N

HAL

open science

Asset-Oriented Threat Modeling

Nan Messe, Vanea Chiprianov, Nicolas Belloir, Jamal El-Hachem, Régis

Fleurquin, Salah Sadou

» To cite this version:

Nan Messe, Vanea Chiprianov, Nicolas Belloir, Jamal El-Hachem, Régis Fleurquin, et al.. Asset-
Oriented Threat Modeling. TrustCom 2020 - 19th IEEE International Conference on Trust, Secu-

rity and Privacy in Computing and Communications, Dec 2020, Guangzhou, China. pp.1-11.

02990919

HAL Id: hal-02990919
https://hal.science/hal-02990919
Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02990919
https://hal.archives-ouvertes.fr

Asset-Oriented Threat Modeling

Nan Messe*, Vanea Chiprianov*, Nicolas Belloir*, Jamal El-Hachem®, Régis Fleurquin*, Salah Sadou*
* Université Bretagne Sud - IRISA, France
Email: firstname.lastname @irisa.fr

Abstract—Threat modeling is recognized as one of the most
important activities in software security. It helps to address
security issues in software development. Several threat modeling
processes are widely used in the industry such as the one of
Microsoft SDL. In threat modeling, it is essential to first identify
assets before enumerating threats, in order to diagnose the threat
targets and spot the protection mechanisms. Asset identification
and threat enumeration are collaborative activities involving
many actors such as security experts and software architects.
These activities are traditionally carried out in brainstorming
sessions. Due to the lack of guidance, the lack of a sufficiently
formalized process, the high dependence on actors’ knowledge,
and the variety of actors’ background, these actors often have
difficulties collaborating with each other. Brainstorming sessions
are thus often conducted sub-optimally and require significant
effort. To address this problem, we aim at structuring the asset
identification phase by proposing a systematic asset identification
process, which is based on a reference model. This process
structures and identifies relevant assets, facilitating the threat
enumeration during brainstorming. We illustrate the proposed
process with a case study and show the usefulness of our process
in supporting threat enumeration and improving existing threat
modeling processes such as the Microsoft SDL one.

Index Terms—threat modeling (process), asset-based reference
model, asset identification, attack pattern

I. INTRODUCTION

Threat modeling is recognized as one of the most important
activities in software security [18]. It aims at identifying a
coverage of all possible threats [4] and preventing and/or
mitigating the effects of threats and attacks on a software
system. Several threat modeling methods exist, reviewed for
example in [34], [37]. As part of all these methods, threat
enumeration is at its core [6], which is traditionally carried out
in brainstorming sessions. Current widespread threat modeling
methods (such as STRIDE [17], OCTAVE [2], PASTA [35],
etc.) are coarse-grained and require in-depth security knowl-
edge. There is no detailed description of a procedure to support
the brainstorming sessions, and no reference model to be used
by such a procedure [16], [28]. Due to the lack of guidance, the
lack of sufficiently formalized process, the high dependence
on actors’ knowledge and the variety of actors’ background,
these sessions are often conducted sub-optimally and require
significant effort [9].

Thus, several research challenges have been recently iden-
tified [16], such as 1) developing a reference model, which
makes it possible to share threat modeling artifacts in a
standardized manner for the reuse, education, and benchmark
and 2) defining a process that better supports the interactions
among threat modeling participants, consequently, allowing

a better knowledge reuse across projects, experts, and or-
ganizational boundaries. To improve current threat modeling
processes and rise to the identified research challenges, we
propose an asset identification process, to help participants
collaboratively identify assets, which are significant for both
business stakeholders and product team members, as well as
for the security experts. This structured process employs a
number of concepts and relations, which we organise into a
reference model. Moreover, to increase the knowledge reuse
degree and reduce the reliance on subjective experience, we
propose to construct a vulnerable asset library as part of a
threat library.

The paper is structured as follows: Section II presents the
background of threat modeling processes and the motivation
of this paper. In Section III, we present our approach, includ-
ing the need of reworking on the asset concept, structuring
the threat modeling knowledge into an asset-based reference
model and defining an asset identification process. In Sec-
tion IV, we show the application of our approach, including a
library of vulnerable assets, which we extract from common
security knowledge bases such as CAPEC by applying several
heuristic rules. We also illustrate in this section a case study
by firstly applying the Microsoft SDL threat modeling process,
and then integrating our asset identification process into it
to improve its results. Then we discuss the advantages and
limitations of our approach. Related works are discussed in
Section V. Finally, we conclude the paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section we first define what the threat modeling is and
show its importance in secure software development. Then we
make an inventory of the current threat modeling processes and
highlight their limitations. Finally, we identify several needs
or requirements that remain to be satisfied, which point out
our motivation.

A. Threat modeling definition

There are numerous definitions of threat modeling in liter-
ature, used in different and perhaps incompatible ways [37].
For our purpose, we define the threat modeling as a systematic
process of identifying and analyzing threats (i.e. potential
attacks), which involves the understanding of threat agents
goals and adversaries actions in attacking a system, based on
that system’s assets [36].

Threat modeling can occur at any time during the soft-
ware development lifecycle, but it’s more efficient to be

performed during the early requirement and the architec-
ture/design phases [14], because fixing an issue that involves
reworking on a conceptual model rather than significant re-
engineering can save cost, development time and protect the
system from high impact attacks [33], [36].

