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Abstract: Digital images are always affected by noise and the reduction of its impact is an active field
of research. Noise due to random photon fall onto the sensor is unavoidable but could be amplified
by the camera image processing such as in the color correction step. Color correction is expressed
as the combination of a spectral estimation and a computation of color coordinates in a display
color space. Then we use geometry to depict raw, spectral and color signals and noise. Geometry is
calibrated on the physics of image acquisition and spectral characteristics of the sensor to study the
impact of the sensor space metric on noise amplification. Since spectral channels are non-orthogonal,
we introduce the contravariant signal to noise ratio for noise evaluation at spectral reconstruction
level. Having definitions of signal to noise ratio for each steps of spectral or color reconstruction,
we compare performances of different types of sensors (RGB, RGBW, RGBWir, CMY, RYB, RGBC).

Keywords: image; sensor; color; multispectral; noise; geometry

1. Introduction

Images acquired by the sensor in digital cameras need to be processed for being displayed on
an output screen. But because of the random absorption of photons, image capture is always subject
to noise. Noise can be amplified by the processing operations, the amplification at the output image
depends both on physical properties of the sensor (spectral sensitivities, dynamic range, etc.) and the
kind of processing applied to the raw image [1–5].

In the literature, one common problem is to find the best hardware/software configuration to
minimize the amount of noise of the output image [6]. The question of sensor optimization is very
complex, because it is a spatio-spectral inverse problem [7]. The problem involves the choice of
spectral sensitivities associated to color channels and their distribution on the color filter array (CFA),
for optimizing both color rendering and spatial quality.

Here, we assume the whole processing chain is linear. Under this linearity hypothesis, the overall
processing can be split into several linear steps, shown in Figure 1. All these linear steps can
be optimized independently to minimize noise based on least square error. Mean square error
optimization was shown to work well for the demosaicking step [7,8], which is not considered in this
study. In this paper, we focus on the problem of the choice of spectral sensitivities and its impacts on
noise amplification in the output image.

Figure 1. Common linear processing chain in an imaging system.
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Usual denoising block is voluntarily discarded from this processing chain because our aim is
to test noise amplification based on several sensor designs. White balance is not considered either
because its noise amplification could be controlled. The only processing step under study in this paper
is color correction. Therefore, we consider that each pixel in the raw image contains a vector of raw
values (triplet in case of RGB sensor). Color correction is a pixel-wise transformation that converts raw
data into displayable RGB triplets. It is actually composed of two operators, a spectral reconstruction
operator [9] followed by an operator that projects spectral data onto the display space [10,11].

We investigate noise amplification through color correction by using a geometrical framework
to represent signals and noise at the spectral and color reconstruction steps. Algebra and geometry
for sensor acquisition has already been stated [10,12]. The representation we use here considers
inter-channel spectral correlations because sensor basis are always non-orthogonal. Consequently,
we introduce contravariant signal to noise ratio to take in consideration this sensor’s metric. This one
is then appropriate to determine noise amplification at spectral reconstruction step.

2. Example of Noise Amplification through Color Correction

To illustrate the problem of noise amplification we start implementing some simulations based on
the high resolution multispectral images from the ReDFISh dataset [13]. The simulation framework is
given in Figure 2.

Figure 2. Simulation framework to display raw noisy and corrected images.

It uses reflectance data (ρp,q(λ), p, q the pixel location) from multispectral images to compute raw
frames independently for each channel. These frames are then stacked such that each pixel of the
obtained image contains the information of all channels without performing any demosaicking.

Simulations are performed using Python. They start by choosing an illuminant whose spectral
distribution is denoted I1lux(λ) and hypothetic spectral sensitivities of a sensor denoted Qi(λ). If the
sensor is RGB, i = {r, g, b}. Raw signals are then computed [14,15] by applying this equation on each
pixel for each channel:

〈Sp,q,i〉 = K.
∫ ∞

−∞
I1lux(λ).ρp,q(λ).Qi(λ).dλ

K =
CVF.Nlux.ti.a2

pix

4 f 2
#

(1)

K is an exposure factor depending on several parameters such as pixel size (apix in m), the aperture
of the objective lens ( f#) the integration time (ti in s), an illumination level (Nlux in lux) and finally the
CVF, a conversion factor between electron values and digital units (bits) [14]. 〈〉 is an average operator
used to denote noise free signals. After stacking the raw planes, we get a noise free raw image.

Then photon shot noise and readout noise are added to the raw image using random functions
from Numpy library of Python. Photon shot noise has a Poisson distribution and its variance σ2

ph is
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equal to the mean signal value. Readout noise has a Gaussian distribution, its standard deviation σrn

is often given in sensor datasheets as an electron quantity. Noisy image is obtained by:

Sp,q,i = 〈Sp,q,i〉+ σph(〈Sp,q,i〉) + σrn (2)

Photon Shot noise is pixel dependent, this dependency is denoted with parenthesis brackets. In
these simulations, data are clipped between 0 et 1 and computed in double type so signal quantization
is not considered. Other sources of noise are also neglected in this paper.

As an example of noise amplification we consider spectral sensitivities of a classical RGB sensor
under constant photon flux illuminant and experiment parameters of Table 1. Then, we compute a
noisy raw image and apply a color correction matrix (CCM) to display Figure 3.

Table 1. Physical setting of the simulation.

Sensor and Exposure Parameters Values

Pixel pitch a2
pix 10 (µm)

Readout noise σrn 10 (e-)
Illumination level Nlux (in lux) 10 lux

f# 1.8
integration time (ti) 4.4 ms

CVF 1
10000

(a) (b)
(c)

Figure 3. (a) Noisy raw image, (b) Image after color correction. (c) Intensity profile of the green channel
at the horizontal median.

A challenge for many authors is to find a way to reduce this amplification. This can be done
by optimizing spectral sensitivities of the sensor [16–18] or by changing the way CCM is computed
(adding regularization, tuning the CCM coefficients...) [9,19]. Complementary to these studies, the goal
of our paper is mainly to describe the algebraic mechanisms that lead to this noise amplification.

