
f1,= —20v?uv/ey?. Note that the boundary condition used model as the source term. Such improvements had already
here forf,, is different from the exact on@ised ina priori been reported by Wizmaet al.,'* but the modelW1 they
testg, which can be expressed é%NS: —SVZF/sy“. This  proposed has been frequently criticized because of its totally
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FIG. 3. Improvement obtained with the neutral formulatidias.Velocity profile:O, DNS;— — —, Oiginal_mo@(D);i, Wizmanet al. neutral model
(W1); @, Manceauet al. neutral modelM with 8=1/12). (b) Reynolds stresses. Symbols: DNSy?% v Aw?;*uv); — — —, Original model;—,

Wizmanet al. neutral model \(V;); ®, Manceauet al. neutral mode(M with g=1/12).

arbitrary character. On the contrary, themodel is derived have also been modified. However, these coefficients have
from an assumption on the shape of the correlation functioited to satisfactory results in many situations and the analysis
introduced to account for physical phenomena observed iof their influence is beyond the scope of this article, which
DNS data. Even if some approximations have been alsmainly focuses on the influence of the elliptic relaxation op-
made, such as the truncation to the first order of the Tayloerator.

series expansion, the model is thus directly related to a the- Results given by the original model, with the formula-

oretical analysis. tion of the elliptic relaxation equation denoted byin Table
o I, are shown in Figs. @ and 4b). It can be seen that at a
IV. v*—f MODEL given Re, the mean velocity is overestimated in the loga-

In this section, the2— f model will be in focus. Indeed, rithmic layer. As regards the turbulent kinetic energy, it is
even though this model has led to satisfactory results in &/9htly overpredicted betweey*zsg andy" =150, and
number of different complex flows, the prediction of the Underpredicted between =150 andy " =400. The velocity
mean velocity profile in a channel is still improvable. scalev?, which is equivalent to the wall-normal Reynolds

In the frame of an eddy viscosity model, the SSG cannostress component in a channel, follows an opposite behavior.
be chosen as the source term, since it involves invariants of The use of the neutral formulatio1 andM, with 3
the anisotropy tensor. Therefore, the RettR model is =1/12, which are again almost indistinguishable from each
used. The equations of thé— f model are given in Appen- Other, enables the correction of the mean velocity profile in
dix B, with the coefficients used by Manceaual .’ It can  the logarithmic layer, whereas the prediction of turbulent
be seen that the coefficients of the transport equation of thguantitiesk andv? are not significantly improved. In the first
dissipation are slightly different from those of the standardcase(modelW1), no coefficient has been changed, whereas
k— e model, and that the coefficients of the Ratl® model in the second casémodel M), C, has been slightly in-

T T T 5 T T T T —
®C000000
SOCHT TR |
1 . I . 1 .
300 400 500 600
+
Yy

FIG. 4. v?>—f model. Comparison of the results given by the original formulation and the neutral or reducing@néslocity profile: O, DNS; — — —,
Original model(D); ——, Wizmanet al. neutral model \(V,); ®, Manceauet al. neutral modelM with 8=1/12); —-—-—-—, Manceauet al. reducing
model (M with 8=2/12). (b) Turbulent energy and normal stress. Symbols: DNi&;(Jv?); — — —, Original model(D); , Wizmanet al. neutral
model (W,;); @, Manceauet al. neutral model(M with 8=1/12); —-—-—-—, Manceauet al. reducing mode(M with 8=2/12).
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creased. Other coefficients are left unchanged in both casesn empirical basis, or the one proposed by Mancgal.,

In this case, since the RottdP model predicts a too high with 8=1/12. This neutral formulations also have the advan-
level of redistribution, it makes sense to use Y2 formu-  tage of increasing the stability of the computations.

lation that exhibits an amplification factor less than ofe ( Finally, different formulations have been tested in the
=0.75), or theM formulation with a coefficient3 larger  frame of thev®—f model. The original one, which has been

than 1/12. Results given by the latter wigh=2/12, corre-  successfully applied in a number of complex flows, does not
sponding tol'=0.75, are also shown in Figs(a# and 4b).  perfectly predict the mean velocity profile in the logarithmic