Threat modeling process is also a collaborative process
where participants include: business stakeholders; product-
team members from all product development phases, such as
enterprise, software and application architects, development
leads, IT infrastructure specialists, engineers; security experts
such as security analysts, security architects, threat modeling
experts [31], [33].

Threat modeling is important because it helps in 1) identify-
ing business-logic flaws and other critical vulnerabilities that
expose core business assets, 2) enriching assessments with new
potential attack vectors, 3) prioritizing the types of attacks to
address 4) mitigating the risks more effectively and 5) fixing
issues early in the development process [31], [34].

B. Threat modeling process

Several threat modeling processes including various ac-
tivities are proposed in literature [4], [15] and widely used
in industry (Microsoft [25], [27], [33], CIGITAL [31] and
EMC [6]), as shown in Table I. We summarize the threat
modeling process into four main phases:

1) Asset Identification phase: It is centered on identifying
security goals, modeling domains (by characterizing the sys-
tem, usually by decomposing it and describing its components
and data flows using (annotated) architecture/design diagrams)
and identifying valuable assets.

2) Threat Enumeration phase: It is focused on identi-
fying threats, together with attackers (their motivation and
skill) and vulnerabilities, and enumerating and documenting
resulted threats. This phase is often conducted in brainstorming
meetings, sometimes guided by a threat library.

3) Threat Prioritization phase: It is based on the result of
threat enumeration, to rate threats and assess risks. This phase
can be either considered as an internal or external activity [34].

4) Mitigation phase: It aims at resolving threats by propos-
ing security mitigations and by verifying them.

It is worth noting that not all the approaches in Table I
include the asset identification phase, which is nonetheless an
important step. The activity of identifying asset is a bridge
between domain modeling and threat identification, however,
only a few works address this activity. Identifying assets is
essential because it takes both into account the modeling of
the domain under consideration, and the will of stakeholders
to protect valuable elements. Without this step, the later
threat enumeration and prioritization phases would be less
efficient. Some approaches mention the activity of “identifying
asset” [4], [15], however no detailed guidance or formalized
process about how to systematically conduct this activity is
proposed.

As a prerequisite for the threat enumeration (which is at the
core of the threat modeling process [6], [16]), the quality of
the asset identification impacts directly the threat enumeration

and indirectly later phases. Therefore, the early phases (asset
identification and threat enumeration) of threat modeling are
crucial for the success of threat modeling. However, the
activities in these phases are often conducted in brainstorming
sessions [28], the results of which depend highly on the human
expertise, experiences and collaboration, even with the support
of such methods as STRIDE (a coarse-grained guiding method
used largely in industry).

Conducting threat modeling thus requires ideally a sound
knowledge of a system’s technical domain and sufficient
security expertise to consider both generic and specific attacks
for various specific contexts [36]. With the threat modeling
process going on, more and more security expertise is required
in each phase. However, the need of security knowledge can
“leave most ’off-the-street’ developers estranged” [36], with
the result that threat modeling is performed sub-optimally
or with significant effort involved, or not performed at all.
Even after security training, the threat modeling process is
still difficult to execute [31].

C. Motivation

Threat modeling is still at a low level of maturity [16] and
several key research challenges and/or requirements have been
identified:

1) It is important to hold a successful brainstorming meet-
ing [28], which is still a subjective and unstructured activity. It
should follow a methodical approach in enumerating threats,
while still letting participants think about the problem cre-
atively. It thus needs a guidance that is more prescriptive,
formal, reusable and less dependent on the aptitudes and
knowledge of the participants. Meanwhile, the cause of the
high number of overlooked threats is also worthy of investi-
gating [25].

2) The current threat modeling processes require a cer-
tain security knowledge level, making it a non-trivial task
for participants with limited security knowledge. Proposed
widespread threat modeling methods (such as STRIDE [17],
OCTAVE [2], PASTA [35], etc.) are abstract, coarse-grained
and require in-depth security knowledge. Wrong decisions are
thus made based on insufficient knowledge about the secu-
rity domain, threats, possible countermeasures and the own
infrastructure. An in-depth reason is that security terminology
is vaguely defined. This leads to confusion among experts as
well as the people who should be counseled and served [7].
There is thus a need to propose a method that can be easily
used or understandable by security novices.

3) Moreover, a successful communication among threat
modeling participants requires that they share their knowledge
and points of view with as little bias and as few misunderstand-
ings or confusion as possible [9]. Without a shared terminol-
ogy communication, especially in a complicated domain like
security, threat modeling cannot be successful [8]. Incorrect
results could thus be caused by the misinterpretation of some
template threats in the checklists. Therefore, there is a need
of a common language or a common concept that can be
understood by all participants.