3. Geometrical Representation of Sensors Signal and Noise

This section aims to display a geometry of signals and noise propagation from the noisy raw
acquisition through spectral reconstruction and color correction. Cohen provided an interpretation
of spectral and color acquisition by considering the metric of the sensor space (the angle between
each axis represents the correlations between them) [10]. In his formalism, spectra are represented as
vectors in the sensor space. Moreover, some authors represented noise in color spaces like CIELAB or
CIE xyY [2,20]. The analysis of a noisy image is, here, represented as a cloud of points or a geometrical
uncertainty domain around the signal mean value. We join these two approaches to represent noise as
an uncertainty domain in Cohen’s formalism which considers the metric of the sensor. For visualization
purposes and to illustrate the tendencies of noise domain evolution across processes, we set noise with
a uniform statistical distribution.
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Spectral sensitivities are continuous physical functions of wavelength which can be considered
as vectors in a Hilbert space [21]. Inside that vector space, signals acquired from input light have a
geometrical representation. For illustration we consider a sensor with two channels (red and blue).
This two-dimensional representation can be extended to a p-dimensional vector space without loss of
generality. So the model addresses multicolor (even multispectral) sensors having three color channels
and more.

The considered Hilbert space owns a scalar product denoted 〈.|.〉 such that for two vectors L1

and L2:

〈L1|L2〉 =
∫ ∞

−∞
L1(λ).L2(λ).dλ (3)

The . operator is the point-wise product between the two curves. The definition of this scalar
product allows to represent the spectral sensitivities of the sensor, denoted Qr and Qb for our example.
Their L2 norms are derived from a square root of the scalar product of each considered vector with itself:

‖Qi‖2 =

√∫ ∞

−∞
Qi(λ).Qi(λ).dλ =

√
〈Qi|Qi〉

i = {r, b}
(4)

The angle between the two sensitivity vectors [10] is computed as the scalar product divided by
the product of norms.

cos(θrb) =
〈Qr|Qb〉

‖Qr‖2 . ‖Qb‖2
(5)

The span of spectral sensitivity functions generates a vector subspace inside the Hilbert space of
light spectra [10]. In practical case, these sensitivities are usually non-orthogonal because they have
correlations between each other. To accurately display the sensor basis, we derived an orthogonal basis
associated to the sensor spectral sensitivities using a Gramm–Schmidt process (Figure 4). Spectral
sensitivities are linked to the orthogonal basis by a linear transform that could be considered for
building the metric of the sensor space.

(a) (b)

Figure 4. (a) Spectral sensitivities (continuous curves) and orthogonalized curves (dash curves, scaled
by a factor five for visualization) (b) Corresponding geometrical representation. θrb = 75◦, the black
arrows are the non-scaled vectors of the orthogonal basis.
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Considering a radiance vector L as the input light of the sensor, equations giving noise free signals
(see Equation (1)) can be rewritten using a scalar product in Hilbert space of lights:

Sr = K
∫ ∞

−∞
L(λ).Qr(λ).dλ = K〈L|Qr〉

Sb = K
∫ ∞

−∞
L(λ).Qb(λ).dλ = K〈L|Qb〉

L(λ) = I1lux(λ).ρ(λ)

(6)

To reduce the amount of notation, noise free signals are denoted without 〈〉 average operator.
If spectral sensitivities are sampled in a n number of wavelengths, these equations can be

approximated in a vector way implying a matrix product [10–12]. This is a rectangle approximation of
the integrals of Equation (6) given by:

(
Sr

Sb

)
≈ K.∆λ︸ ︷︷ ︸

K̃

Qr(λ1) Qb(λ1)
...

...
Qr(λn) Qb(λn)


T

︸ ︷︷ ︸
FT

L(λ1)
...

L(λn)

 = K̃.FT .L (7)

To represent raw data in the sensor’s space, we use the mathematical link between scalar product
and orthogonal projection [22]. Each orthogonal projection of L on Qi (i = {r, b}) can be expressed
as a vector denoted LQi collinear to Qi. The L2 norm of this vector is denoted S̃i. This norm can be
derived from the scalar product between L and Qi which can be rewritten using the raw signals Si:

LQi =
〈L|Qi〉
‖Qi‖2

2

.Qi =
1
K̃

.
Si

‖Qi‖2
2

.Qi

S̃i =
1
K̃

.
Si
‖Qi‖2

=
∥∥LQi

∥∥
2

i = {r, b}

(8)

S̃i may be misplaced in an uncertainty domain because of raw data noise. The noise level which
affects S̃i, denoted σ̃i, is computed using the same transform applied on σi:

σ̃i =
1
K̃

.
σi
‖Qi‖2

(9)

For illustration, a simulation of raw acquisition over 500 pixels is computed in Figure 5. The chosen
input radiance L is constant photon flux along wavelength and K is set such that acquisitions are quiet
noisy (K = 1.385 S.I units). The levels of raw noises σr and σb are computed as in Equation (2), but for
visualization purposes, their statistical distribution are set as uniform.

Raw signals are now processed to perform spectral reconstructions from sparse raw values. In the
following, we give a geometrical representation of signal and noise for three different linear methods of
spectral reconstructions. In a first method, called intrinsic reconstruction, the reconstruction operator
is calculated from the sensor sensitivities only. In a second method a database of spectra is used as a
training set to build the reconstructing operator with a linear regression. In the third method we use
Tikhonov regularization. Finally, we show that these operators can be considered as part of the color
correction matrix whose geometrical interpretation is also depicted.

All along this section, one may keep in mind that any point of the sensor plane (see Figure 4b) is a
linear combination of Qr and Qb. Thus, each point is associated to a continuous function of wavelength
similarly to Qr(λ) and Qb(λ).
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(a)

(b)

Figure 5. (a) Visual results of raw acquisition with superposed red and blue channel, (b) locations of
the raw points and raw noise segments in the sensor space S̃i and σ̃i.