The prediction ofk in the logarithmic layer is slightly im- layer of a channel flow. Again, it has been shown that this
proved compared with neutral formulations, without any sig-problem is related to the erroneous amplification of the re-
nificant effect on the velocity profile. Note that the resultsdistribution. The neutral formulations, as well as formula-

given by this formulation and those given by & formu-  tions inducing a reduction of the redistribution, lead to a

lation (not shown hergare indistinguishable. significant improvement of the predictions, and these are
The same stability tests as performed in Sec. lll lead tanore stable than the original one.
the following upper limits for the time stepxt * = 430 for M It can be concluded that in general, either with the full

with B=2/12, At"=410 for W1, At"=380 forM with B Reynolds stress model or with thé—f, neutral formula-
=1/12, andAt* =365 forD. It appears that the smaller the tions are preferable. Similar conclusions have already
amplification factod’, the more stable the modéHowever,  been drawn by Wizmaret al., but their neutral model is
the predictions begin to deteriorate beldw=0.75.) Note  seldom used because of its totally empirical foundation. On
also that thev>—f model is much more stable than the full the contrary, the formulation proposed by Mancegal. has
Reynolds stress model. been derived from the analysis of the two-point correlations,
The results obtained in this section show that the spuriand gives almost exactly the same results as those obtain
ous behavior of the original elliptic operator in the logarith- with the Wizmanet al. formulation. The results presented
mic layer leads to difficulties in correctly reproducing both in the present article are encouraging: they lead to the hope
the friction velocity and the flow rate. The use of the neutralthat the modified elliptic relaxation models can be applied
or reducing formulations overcomes this problem, andio more complex flows with some improvement of the pre-
also stabilizes the simulation. Again, tih formulation is  dictions.
preferable to th&V1l or W2 ones that have been introduced

arbitrarily.
APPENDIX A: DURBIN'S FULL REYNOLDS STRESS

V. CONCLUSION MODEL

The elliptic relaxation method and the problems associ-  Duju; —dU; —— dU; uju;
ated with it in the reproduction of the redistribution in the ~ “p¢ — Uitk 5 Uitk (9_)(k+kfij_ K ¢
logarithmic layer have been presented. It has been shown o
that the amplification of the redistribution can be avoided by d [C,——_ duy o
introducing the formulation of the elliptic relaxation equation T ox | o Wimt +rViuuj, (A1)
proposed by Manceaet al.,'® which accounts for the asym- o
metry of the two-point correlations due to the strong inho- C0f) = h 2K uju;
mogeneity in the vicinity of the wall. (i) = | dij— 3ToT T (A2)

The behavior of the elliptic operator in the logarithmic S "
region predicted by the theory has first been confirmea by With £(fij)=fi;—L“V=f;;  Durbin®(D),
priori tests in a chqnnel flow at Re590. The formulation of or L(f)=f; _Vz(szij), Wizman et al.} (W1),
the operator that gives the best results depends on the quasi-
homogeneous model used as the source term of the elliptier £(f;;)=(1+ 16B(VL)2)fij_szzfij_B,BLVL'Vfij;
relaxation equation. With the RottdP model, which over-
estimates the redistribution in the logarithmic layer, formu-
lations that exhibit an amplification factor less than one are
preferable: this is the case, in particular, of the model pro-  #i;= _(Cl TTCIP
posed by Manceaet al., provided that the3 coefficient is

Manceauet al.*®> (M).

k
bij+ CzT dev(bjby;)

taken larger than 1/12. With the SSG model, which better +(C3—C} (byby) ¥HkS;

predicts the redistribution in the logarithmic layer, it is con-

firmed that neutral models are preferable, even if the results +Cak dev(biSq +bjSi)

do not exactly conform with the theory. +Csk(bi Qi+ b i), (A3)

Simulations with Durbin’s full Reynolds stress model
have been performed in the same flow with the SSG modéel/nere
as the source term. The original model does not allow the _ruj 1 1(an an)

2k~ 3% STz

simultaneous correct predictions of the buffer and the loga-  b;j=
rithmic layer. This problem is overcome by the use of neutral
formulations, such as the one proposed by Wizmetaad., on  and

&Xi X
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1/0U; U,
C/ P-C,_¢
%z%—l—%(i—jummTi—i + vV,
(A4)
where
k v\?
T:“W(z'CT(;) );
K32 304 p
L=C, ma{T,CWW); Ci,=C., 1+A1;),

C,=0.26; 0,=10; C, =135, C, =1.83; 0,=1.4,
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D formulation: C =0.2;
W1 formulation: C;=0.29;
M formulation: C,=0.28.

Wall boundary conditions:
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APPENDIX B: v2—f MODEL EQUATIONS
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C,=0.22; C81:1.4; C82=1.9; 0.,=1.3; Ci=1.4;

C,=0.3; C,=85.0; C;=6.0; «=0.045.

D formulation: C =0.22,
W1 formulation: C_ =0.22,
M formulation: C,=0.25.

Wall boundary conditions:
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