Phase Asset Identification Threat Enumeration Threat Prioritization Mitigation
Activity Identify Model | Identify | Identify Enumerate Describe Identify Rate Assess Mitigation | Verification
Paper security goal | domain asset threat &document threat | attacker | vulnerability | threat risk
Torr (2005) [33] X X X X
Shostack (2008) [27] X X X X
Scandariato (2013) [25] X X
Beckers (2013) [4] X X X X X
Dhillon (2011) [6] X X X X
Steven (2010) [31] X X X X
Kamatchi (2016) [15] X X X X X

TABLE I: An inventory of threat modeling processes

III. STRUCTURING THE ASSET IDENTIFICATION PHASE

Our proposal addresses the 3 preceding needs. It aims to
structure the asset identification phase: to associate it with a
well-defined process promoting the manipulation of a set of
precise and well-structured concepts and exploiting, if needed,
a security knowledge base to limit the negative impact of the
lack of experience in security. These elements can be used
to guide the actors during the brainstorming sessions. This
proposal is based on a novel refinement of the concept of
asset which we describe at first. Secondly, we show how we
use this refinement to structure the universe of threat modeling
knowledge using a reference model. This reference model is
used to structure the common language of the information
handled by all participants during this phase. But also it can
be used as a language with which one can capitalize in a
knowledge base the state of the art in security. We next present
a process based on this reference model to lead the asset
identification phase.

A. Reworking on the asset concept

Our proposal is based on the asset concept. This concept
can be easily understood by business stakeholders and by
product team members [19], [23]. It is naturally well-known
by security experts. It can therefore act as a shared concept
between all participants in the threat modeling process. It also
provides a solid common base for further activities, especially
threat enumeration.

There are numerous definitions of the asset concept in lit-
erature. For example, ISO 21827 [1] defines asset as anything
that has value to the organisation, such as data, hardware,
software or networks. Similar definitions focusing on the value
of an asset, which can be subjective, commercial, and vary
in a wide range, are presented in [24]. Several definitions
look at assets from the attackers’ point of view, defining
them as the things that an attacker tries to steal, modify, or
disrupt, and considering their relations with threats [33]. Other
definitions consider the relations of assets with vulnerabili-
ties/exposures/weaknesses and countermeasures [22].

These definitions are too generic, too abstract and too
wide-encompassing; entities that have various natures can be
included in these definitions. Such multiple overlapping def-
initions, including things attackers want, things stakeholders
are protecting, and stepping stones, can “trip you up” [28]. It
may thus lead to misunderstandings and confusion among the
threat modeling participants.

We therefore consider two viewpoints for the asset concept:

The domain expert’s viewpoint: We consider as domain
experts, participants in the threat modeling process who are not

security experts, such as: business stakeholders and product-
team members from all product development phases, such as
enterprise, software and application architects, development
leads, IT infrastructure specialists and engineers. They deal
with Domain Asset (DA): Anything that has value for them,
towards the fulfilment of the function and goal of the system,
together with the assurance of its properties. DA is artifact of
a particular system architecture.

The security expert’s viewpoint: We consider as security
experts, participants in the threat modeling process who have
sufficient security knowledge, such as: security analysts, se-
curity architects and threat modeling experts. They deal with
Vulnerable Asset (VA): Anything that has value for them. It
has vulnerabilities that can be menaced by threats. Hence it is
the direct, core target of the attacker. If it is compromised, it
can impact relevant domain asset (DA). Therefore, they need
protection to reduce threats and prevent attacks. VA is system
artifact appearing in more or less abstract attack patterns or
vulnerability bases.

VA and DA are all system artifacts but appear in a different
context: respectively in an attack pattern description and in
a system architecture model. They can also have different
abstraction levels. However, they may also include elements
which are exclusive to any one of them. As such, the domain
assets may include assets which may not be vulnerable,
and therefore not identified as vulnerable assets. Similarly,
vulnerable assets may include assets which are not used in
the domain models. Determining the common assets between
the domain and vulnerable assets is not trivial. However, it
is essential, because they represent the domain assets that are
also vulnerable and therefore need protection.

The domain assets that are also vulnerable assets constitute
therefore a new type of asset, understandable by both the
domain and security experts. We call this new type of asset
Vulnerable Domain Asset (VDA). The VDA is therefore
anything that has value for the domain expert, but also has
vulnerabilities that can be menaced by threats. As it is a
domain asset, it is also domain specific. Our VDA concept has
precursors in the literature. For example, [28] remarks that the
most common usage of asset in discussing threat models seems
to be a marriage of “things attackers want” and “things you
want to protect”. However, in previous works, this idea is not
further developed to show how to differentiate and organize
different types of assets.

B. Structuring the threat modeling knowledge

Now that we have refined the asset concept, we propose to
structure the universe of information manipulated during brain-

« has| s
depends| * * .
; Asset targets

*

* uses

* |

B compromises
DomainAsset P st

* *

*

1. 1.x

isTypedBy

. exploits
. contains |« |4 «
VulnerableDomainAsset | /contains rability
T
* 1.x

appliesOn mitigates
* B

Fig. 1: Asset-based reference model

storming using a reference model. The definition of this model
has two objectives: 1) fixing and structuring the discourse
during brainstorming sessions and 2) allowing the capturing
of security knowledge from the literature in a form which can
then be reused during brainstorming. This reference model is
presented in Figure 1. Asset is the core concept of our model.
It is an abstract class. As discussed above, we specialize the
concept of Asset into DomainAsset (DA) and VulnerableAsset
(VA). The VulnerableDomainAsset concept (VDA) is a type
of both DomainAsset and VulnerableAsset. Both VulnerableAs-
sets and VDA can have Vulnerabilities, which can be exploited
by Threats. Thus Threats can compromise VA and thus VDA.
In its compromise actions, a Threat may target an Asset (both
Domain and Vulnerable) using other compromised Assets in
the process. To mitigate the Vulnerabilities, Controls can be
applied on VDA.