3.1. Intrinsic Spectral Reconstruction (No Training Set)

Color and snapshot multispectral sensors classically contain few spectral channels, the dimension
of acquired spectra is restricted to few numbers (p channels) compared to the number of variables
(n wavelength samples) in the spectral domain. To retrieve spectra from acquired data we compute
a reconstruction matrix called R. The most straightforward approach consists in performing a least
square minimization between the n × n identity operator In and RFT . We get the reconstructing
operator R given by:

R = argminR̂(
∥∥∥In − R̂FT

∥∥∥2

2
)

⇔ R = F(FT F)−1
(10)

R is the pseudo-inverse matrix of F and reciprocally, the pseudo-inverse matrix of R is F. For our
red and blue sensor, the spectral reconstruction of L, denoted L̂, using this approach can be written as
in [10,11]:

L̂ =
1
K̃

R

(
Sr

Sb

)
= F(FT F)−1FT L (11)

The operator F(FT F)−1FT is an orthogonal projector [10]. So L̂ is placed in the sensor’s plane
such that its orthogonal projection on Qr and Qb are equal to S̃r and S̃b (Figure 6). Because of noise,
the location of L̂ is inside an uncertainty area whose extension is driven by σ̃r and σ̃b. Figure 6b
shows the location of the noise free L̂ surrounded by the points computed from the noisy simulation
of Figure 5. They are distributed in a parallelogram shape because of the choice of the uniform
distribution of raw noise.
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(a) (b)

Figure 6. (a) Spectral sensitivities of the sensor, (b) Noisy intrinsic spectral reconstruction (without
training set), the positions of reconstructed spectra from pixels of Figure 5 constitute the cloud of points.
L̂ is the position of the noise free spectral reconstruction. Its orthogonal projections on Qr and Qb is S̃r

and S̃b. The size of the noise parallelogram is given by σ̃r and σ̃b.

The area A of the parallelogram represents the level of noise of the spectral reconstruction.
It depends not only on the raw noise levels, but also on the correlation between the channels
through θrb:

A =
σR.σB

sin(θrb)
(12)

This angle decreases when correlation are higher making A wider. So for identical raw noise
levels, the more correlated the channels are, the noisier the spectral reconstruction is.

3.2. Linear Regression over a Spectral Training Set

To increase estimation accuracy, it is usual to perform a linear regression over a training set of
radiance spectra [18]. This training set can be written as a n×m matrix Tset where n is the number of
wavelengths and m the number of radiance spectra. Reconstructing operator based on training set is
denoted Rt. It is computed performing a least square minimization between Tset and its reconstruction
from raw values:

Rt = argminR̂t
(
∥∥∥Tset − R̂tFTTset

∥∥∥2

2
)

⇔ Rt = TsetTT
setF(FTTsetTT

setF)
−1

(13)

For color applications, a well-known spectral dataset is the X-Rite ColorChecker Classic (Figure 7).
Radiance of Tset are computed by multiplying the reflectance spectra of the color chips with the
illuminant spectrum (L for instance here).

Spectral reconstruction of L can be written [18]:

L̂ = TsetTT
setF(FTTsetTT

setF)
−1FT L (14)

TsetTT
setF(FTTsetTT

setF)
−1FT is an oblique projection operator. Unlike the intrinsic reconstruction,

L̂ is not a simple combination of the sensor’s spectra because of the influence of the prior radiance
data on Rt. Instead, L̂ belongs to an another space generated by a basis of extrapolated spectral
sensitivities. Because of the reciprocity of the pseudo-inverse operation, these extrapolated sensitivities
are contained in an Ft matrix computed from the reconstruction operator Rt:

Ft = Rt(RT
t Rt)

−1 (15)
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In turn, Ft defined two axis called Qr,t and Qb,t. The representation of L̂ is given in Figure 8.

(a)

(b)

Figure 7. (a) Color rendering of X-Rite ColorChecker Classic. (b) Corresponding reflectance spectra.

(a) (b)

Figure 8. Linear regression over the X-Rite ColorChecker Classic (a) Extrapolated sensitivities Ft

obtained by calculating the pseudo-inverse of the reconstruction matrix. (b) Associated vector basis
and spectral reconstruction in the sensor space. The orthogonal projections of signals and standard
deviation S̃ and σ̃ are found with Equation (8) but using ‖Qr,t‖2 and

∥∥Qb,t
∥∥

2 instead of ‖Qr‖2 and
‖Qb‖2.

3.3. Tikhonov Regularization (Ridge Regression)

Both previous reconstructing operators come from inversion of the acquisition process.
These inversions are known to amplify noise. A classical method to limit the increase of noise is
to perform a Tikhonov regularization also known as ridge regression. Ridge reconstruction operator
Rr is written as:

Rr = F(FT F + α.Ip)
−1 (16)

α is a real factor that controls the conditioning of the matrix, Ip is the p× p identity operator.
When α increases, the matrix becomes better conditioned so the inverse limits noise amplification.
However spectral reconstruction operator gets biased [20]. As before, we can derive corresponding
sensitivity functions or matrix Fr as follows:

Fr = Rr(RT
r Rr)

−1 (17)

Corresponding Qr,r and Qb,r are still linear combinations of Qr and Qb, so they belong to the
sensor’s space Figure 9.
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(a) (b)

Figure 9. Tikhonov regularization (a) Extrapolated spectral sensitivities. (b) Spectral reconstruction
with α = 15. The orthogonal projections of signals and standard deviation S̃i and σ̃i are found with
Equation (8) replacing ‖Qr‖2 and ‖Qb‖2 by ‖Qr,r‖2.

Noise reduction comes from the modification of the shape of uncertainty volume. Noise surface
sides are aligned with the axes and its size depends on α. Estimation of the optimal α coefficient is
problem dependent and will not be discussed in this article [23,24].

3.4. Color Correction: Projection in a Color Space

Color correction consists in transforming raw signal acquired by the sensor toward human
tristimuli color data. There exist plenty of methods [11,25–27], among which linear color corrections
matrix (CCM) is the most widely and extensively used. Spectral properties of the standard human
observer are defined by CIE (Commission internationnale de l’éclairage) as the color matching functions
(CMF) x(λ), y(λ), z(λ) (Figure 10). These curves taken as a n× 3 matrix H allow to compute color
data according to the CIE XYZ 1931 standard in the same way as sensor raw acquisition Equation (7).
H is given by:

H =

x(λ1) y(λ1) z(λ1)
...