Each Asset can have three relationships with other Assets: is,
has and depends. The is relation captures the generalisation
between Assets of different abstraction levels. It captures an
iterative refinement of assets. For example, the domain experts
define the list of domain assets coming from the domain
architecture model. During design, they can progressively
refine this list from more abstract assets to more concrete ones.
Similarly, the security experts define an hierarchy from more
abstract (coming from abstract attack pattern) to more concrete
vulnerable assets. Moreover, an Asset may be composed of
other Assets. We model this through the has relation. We
also introduce the dependency relation between Assets. A
dependency exists between two elements if changes to one
element (the supplier) may cause changes to the other (the
client) [11].

These three relationships (generalisation, composition and
dependency) are very common in system architecture model-
ing. It is worth noting that this kind of modeling promotes a
data structure similar to that of a B-tree [3], even if other data
structures are also possible, such as class diagram. We choose
B-Tree structure because it can be easily coupled with and
extended from Attack Tree, as we deal with security aspect. A
B-tree is a tree data structure where each level can have one or
more children nodes. Each node may be thought of as a kind of

list, containing several entities called keys (related to the origin
of B-trees for databases). In our case, the Assets related by an
is, are similar to the children nodes of a B-tree. For example, in
Figure 2, VA2 and VAG are children of VA1, and VA3 is a child
of VA2. The Assets related by has and depends, correspond to
the keys of a B-tree. VA4 and VAS are keys related to VA2,
related respectively by has and depends relations. In our data
structure, we just take inspiration form the idea of B-trees, but
are not interested in their properties, such as self-balancing.
We choose B-Tree structure because it allows to show all the
three relations of different dimensions inside one tree. More
precisely, B-Tree allows showing the generalization relation
vertically, and showing composition and dependence relations
horizontally inside each child nodes, to align with the relations
of different dimensions among different assets. This similarity
may also enable a higher degree of automation for the asset
identification process in the future. Moreover, this is close to
the structure of existing security knowledge bases, such as
CAPEC, facilitating extraction from them (cf. Section IV-A).

VAL:
rableAsset

Fig. 2: Vulnerable asset B-tree

To reduce the level of security expertise required, threat
modeling can be supported by threat libraries (structured or un-
structured lists of threats), which have been found particularly
effective in industry scenarios [36]. However, non-security
experts, such as domain experts, have to be trained to better use
threat libraries, as they require a minimum security knowledge
to understand security jargon. Therefore, we think that it is
useful to construct a vulnerable asset library, which can enrich
the threat library. To help the asset identification process,
we thus propose to construct a library of vulnerable assets.
The VA library aims to classify a wide variety of abstract,
system- and technique-independent VA, which keeps the asset
identification and threat enumeration manageable, increases
the VA library’s applicability and reusability, and makes it
both more practical and more useful for security novices and
experts alike. For the library to be well integrated with the
asset identification process, we propose that the library and the
reference model presented follow the same structure for the
VA. Part of construction process of the VA library is presented
in Section IV-A.

C. Defining the asset identification process

After refining the Asset concept and proposing an asset-
based reference model to structure the knowledge, we present
a process to help actors in the identification of threats targeting
the assets. This process is shown in Figure 4 and the general
view is summarized in Figure 3. This process can be launched

Vulnerable Asset

Security
Expert

(VA))
-~ q
."x_ Vulnerable ;':
Domain Asset J
(VDA)

Domain Domain Asset
DA

Expert
Fig. 3: General view of asset identification

regardless of the software development stage and therefore on
more or less abstract models.

On one hand, DA, obtained from domain models such
as enterprise, system and software architectures, is struc-
tured by relationships such as generalization, composition
and dependency. On the other hand, security experts identify
Vulnerable Assets (VA) relevant to the types of elements
present in the model being designed. This list of VA can
be populated from the security experts’ knowledge, as well
as be extracted from common security knowledge databases,
thus promoting reuse. This extraction is a non-trivial process,
involving threat libraries, attack patterns (e.g. CAPEC), attack
trees, vulnerabilities, etc. Thus, we promote the setting up a
VA library synthesizing current knowledge of the field in a
format that respects our reference model.

Since DA and VA are similarly structured by the is, has and
depends relationships defined in the reference model, the goal
of the asset identification process is to bridge the gap between
these two sets of assets (cf. Figure 3) and identify VDA (i.e.
Domain Assets which are also Vulnerable). The security ex-
perts project or instantiate these VA on the DA. A comparison
is made by actors to identify if a mapping occurs between VA
and DA. If mappings are identified, they represent the VDA. It
is therefore noteworthy that the matching process instantiates
abstract VA into concrete VDA. Discovering the VDA further
enables identifying security mitigations (i.e. controls), based
on their vulnerabilities. In this way, our approach uses domain-
independent, general, security threat and attack knowledge to
identify and protect domain-specific VDA.

Figure 4 illustrates a fine-grained asset identification pro-
cess. It takes as inputs a DA list and a VA tree. The DA
list is a result of domain experts identifying assets specific to
their domain. The VA tree results from the security experts
using their knowledge to identify generic vulnerable assets,
and it can be enriched with information extracted from security
knowledge bases or a VA library.