...
...

x(λn) y(λn) z(λn)

 (18)

Figure 10. Color matching functions expressed to be used with radiances in photon flux units.
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H allows to compute a CCM [11]. As color coordinates are limited to CIE XYZ 1931 color space
and CCM normalization is not performed, we actually call it CCMkernel . This one is given by:

CCMkernel = HT R = HF(FT F)−1 (19)

CCM contains an implicit spectral reconstruction operator R so geometrical interpretations given
previously for radiance estimation remain valuable for color applications. X, Y and Z are color
coordinates analogous to Sr and Sb. They allow to compute the orthogonal projection of L̂ on color
matching axes (denoted X̃, Ỹ and Z̃) in the sensor’s vector space. To represent sensor and color axis at
the same time on graphics, we show that applying CCMkernel is equal to apply the projection of H in
the sensor’s space:

X
Y
Z

 = CCMkernel FT L

= HT F(FT F)−1FT L

= (F(FT F)−1FT H)T L

= ĤT L

(20)

As shown in Figure 11 the projection, x̂, ŷ and ẑ only span two dimensions (because of the choice
of a two channels sensor). The projection of the uncertainty volume of L̂ produces uncertainties σ̃x, σ̃y

and σ̃z. Amplitude of color noise depends on the size of the spectral uncertainty volume as well as its
orientation regarding color matching axes.

(a) (b)

Figure 11. (a) Color matching functions projected into co-planar vectors x̂ŷẑ in sensor space, (b)
corresponding geometry. Spectral noise is projected orthogonally on color matching axes giving X̃ỸZ̃
and corresponding variances onto color matching channels..

This section provides some illustrations of how noise propagates from raw acquisition to spectral
and color reconstructions. It shows that noise of output color images depends on many different
aspects. From a physical point of view, first parameters are the raw sensitivities of the channels
which impact raw noise levels. Then, inter-channel correlations have an impact on noise of spectral
reconstruction by changing the size and shape of the uncertainty volume surrounding L̂ (Figure 6).
Finally, the noise of a color corrected image depends on one more criterion: the orientation of the target
color space compared to the sensor axes (Figure 11). From a computational point of view, these noise
levels depend also on the method used in spectral and color reconstruction.
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4. Raw, Color and Contravariant Signal to Noise Ratios

Signal to noise ratio (SNR) is the measurement used to evaluate noise amplification in the
literature. First, SNR on raw images can be computed independently over each spectral channel.
Under the hypothesis of considering only photon shot noise and readout noise, the overall variance of
a uniform image is σ2

i = σ2
ph(〈Si〉) + σ2

rn. For the p channels of the sensor, raw SNR can be computed
in decibels as:

SNRi = 20 log10

(
〈Si〉
σ2

i

)
= 20 log10

 〈Si〉√
σ2

ph(〈Si〉) + σ2
rn


i = {1, ..., p}

(21)

As shot noise depends on the intensity, the SNR is greater when the signal increases. Inversely in
low-light conditions SNR decreases [28]. Regarding geometrical representation of Figure 5, raw SNR
can also be written:

SNRi = 20 log10

(
S̃i
σ̃i

)
i = {1, ..., p}

(22)

This definition is valuable at the input of the processing chain. But noise propagation is classically
evaluated by studying the SNR at the output image. These ones can be color images (three RGB
channels) or multispectral (we consider it contains n channels corresponding to each wavelength).

In case of color images, each pixel contains a RGB triplet expressed in a display space (sRGB
for example) [29]. As color is a perceptive entity, color SNR criteria must be representative of
human perception [30,31]. Most standard color spaces are related to the standard of the Commission
Internationale de l’Éclairage (CIE) spaces, namely CIE XYZ 1931. Color images can be separated into
luminance and chrominance components (Figure 12). With sRGB display space, luminance is computed
using RGB triplet values:

Y = 0.213R + 0.715G + 0.072B (23)

Then, variances of RGB triplet are extracted from uniform area in output images (such as Figure 12).
In practice, this evaluation is often performed over an achromatic (grey) uniform image. By propagating
variances of RGB triplets (supposed to be statistically independent) through linear combinations, SNR
over the luminance channel is computed as:

σ2
Y = 0.2132σ2

R + 0.7152σ2
G + 0.0722σ2

B

SNRY = 20 log10

(
〈Y〉
σY

) (24)

If we consider Figure 11, this noise can also be computed by:

SNRY =
Ỹ
σ̃Y

(25)

SNRY associated to luminance is a convenient criterion because it is just a scalar. To be more
accurate, one may also evaluate the impact of noise on chromaticity in other color spaces. For this
evaluation, pixels are projected in the so called CIELAB color space [32] generating a cloud of points.
Chromaticity noise can be represented as a volume in that space [2]. Because of non-linearity of
the transformation between CIE XYZ 1931 and CIELAB we do not use this method in the following.
Instead, we investigate chromaticity channels by applying Equation (25) on X and Z channels (see
Figure 11).
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(a) (b) (c)

Figure 12. If a grey uniform scene is taken with a color camera under dim light (a), one can separate its
luminance (b) to its chrominance (c).

Finally, for the case of multispectral images, SNR quantification is more challenging. The output
image is a cube of data where the third dimension contains reconstructed spectra from each pixel over
n wavelength samples. If spectra are linearly reconstructed, it is possible to evaluate SNR, at each
wavelength sample, by using the covariance matrix of the reconstructing operator [2]. With that
method, output SNR is expressed over n components, so it allows to draw standard deviation curves
around the noise free spectral reconstruction which may be very convenient (as in Figure 19 in next
section). Another way to illustrate SNR attached to multispectral data is to project reconstructed
spectra in a color space and apply the same evaluation as for color images. SNR is, in that case,
computed over the three components of the color space. These two ways of quantifying SNR in
multispectral data have a common issue: their dimension. In fact, linear spectral reconstruction is an
ill-posed problem where n-dimensional data are evaluated from p-dimensional ones (p is the number
of channels of the sensor, usually lower than n). So linear reconstruction follows p degrees of freedom,
then its SNR would be better represented over p dimensions instead of n or 3. To quantify SNR of
spectral reconstruction over its real dimension, we introduce the contravariant SNR.

4.1. Definition of the Contravariant Signal to Noise Ratio

In spectral reconstruction, the estimated spectra L̂ is a weighted sum of Qr and Qb (or their analogs
if using training on dataset or Tikhonov regularisation). For a non-orthogonal basis, these weights are
the contravariant coordinates of the vector L̂ projected into the sensor basis [33]. In opposition, raw
acquisition vectors correspond to the covariant coordinates of L̂ in that basis. Contravariant coordinates
are obtained by applying the metric tensor on covariant coordinates, they are often denoted with upper
indexes following the so-called Einstein’s notation [33]:S1

...
Sp

 = (FT .F)−1.