The asset identification process can traverse the vulnerable
asset tree (respecting to B-tree) either in a depth-first or in
a breadth-first manner. In this paper, we choose to present a
breadth-first strategy. As such, the process selects the VA tree
children situated at the current vertical “i” level (i.e. all the

VA linked through an is relation to the VA of the previous
parent level). For instance, when considering the example in
Figure 2, concerning level “i=1", the children are VA2 and
VAG6. For each VA child, the domain and security experts
compare its syntactic and semantic similarity with each DA
in the current domain asset list. If a VA, from the list of VA
level i children, is found similar with a DAj, from the DA
list, further similarities are searched. For this, the VA tree is
traversed horizontally, and the keys attached to that VAj are
selected (i.e. the VA linked through has and depends relations).
Let us suppose that for the Figure 2 example, VA2 is found
similar with a DA, then its key list containing VA4 and VAS
is selected.

The domain experts select among VA, keys those which
are involved in the domain. VAj keys that are involved in
the domain, discovered at this “i” iteration, are added to the
current DA list, enriching the DA list for the next iteration. As
they are initially VA, but also in the domain, they are actually
VDA, and therefore are also added to the VDA list. Let us
suppose that in our example VA4 is a key that is involved
in the domain. At the end of the “i” iteration, the DA list
additionally contains VA4 and the VDA list contains VA2 and
VA4. Then, if no more VAj key is found being involved in
the domain, the process advances to the next VA tree level
(i.e. “i=i+1"), until there are no more levels (i.e. “i==n"). The
DA and VDA list are enriched with the iteration of each “i”
level.

Once the VDA list has been enriched, it is used as a bridge
towards threat enumeration. Security and domain experts may
use it to propose security mitigations to the identified vulner-
abilities.

IV. CASE STUDY

In this section we want to highlight the gain obtained
through the use of our approach. To do this, we proceed as
follows: we first present a process of constructing a vulnerable
asset library by leveraging CAPEC and respecting the B-
tree structure of the reference model, in order to show the
possibility of knowledge reuse. Secondly, we illustrate a case
study by firstly applying the Microsoft SDL threat modeling
process, and then integrating our asset identification process
into it to improve its results. We believe that the integration
of our asset identification process into the Microsoft process
as a complementary step can improve the detection of more
relevant threats. The advantages and limitations of the resulting
enriched process, compared to those of the sole Microsoft
process, are discussed at the end of this section.

A. The process of constructing a vulnerable asset library by
leveraging CAPEC

As we mentioned before, Vulnerable Asset (VA) represents
security experts’ viewpoint and it is domain-independent.
Therefore, VA can be extracted from existing security knowl-
edge bases for the reuse in different contexts or domains. In
this section, we stress the importance and reusability of this
extraction and present part of extraction rules by leveraging

Domain
Expert

Security

Expert .

AN

Level :
VDA list| -
oo |vAklevel [T
© | ikey list

Select VAik
keys

Select DA\#

k.

Add into

DA list

DA list

Fig. 4: Asset identification process

well-known attack pattern knowledge bases such as CAPEC
and by respecting the B-tree structure.

Attacks are possible realisations of threats [30]. Therefore
attack descriptions can be useful in enumerating threats. To
construct this library, we can leverage existing attack databases
such as CAPEC [20], OWASP [10] and ATT&CK [21].
However, they are defined in natural language and possibly
ambiguous, which make them difficult to be processed auto-
matically. At the current state of advancement, we identify a
number of heuristic rules which can be enriched in the future.
These rules help partially extract VA and relations between
these VA that can be compromised by threats.

We show these extraction rules by leveraging CAPEC,
which is one of the most popular and structured attack
databases. In CAPEC, the attacks belong to different levels
of abstraction: view, category, meta, standard and detailed.
We focus on the meta, standard and detailed abstraction
levels, because view and category levels are too abstract to
be reused effectively. 1) A meta attack pattern is “an abstract
characterization of a specific methodology or technique used
in an attack”, and “a generalization of related group of
standard attack patterns”. 2) A standard attack pattern is
“focused on a specific methodology or technique used in an
attack”. 3) A detailed attack pattern “provides a low level of
detail, typically leveraging a specific technique and targeting
a specific technology, and expresses a complete execution
flow”. Detailed attack patterns are more specific than meta and

standard attack patterns. The links between these abstraction
levels are modeled through “childOf/parentOf” relations. This
hierarchical attack/threat structure can help us identify is and
has relations between VA. Moreover, there are also relations of
“canFollow/canPrecede” between attacks/threats in CAPEC,
which can help us identify depends relation between VA.

Based on CAPEC attack natural language descriptions, we
define several VA extraction rules:

1) If the name of attack pattern contains the keyword
“contaminate”, or “poison”, or “leverage”, or “manipulate”,
or “abuse”, or “exploit” or “misuse”, then the noun set after
any of these keywords is selected as a vulnerable asset (VA).
For example, for the detailed attack pattern “Poison web
service registry” (CAPEC-51), the “web service registry” is
a vulnerable asset;

2) If the name of attack pattern contains the keyword “ma-
nipulation”, or “poisoning”, or “tampering” or “alteration”,
then the noun set before any of these keywords is extracted as
a vulnerable asset (VA). For example, for the standard attack
pattern “Web service protocol manipulation” (CAPEC-278),
the “web service protocol” is a vulnerable asset;

3) If the name of attack pattern contains the keyword
“injection”, or “inclusion” or “insertion”, then the noun set
before any of these keywords is selected and we add the
literal “Untested” before and “Input” after this noun set, the
whole literal word is considered as a VA. For example, for
the standard attack pattern “XML injection” (CAPEC-250),
“XML” is selected and added by the above prefix and suffix.
As a result, “UntestedXMLInput” is a vulnerable asset.