S1
...

Sp



= (RT .R).

S1
...

Sp


(26)

A geometrical illustration is given in Figure 13 for the previous red and blue sensor. In the
same way as L̂, uncertainty volume associated to spectral reconstruction can be projected alongside
axes. As a result, we get the uncertainties of contravariant coordinates of L̂ denoted σr and σb.
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These uncertainties constitute what we call in the following: contravariant noise. Contravariant signals
and noise definitions allow to compute a contravariant SNR associated to each dimension:

SNRi = 20. log10

(
Si

σi

)
i = {1, ..., p}

(27)

Figure 13. Projection of the uncertainty volume onto contravariant coordinates. Uncertainty in spectral
reconstruction is given by contravariant noise σr and σb. When the angle between channel is smaller,
the contravariant coordinates and SNR decrease. Spectral reconstruction becomes “more noisy”.

Contravariant noise remains valuable when the training method is used as well as the ridge
regression. The metric tensor that must be applied in Equation (26) is then, respectively, (RT

t .Rt) =

(FT
t .Ft)−1 or (RT

r .Rr) = (FT
r .Fr)−1. Therefore, additionally to evaluate the impact of the sensor’s metric,

contravariant noise can be used to compare the influence of several reconstructing methods.

4.2. Example of Contravariant SNR Evaluation to Compare Several Spectral Reconstructing Methods

Using contravariant SNR, we can compare noise propagation through several reconstruction
methods (intrinsic, regression, ridge regression with two different α parameters). The sensor is still the
two-dimensional one and the spectrum to be reconstructed is still L (uniform photon distribution over
wavelength). The spectral reconstruction accuracy is measured in terms of angular error. The exposure
parameter for raw computation remains the same as Section 3.

The angular error between L and L̂ is given in Table 2, it is computed similarly to Equation (5).
Corresponding graphical noise free reconstructions are displayed Figure 14.

Table 2. Angular error between reference radiance spectrum and reconstructed spectra (the lowest,
the best).

Reconstructing Method Intrinsic Regression Ridge α = 5 Ridge α = 19

θL,L̂ (in ◦) 21.82 4.14 21.83 21.85
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(a) (b)

Figure 14. (a) Input radiance with corresponding reconstruction for intrinsic and regression methods,
(b) reconstruction using ridge regression with two different α parameters.

Table 2 shows that the most accurate spectral reconstruction of L is obtained using the linear
regression method which confirms visual results of (Figure 14). It also shows that the bias induced by
the ridge regression operator is negligible in terms of angle. This occurs because the angle between
the red and blue channels is wide enough. So using intrinsic or ridge regression does not change
significantly the spectral distribution of the reconstructed spectrum.

Joint evaluation of contravariant SNR for each method has been computed in Figure 15.
Their values are close to each other even if regression method appears to be the most noisy one.
On the contrary, higher SNR are obtained with ridge regression for increasing α, confirming the interest
of ridge regression in noisy conditions.

Figure 15. Contravariant signal to noise ratio (SNR) corresponding to several reconstructing methods
for over red and blue channel (colors of the bars).

5. SNR Analysis of Various Common Sensors

We perform a benchmark of several sensors having different spectral configurations. The goal
is to identify a configuration which provides the lower noise amplification across color correction or
spectral reconstruction. In accordance with previous investigations, we analyze SNR at raw, spectral
reconstruction and color correction steps. We compare six different sensors called respectively RGB,
CMY, RGBW, RGBWir, RYB and RGBC.
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• RGB and CMY are constituted of respectively red, green, blue and cyan, magenta, yellow channels,
they are classical designs for color image sensors.

• RGBW and RGBWir contain a white pixel (no color filter) more sensitive than others. RGBWir do
not own infrared cutoff filter, so compared to RGBW sensor, it acquires light from both visible
near-infrared domains. Both sensors have been proposed for low light conditions.

• RYB has a yellow channel twice sensitive as red and blue.
• RGBC owns a cyan channel additionnally to RGB also twice sensitive.

Spectral sensitivity curves are mostly proprietary data. So the benchmark is carried out on
theoretical built sensors based on one unique model taken from the Teledyne-E2V Onyx EV76C664
sensor. Electronical properties are given in Table 3. Sensitivity curves of RGBWir are those from
Onyx [34]. RGB, and RGBW are built applying an infrared cutoff filter in front of RGBWir channels.
Similarly, CMY channels are built using the white sensitivy of Onyx, with Fuji CMY color filters in
front [35]. Final spectral sensitivites are given in Figure 16.

Table 3. Physical parameters of the sensor.

Sensor’s Parameters Values

Qsat 10,000 (e-)
Pixel pitch 10 (µm)

Readout noise 10 (e-)

(a)

(b)

(b)

(e)

(c)

(f)

Figure 16. Spectral sensitivities of each sensor. Color code correspond to the nature of spectral
sensitivity of the channels. (a) RGB, (b) RGBW, (c) RGBWir, (d) CMY, (e) RYB, (f) RGBC.
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The benchmark starts with an evaluation of noise free performances of the sensor (spectral and
color reconstruction). For each sensor, spectral channels are equally considered for the computation of
the spectral reconstruction operator. This one is computed using (Equation 11) which do not imply any
training set (to avoid bias due to prior data). So R is a n× p operator where p = {3, 4} depending on
the number of channels. Spectral accuracy is evaluated over the equal distribution radiance spectrum
L. The accuracy is given in angle as in Table 2, so the results of the benchmark are given in Table 4.

Table 4. Angular error between constant radiance and its intrinsic spectral reconstruction for each
sensor.

RGB RGBW RGBWir CMY RYB RGBC

θL,L̂ in (◦) 16.27 15.93 20.15 15.29 15.76 15.89

Color performances are checked over the X-Rite ColoChecker Classic using the ∆E76 criterion
(Table 5). For coherence CCM is computed with Equation (19), as well as to avoid bias due to prior
data (still no training set used to compute the CCM).

Table 5. Color performance of the sensor over the 24 patches of the X-Rite ColorChecker Classic.
No training set have been used for the computation of color correction matrix (CCM).