There are three possible relations (is, has, depends) between
VA, as mentioned in Section III-B. By leveraging CAPEC, we
can also extract the relations between VA.

4) The “childOf” relation between two attack patterns is
translated into either “is” or “has” relation between two corre-
sponding VA, because “ChildOf” in CAPEC can present either
a specialisation or a decomposition relation. For example,
on one hand, the “SOAP” VA extracted from the detailed
attack pattern “SOAP Manipulation” (CAPEC ID 279), is a
type of “Web Services protocol” VA. On the other hand,
the “XML” VA has “DTD”, “XPath” and “XQuery” VA,
extracted respectively from three detailed attacks (CAPEC IDs
respectively 228, 83, 84). Therefore, the reasoning about the
decision comes from the security experts who extract VA;

5) The “canFollow” relation between two attack patterns
is translated into depends relation between two relevant VA,
because if asset A, is compromised by an attack/threat T,,
then a threat T3, which can follow T, can compromise asset
Ay, therefore asset A, depends on asset A,.

These rules allow us to extract VA from attack/threat
patterns. For each extraction, the relation between the threat
and the VA is stored. This allows to later find all the threats
that compromise the same VA. In this way, our library contains
the information about VA and threats that compromise them.
At the current state of this paper, the VA extraction process
is conducted manually by the first author. We believe that
this extraction process can be implemented using techniques

such as parsing, text mining and/or bash/sh scripting to allow
automation.

The VA library, as a part of threat library, lightens the
dependency on attack knowledge. It aims to be utilized by
both security and non-security experts. Therefore, the con-
struction of the VA library can satisfy to the requirement 2 in
Section II-C.

B. Illustration of the process integration

In this part, we first illustrate a case study using the
Microsoft SDL threat modeling process to enumerate threats.
As we will see, this process lacks of an “identifying asset”
activity, which is a bridging step between the “domain mod-
eling” and the “threat identification” activities. Therefore, we
then illustrate the integration of our asset identification process
into the Microsoft process as a complementary step to improve
the detection of relevant threats.

1) Microsoft SDL threat modeling process illustration:
Microsoft SDL threat modeling process is based on
STRIDE, which is currently the most mature threat modeling
method [26], and is implemented with the SDL threat model-
ing tool, which is available online [5].

There are four steps, described in [27], to conduct threat
modeling process in Microsoft: 1) diagramming (by applying
Data Flow Diagram - DFD), 2) threat enumeration (by apply-
ing STRIDE), 3) mitigation and 4) verification. As our paper
aims to support the threat enumeration, we only present the
first two steps. Microsoft implements the SDL threat modeling
process into Microsoft threat modeling tool. This tool provides
predefined DFD elements, as well as allowing users create new
templates containing stencils (new elements) and threat types.
We illustrate a case study with the tool.

As to the case study, we take the example of Web Sphere 7.0
application server, which is a software framework that hosts
java-based web applications, allowing deploying and manag-
ing applications ranging from simple Web sites to powerful on-
demand solutions. It is architected as a distributed computing
platform that could be installed on multiple operating system
instances, collectively referred to as a WebSphere cell. Its
configuration information are tracked in XML configuration
files throughout the cell.

The Microsoft process begins by characterizing the software
or system (Web sphere 7.0 in our case), by decomposing it
and describing its components and data flows, using DFD.
There are four types of elements in DFD: external entity,
process, data flow and data store. An excerpt of a possible
decomposition of the Web Sphere 7.0 application server is
presented in Figure 5, obtained using the Microsoft tool. It is
decomposed into a process called “web service” and a data
store termed “configuration file”. “Web service” interacts with
“configuration file” through a “general data flow”. The above
three DFD elements are predefined by the tool. Further DFD
modeling of the case study is not presented here for the sake
of readability and space reasons.

The next phase is the threat enumeration, which is con-
ducted in a brainstorming meeting guided by “STRIDE by

elements”, supported by the threat list generated automatically
by the tool. The threat list contains the threats that menace
each DFD element or a group of DFD elements. As shown
in Figure 5, the tool has found two threats concerning “Web
Service”, “Configuration File” and their interaction: 1) Spoof-
ing of destination data store configuration file (belonging to
the threat category of Spoofing) and 2) potential excessive
resource consumption for web service or configuration file
(Denial of Service).

In the brainstorming meeting, participants generally discuss
and find out potential threats belonging to six threat categories
of STRIDE (Spoofing, Tampering, Repudiation, Information
disclosure, Denial of service, Elevation of privilege) that can
threaten the actual DFD element. At the current state of
the work, we have not discussed with Microsoft SDL threat
modeling experts. The quality and quantity of the results of
the brainstorming meeting depends highly on participants. It
is a highly subjective activity, the results of which are not
reproducible. This makes it difficult for us to compare the
brainstorming activity with our asset identification process.
However, we believe that our process can help structure this
activity, which we discuss in Section IV-C.