Color Error RGB RGBW RGBWir CMY RYB RGBC

min(∆E76) 0.34 0.14 0.18 0.32 0.14 0.32
mean(∆E76) 3.23 2.81 10.94 2.81 3.33 3.98
max(∆E76) 11.19 9.00 60.94 8.42 8.88 10.58

Table 5 shows that studied sensors have comparable color performances. Nonetheless, RGBWir
sensor gets the poorest color performance due to the near-infrared part of the signal [36].

Second step of the benchmark is to investigate noise propagation. This study is performed for
both high and low light level. For each sensor, we simulate a noisy acquisition of the L spectrum under
controlled exposure setup (Table 6). First, illumination is set to 10 lux which is a dim light for human
vision. However as the sensor is very sensitive due to large pixels, these conditions are those of high
light level.

Table 6. Exposure parameters.

Parameters Values

Illumination (Nlux) 10 lux
f# 1.8

integration time (ti) 11 ms

Illumination level and aperture are fixed, integration time is computed such that acquisition
reaches the maximum value without saturating any channel of any sensor. For information,
the saturation integration times of each sensor are given Table 7.

Table 7. Integration time when the most sensitive channel starts to saturate.

Integration Time at Saturation RGB RGBW RGBWir CMY RYB RGBC

tsat
i (in ms) 58 24 11 37 37 42

Raw SNR is computed according to the definition of Equation (21). This SNR evaluation is
performed for each channel of each sensor and is represented Figure 17.
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Figure 17. SNR over raw channels of each sensors, the colors code follows the name of the channels.

As expected, sensors with wider spectral sensitivities get higher raw SNR than others since they
contain more sensitive channels. So the classical RGB is the sensor that owns the lowest raw SNR.
Then we compute the contravariant SNR (Equation (27)) to investigate the spectral reconstruction level
as shown in Figure 18).

Figure 18. Contravariant SNR over channels of the sensors.

The result displays negative contravariant SNR. This occurs when the absolute value of the
contravariant signals are lower than their noise level. In case of negative SNR, results of spectral
reconstruction cannot be exploited because they are too noisy. Moreover, contravariant SNR almost
follow the inverse trend than raw SNR. Indeed, in sensors with wide spectral channels, inter-channel
correlations are increased and cause a high noise amplification at spectral reconstruction level (Figure 6).
In Figure 19, we illustrate the results of noisy spectral intrinsic reconstructions (at same exposure
setup) wavelength by wavelength. This figures clearly shows the difficulty of RGBW and RGBC to
reconstruct spectra from noisy signals. This happens because respectively W and C channels are too
correlated to RGB channels.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 19. For each sensor, intrinsic spectral reconstruction with upper and lower standard deviations
wavelength by wavelength (red curves are similar to standard deviation error bars). (a) RGB, (b) RGBW,
(c) RGBWir, (d) CMY, (e) RYB, (f) RGBC.

The final step of the benchmark is an SNR evaluation after color correction. On Figure 20,
we display SNR over X, Y and Z components, enlarging the usual picture of SNRY comparison (see
Equation (25)). Here we see that color SNR follows the trend of contravariant SNR. To complete this
high light level benchmark, we use the simulating framework of Section 2 to simulate the noisy color
renderings over realistic images corresponding to the physical setting of the benchmark Figure 21.
Once again, images are computed with high resolution multispectral images from the ReDFISh
dataset [13]. For each sensor, color images have been computed with a normalized update of the
CCMkernel whose calculus is based on Equation (19) such that no training set is used.

Figure 20. SNR over color components of each sensor.
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 21. Illustration of color image renderings for each sensor after applying the CCM on raw data.
Each frame is displayed with a zoom around the “colorchecker” word on the X-Rite ColorChecker
Passport Photo. (a) RGB, (b) RGBW, (c) RGBWir, (d) CMY, (e) RYB, (f) RGBC.
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In a second test, we perform the same benchmark but in dim light conditions. All physical
parameters remain equal except the illumination factor which is divided by a 50 factor: Nlux = 0.2 lux.
Histogram results are displayed in Figure 22 for each type of SNR.

(a)

(b)

(c)

Figure 22. SNR results for dim light conditions. (a) SNR raw, (b) contravariant SNR, (c) color SNR.

We can draw some conclusions from this evaluating section. For both high and low signal levels,
higher raw SNR are obtained for most sensitive channels. Contravariant SNR evaluation shows that
reconstructing spectra from sparse raw data is very sensitive to noise and could not be performed
in low light conditions (negative contravariant SNR). Moreover, contravariant SNR seems to remain
higher in both conditions for the RGB sensor. This shows that spectral reconstruction is mostly
sensitive to inter-channel correlation instead of raw sensitivity. Finally, color SNR of the RGB sensor are
overtaken by CMY and RYB at low light level. This change in the tendencies of the benchmark are due
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to the readout noise impact which becomes higher in low light level. So for color applications, a smart
compromise must be found between raw sensitivity, inter-channel correlation and sensor/color axes
orientations to minimize noise in output images. RGBW still gets bad results in low light conditions
because of high correlations of W and the RGB spectral space. So from a spectral point of view, the W
channel does not have benefit. However, we did not perform pansharpening [6] in this study, so the
interest of W channel is not highlighted here.

6. Conclusions

This paper was focused on the impact of the spectral sensitivities of imaging sensors on noise
of output image (color and multispectral). To perform our analysis, we studied the color correction
step of image processing and discarded all other steps like denoising or demosaicking. So we started
introducing an appropriate simulating framework to display an example of noise amplification through
color correction.

Then, we proposed a novel geometrical way of representing noise propagation from raw
acquisition through spectral reconstruction and color correction. This approach considers spectra as
vectors [10] whereas noise is represented as uncertainty domains (segments or volume) around the
noise free position [2]. We showed that noise quantity in the final color image depends on three main
spectral dependencies: raw sensitivity, inter-channel correlations, relative orientation of sensor and
color spaces. Based on our approach, we also were able to represent spectral reconstruction of other
methods like least square minimization over a training set and Tikhonov regularization.

After recalling computation of raw and color signal to noise ratios to quantify noise in uniform
images, we introduced the contravariant SNR to quantify noise in spectral reconstructions. Compared
to other quantifiers, this one is accurate in terms of dimension. We also generalized it such as it can be
computed when using the different linear reconstructing methods.