.
eneric

D ¥ Diagram Title

Configuration
File

¥ Category

0 Disgram 1 Sposfing of Destination Data Stere Configuration File Spocfing

1 Diagram 1 Potential Excessive Resource Consumption for Web Service or Configuration File Denial Of Service
Fig. 5: Applying Microsoft SDL threat modeling tool

2) Integrating our process into Microsoft SDL threat mod-
eling process: The Microsoft SDL threat modeling process
begins by modeling the domain (by applying DFD), before
identifying threats (by applying STRIDE). As we noted when
discussing Table I, the Microsoft SDL process does not contain
the activity of “identifying asset”, which is a bridging step
between “modeling domain” and “identify threats”. Therefore,
we present the integration of our asset identification process
into the Microsoft SDL threat modeling process in the aim at
discovering more relevant threats.

Based on the DFD model in Figure 5, we observe that there
is a loss of information during the domain modeling: the “con-
figuration document” is of the XML type. This information
may be critical for threat enumeration. A reason for this loss
of information is that XML document is not predefined by the
tool.

Therefore, we add the “XML document” in the domain
model for our asset identification process, based on the DFD
modeled in Figure 5, in order to fill the gap between domain
modeling and threat enumeration. We describe the domain
model of the case study using UML class diagram. Other
modeling languages can be used as well. The domain asset
model is presented in Figure 6. Conforming to the description
of “Web Sphere 7.0 application server”, the “Configuration
Document” is of type XML and is contained in the “Web
Sphere Server”, together with “Web Service”.

To apply the asset identification process, on one hand, the
domain experts produce the domain asset list, part of which is
shown in Figure 6. The WebSphere7.0 contains, among other
components, a ConfigurationDocument and a WebService.
These correspond to concrete (architecture) elements. The
ConfigurationDocument can be generalized into an abstract
(architecture) element XMLDocument.

On the other hand, the security experts use a vulnera-
ble asset B-tree from the VA library (constructed using the
heuristic rules presented in Section IV-A), part of which is
presented in Figure 7. This vulnerable asset B-tree begins
by a root called VARoot (VA;), which is an artificial root
to start the process and can be specialized by any of its
children VA. In Figure 7, the VA UntestedCommandInput,
UntestedCodelnput, UntestedXMULInput, UntestedSQLInput,
UntestedDTDInput and UntestedXPATHInput are respectively
extracted: from the meta attack patterns Command Injection
(CAPEC-248) and Code Injection (CAPEC-242); from the
standard attack patterns XML Injection (CAPEC-250) and
SQL Injection (CAPEC-66); and from the detailed attack
patterns DTD Injection (CAPEC-228) and XPATH Injection
(CAPEC-83), respecting the rule 3 in Section IV-A. Other VA
are omitted in this paper due to limited space.

DomainAsset

depends
is JT‘

WebService : @ WebSphere7.0 : ConfigurationDocument :
DomainAsset DomainAsset |[—= DomainAsset

has has

XMLDocument :

Fig. 6: An Excerpt of Domain Assets

oot :
rableA
sset

Fig. 7: An Excerpt of Vulnerable Asset Tree

We illustrate the asset identification process based on the
VA tree in Figure 7. We initialize the process with i = 1, in
this case, n is equal to 3. In the following, we illustrate each
task of the process of Figure 4:

1) Select VA level i children: At the beginning of the
process, i = 1, which is the VARoot. In our case, VA level 1
children are UntestedCommandInput (VAi1) and Untested-
Codelnput (VA12);

2) Compare similarity: With the DA list provided by do-
main experts, security experts need to compare syntactical
and semantic similarity between a vulnerable asset and a
domain asset. Among the four domain assets XMLDocument
(DA1), WebSphere7.0 (DAs), ConfigurationDocument (DAg)
and WebService (DAy), there is no similarity found when

compared with UntestededCommandInput (VA11) and Untest-
edCodelnput (VA1s),

3) Therefore, for all DA;, none of them is similar to VA,
which are children of VA level 1. In this case, i increments,
now i is equal to 2, which is still lower than 3;

4) Select VA level i children: As no similarity is found from
the upper level, the process advances to the lower level of the
VA tree. For level i=2, there are two VA UntestedCommandIn-
put and UntestedCodelnput, as shown in Figure 7. For the VA
UntestedCommandInput, there are two children. Therefore,
the VA level 2 children list contains UntestedXMLInput and
UntestedSQLInput;

5) Compare similarity: UntestedXMLInput (VAs1) is found
both syntactically and semantically similar to XMLDocument
(DAy);

6) Select VA;, (VAs; in our case) keys: The process
continues to search VA;; keys. For our example, the VA
key list contains UntestedDTDInput and UntestedXPATHInput
(related to the has relation);

7) Select DA: Domain experts study if the domain model
involves any of the assets which are in the VAs; key list, but
have not yet been identified as domain assets. For the example
in Figure 6, the domain experts realize that the XMLDocument
DA does involve a DTD, which in this case can be manipulated
by the user (attacker), without any intermediary tests. Possible
impacts include that XML parsers, which process the DTD,
consume excessive resources, resulting in resource depletion.
Therefore, the UntestedDTDInput VA is a VDA that is vul-
nerable and involved in the domain;

8) Add into DA list: The domain experts add UntestedDT-
DInput to the DA list;

9) Add into VDA list: The security experts add as well,
UntestedDTDInput to the VDA list. The VDA list for this
example is shown in Figure 8. The same reasoning applies
to other keys, which we do not detail here for the reason of
readability;

10) After adding the discovered DA and VDA into each list,
i increments, now i is equal to 3, which is not lower than n
(=3 initially). Therefore, the process stops.