Finally, using the different SNR defined in the article, we evaluated spectral and color
performances of several sensors with spectral characteristics close to commercial products. We found
out that the minimization of noise in output color images needs a fine compromise between three
spectral dependencies we highlighted in Section 3. However, having low inter-channel correlations
seems to be mandatory if the goal is to reconstruct spectra, which is shown by the results of the RGB
sensor in terms of contravariant SNR.

The next step of this work is to use the description drawn in this paper to optimize spectral
sensitivities and make image acquisition less noisy. Additionally to what already exists [16,18],
we would like to find a geometrical method based on the presented geometrical framework to find
an optimum sensor. We also can expect that this formalism would help one to optimize methods of
spectral reconstruction or color correction.

Author Contributions: Conceptualization, A.C.; Formal analysis, A.C., J.V. and D.A.; Methodology, A.C.;
Supervision, J.V. and D.A.; Validation, J.V. and D.A.; Visualization, A.C.; Writing—original draft, A.C. and
D.A.; Writing—review editing, A.C., J.V. and D.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Theuwissen, A.J. Solid-State Imaging with Charge-Coupled Devices. Available online:
https://www.semanticscholar.org/paper/Solid-State-Imaging-with-Charge-Coupled-Devices-
Theuwissen/62079af26672865fe85f142cc8914f60f0387a93 (accessed on 11 August 2020).

2. Burns, P.D. Analysis of Image Noise in Multispectral Color Acquisition. Available online: http://www.
losburns.com/imaging/pbpubs/pdburns1997.pdf (accessed on 11 August 2020).

https://www. semanticscholar.org/paper/Solid-State-Imaging-with-Charge-Coupled-Devices-Theuwissen/62079af26672865fe85f142cc8914f60f0387a93
https://www. semanticscholar.org/paper/Solid-State-Imaging-with-Charge-Coupled-Devices-Theuwissen/62079af26672865fe85f142cc8914f60f0387a93
http://www.losburns.com/imaging/pbpubs/pdburns1997.pdf
http://www.losburns.com/imaging/pbpubs/pdburns1997.pdf


Sensors 2020, 20, 4487 22 of 23

3. Mornet, C.; Baxter, D.; Vaillant, J.; Decroux, T.; Herault, D.; Schanen, I. Toward a quantitative visual
noise evaluation of sensors and image processing pipes. In Proceedings of the IS&T/SPIE ELECTRONIC
IMAGING, San Francisco, CA, USA, 23–27 January 2011; Volume 7876, pp. 255–266. [CrossRef]

4. Teranaka, H.; Monno, Y.; Tanaka, M.; Ok, M. Single-Sensor RGB and NIR Image Acquisition: Toward Optimal
Performance by Taking Account of CFA Pattern, Demosaicking, and Color Correction. Electron. Imaging
2016, 18, 1–6. [CrossRef]

5. Ge, X.; Theuwissen, A.J.P. Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS
Image Sensors. Sensors 2018, 18, 707. [CrossRef] [PubMed]

6. Kwan, C.; Larkin, J.; Ayhan, B. Demosaicing of CFA 3.0 with Applications to Low Lighting Images. Sensors
2020, 20, 3423. [CrossRef] [PubMed]

7. Amba, P.; Thomas, J.; Alleysson, D. N-LMMSE demosaicing for spectral filter arrays. J. Imaging Sci. Technol.
2017, 61, 40407-1–40407-11. [CrossRef]

8. Alleysson, D.; Susstrunk, S.; Herault, J. Linear demosaicing inspired by the human visual system. IEEE Trans.
Image Process. 2005, 14, 439–449. [CrossRef] [PubMed]

9. Heikkinen, V.; Lenz, R.; Jetsu, T.; Parkkinen, J.; Hauta-Kasari, M.; Jääskeläinen, T. Evaluation and unification
of some methods for estimating reflectance spectra from RGB images. JOSA A 2008, 25, 2444–2458. [CrossRef]

10. Cohen, J. Visual Color and Color Mixture: The Fundamental Color Space; University of Illinois Press: Urbana, IL,
USA, 2001.

11. Finlayson, G.; Morovic, P. Metamer constrained color correction. J. Imaging Sci. Technol. 2000, 44, 295–300.
12. Marimont, D.; Wandell, B. Linear models of surface and illuminant spectra. J. Opt. Soc. Am. Opt. Image

Sci. Vis. 1992, 9, 1905–1913. [CrossRef]
13. Clouet, A.; Viola, C.; Vaillant, J. Visible to near infrared multispectral images dataset for image sensors

design. Electron. Imaging 2020. [CrossRef]
14. Farrell Joyce, E.; Wandell Brian, A. Image Systems Simulation; Major Reference Works; John Wiley & Sons,

Ltd.: New York, NY, USA, 2015. [CrossRef]
15. Mornet, C.; Vaillant, J.; Decroux, T.; Hérault, D.; Schanen, I. Evaluation of color error and noise on simulated

images. In Proceedings of the IS&T/SPIE Electronic Imaging, San Jose, CA, USA, 17–21 January 2010;
Volume 7537, pp. 325–336. [CrossRef]

16. Kuniba, H.; Berns, R.S. Spectral sensitivity optimization of color image sensors considering photon shot
noise. J. Electron. Imaging 2009, 18, 023002. [CrossRef]

17. Engelhardt, K.; Seitz, P. Optimum color filters for CCD digital cameras. Appl. Opt. 1993, 32, 3015–3023.
[CrossRef] [PubMed]

18. Hardeberg, J.Y. Filter Selection for Multispectral Color Image Acquisition. J. Imaging Sci. Technol. 2004, 48,
105–110

19. Kharitonenko, I.; Twelves, S.; Weerasinghe, C. Suppression of noise amplification during colour correction.
IEEE Trans. Consum. Electron. 2002, 48, 229–233. [CrossRef]

20. Vora, P.; Herley, C. Trade-offs between color saturation and noise sensitivity in image sensors. In Proceedings
of the 1998 International Conference on Image Processing, Chicago, IL, USA, 7 October 1998; Volume 1,
pp. 196–200. [CrossRef]

21. Dubois, E. The structure and properties of color spaces and the representation of color images. Synth. Lect.
Image Video Multimed. Process. 2009, 4, 1–129. [CrossRef]

22. Clouet, A.; Vaillant, J.; Alleysson, D. Physical noise propagation in color image construction: A geometrical
interpretation. In Proceedings of the 27th Color and Imaging Conference, Paris, France, 21–25 October 2019;
Volume 2019, pp. 375–380.

23. Hoerl, A.E.; Kannard, R.W.; Baldwin, K.F. Ridge regression: Some simulations. Commun. Stat. 1975, 4,
105–123. [CrossRef]

24. Midi, H.; Zahari, M. A Simulation Study On Ridge Regression Estimators In The Presence Of Outliers And
Multicollinearity. J. Teknol. 2008, 47, 59–74. [CrossRef]

25. Finlayson, G.; MacKiewicz, M.; Hurlbert, A. Color Correction Using Root-Polynomial Regression. IEEE Trans.
Image Process. 2015, 24, 1460–1470. [CrossRef]

26. Bianco, S.; Bruna, A.; Naccari, F.; Schettini, R. Color correction pipeline optimization for digital cameras.
J. Electron. Imaging 2013, 22, 023014. [CrossRef]

http://dx.doi.org/10.1117/12.870828
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.18.DPMI-256
http://dx.doi.org/10.3390/s18030707
http://www.ncbi.nlm.nih.gov/pubmed/29495496
http://dx.doi.org/10.3390/s20123423
http://www.ncbi.nlm.nih.gov/pubmed/32560500
http://dx.doi.org/10.2352/J.ImagingSci.Technol.2017.61.4.040407
http://dx.doi.org/10.1109/TIP.2004.841200
http://www.ncbi.nlm.nih.gov/pubmed/15825479
http://dx.doi.org/10.1364/JOSAA.25.002444
http://dx.doi.org/10.1364/JOSAA.9.001905
http://dx.doi.org/10.2352/ISSN.2470-1173.2020.5.MAAP-106
http://dx.doi.org/10.1002/9781118798706.hdi012
http://dx.doi.org/10.1117/12.853669
http://dx.doi.org/10.1117/1.3116562
http://dx.doi.org/10.1364/AO.32.003015
http://www.ncbi.nlm.nih.gov/pubmed/20829908
http://dx.doi.org/10.1109/TCE.2002.1010126
http://dx.doi.org/10.1109/ICIP.1998.723456
http://dx.doi.org/10.2200/S00224ED1V01Y200910IVM011
http://dx.doi.org/10.1080/03610927508827232
http://dx.doi.org/10.11113/jt.v47.261
http://dx.doi.org/10.1109/TIP.2015.2405336
http://dx.doi.org/10.1117/1.JEI.22.2.023014


Sensors 2020, 20, 4487 23 of 23

27. McElvain, J.S.; Gish, W. Camera Color Correction Using Two-Dimensional Transforms. In Proceedings of
the 21st Color and Imaging Conference, Albuquerque, NM, USA, 4–8 November 2013; pp. 250–256.

28. Janesick, J.R. Photon Transfer Curve. J. Opt. Microsyst. 2007, 5, 49–79. [CrossRef]
29. Anderson, M.; Motta, R.; Chandrasekar, S.; Stokes, M. Proposal for a Standard Default Color Space for

the Internet—sRGB. In Proceedings of the 4th Color and Imaging Conference, Scottsdale, AZ, USA, 19–22
November 1996; pp. 238–245.

30. Alakarhu, J. Image sensors and image quality in mobile phones. In Proceedings of the 2007 International
Image Sensor Workshop, Ogunquit, ME, USA, 7–10 June 2007; pp. 7–10.

31. Wueller, D.; Matsui, A.; Katoh, N. Visual Noise Revision for ISO 15739. Electron. Imaging 2019, 2019,
315-1–315-7. [CrossRef]

32. Pointer, M.R. A comparison of the CIE 1976 colour spaces. Color Res. Appl. 1981, 6, 108–118. [CrossRef]
33. Borisenko, A.I.; Tarapov, I.E. Vector and Tensor Analysis with Applications. Math. Gaz. 1969, 53, 451–452.

[CrossRef]
34. Onyx 1.3M-EV76C664-CMOS Image Sensor-Teledyne e2v. Available online: https://imaging.teledyne-e2v.

com/products/2d-cmos-image-sensors/onyx/ (accessed on 11 August 2020).
35. CMY | Wave Control Mosaic | Semiconductor Materials | Fujifilm USA. Available online: https://www.

fujifilm.com/us/en/business/semiconductor-materials/image-sensor-color-mosaic/cmy/applications
(accessed on 11 August 2020).

36. Vaillant, J.; Clouet, A.; Alleysson, D. Color Correction Matrix for Sparse RGB-W Image Sensor without IR
Cutoff Filter. In Proceedings of the SPIE PHOTONICS EUROPE, Strasbourg, France, 22–26 April 2018;
p. 1067704. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1117/3.725073.ch5
http://dx.doi.org/10.2352/ISSN.2470-1173.2019.10.IQSP-315
http://dx.doi.org/10.1002/col.5080060212
http://dx.doi.org/10.1063/1.3035427
https://imaging.teledyne-e2v.com/products/2d-cmos-image-sensors/onyx/
https://imaging.teledyne-e2v.com/products/2d-cmos-image-sensors/onyx/
https://www.fujifilm.com/us/en/business/semiconductor-materials/image-sensor-color-mosaic/cmy/applications
https://www.fujifilm.com/us/en/business/semiconductor-materials/image-sensor-color-mosaic/cmy/applications
http://dx.doi.org/10.1117/12.2306123
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Example of Noise Amplification through Color Correction
	Geometrical Representation of Sensors Signal and Noise
	Intrinsic Spectral Reconstruction (No Training Set)
	Linear Regression over a Spectral Training Set
	Tikhonov Regularization (Ridge Regression)
	Color Correction: Projection in a Color Space

	Raw, Color and Contravariant Signal to Noise Ratios
	Definition of the Contravariant Signal to Noise Ratio
	Example of Contravariant SNR Evaluation to Compare Several Spectral Reconstructing Methods

	SNR Analysis of Various Common Sensors
	Conclusions
	References