XMLDocument/ has
UntestedXMLInput :
VuinerableDomainAsset

UntestedDTDI
nput :
VulnerableDo
mainAsset

is
Configuration

Document :
VulnerableDo

mainAsset

Fig. 8: An Excerpt of Vulnerable Domain Assets

As a result of this process illustration, we discovered the
VDA UntestedXMLInput and UntestedDTDInput. UntestedDT-
DInput is not initially annotated as DA by domain experts.
These two VDA are initially VA. Therefore, the threats that
compromise these VA can be retrieved using the VA library
presented in Section IV-A. As such, for UntestedXMLInput,
the following 13 threats are identified: 1) XML Schema
Poisoning (CAPEC-146), 2) XML Ping of the Death (CAPEC-
147), 3) XML Entity Expansion (CAPEC-197), 4) XML
Entity Linking (CAPEC-201), 5) Spoofing of UDDI/ebXML

Messages (CAPEC-218), 6) XML Routing Detour Attacks
(CAPEC-219), 7) XML External Entities Blowup (CAPEC-
221), 8) XML Attribute Blowup (CAPEC-229), 9) XML
Nested Payloads (CAPEC-230), 10) XML Oversized Pay-
loads (CAPEC-231), 11) XML Injection (CAPEC-250), 12)
XML Quadratic Expansion (CAPEC-491) and 13) XML Flood
(CAPEC-528). For UntestedDTDInput, there is only one threat
identified: DTD Injection (CAPEC-228).

C. Discussion

1) Case study discussion: Whereas the Microsoft SDL
threat modeling tool identified two threats for the case study,
our asset identification process identified 14. Among these
14 threats, Spoofing of UDDI/ebXML Messages (CAPEC-
218) and XML Routing Detour Attacks (CAPEC-219) belong
to the same threat category of Spoofing, as the Spoofing
of destination data store configuration file; Similarly, XML
Flood (CAPEC-528), XML Ping of the Death (CAPEC-147),
XML Nested Payloads (CAPEC-230), XML Entity Expan-
sion (CAPEC-197), XML Quadratic Expansion (CAPEC-491),
XML Oversized Payloads (CAPEC-231), XML Entity Linking
(CAPEC-201), XML Attribute Blowup (CAPEC-229) and
XML External Entities Blowup (CAPEC-221) belong to the
same threat category Denial of Service, as the potential ex-
cessive resource consumption for web service or configuration
file. As we can see, we identified more detailed threats com-
paring to the Microsoft SDL threat modeling tool. Moreover,
our asset identification process discovered new XML Schema
Poisoning (CAPEC-146) and XML Injection (CAPEC-250)
threats, which are not found by the Microsoft tool.

A number of threats identified by our process come from
proposing VA as new DA, for example UnTestedDTDInput.
This enables identifying in-depth domain assets (that are also
vulnerable), which otherwise may be overlooked.

As we can see, by integrating our asset identification
process, we have found 14 threats, whereas sole Microsoft
SDL threat modeling tool has found only 2 threat categories,
which need further discussion and clarification during the
brainstorming meeting. The average number of overlooked
threats is very high as mentioned in [25], there is thus no
guarantee that the brainstorming meeting can cover all 14
threats that we have found, because it depends highly on the
security expertise, experiences and creativity of participants.
The result of our asset identification process can thus be used
as a checklist included in the brainstorming meeting to offer
a guidance, to be complementary with Microsoft DFD and
STRIDE based approach.

The DFD is data-centric, it focuses on the data flow between
components of the same abstraction level. Each new template,
which can be created with the tool, can represent a new
abstraction level. However, DFD does not allow presenting
relations among elements of different abstraction levels.
That is why we model the case study with UML class
diagram, because it allows modeling elements with different
abstractions levels.

To integrate DFD into our process, the four DFD element
types can be mapped to our asset reference model. As shown
in Figures 5 and Figure 6, the process “web service” is mapped
into the WebService domain asset, the data store “configuration
file” is mapped into the domain asset ConfigurationDocument,
and the “general data flow” is mapped into depends relation
to show the interaction. The DFD diagram containing these
three elements is mapped into the domain asset Websphere7.0
together with has relations.

A limitation of this case study would be that we have not
compare our asset identification process results with that of
a real brainstorming meeting by industrial participants. This
would be a future work to validate our approach.

2) General discussion: As we have seen in Section II,
most of the existing threat modeling processes do not detail
the asset identification phase. They usually consider it to
be done through a discussion, usually of a non-structured,
brainstorming type. The quality and quantity of the result
of brainstorming meeting depends highly on participants.
Moreover, such a discussion is highly creative and involves
an important cognitive charge. By proposing a structured and
detailed asset identification process together with the asset
reference model, we help structure and guide this phase,
which satisfies the Requirement 1 in Section II-C. This asset
identification process can be reused in different domains, as the
VA library contains VA that is domain-independent. It is worth
noting that several activities of our asset identification process
still need human expertise, such as “similarity comparison”
and “search if a VA is involved in the domain”, these two
human tasks pose yet a much easier cognitive load than that
of the entire brainstorming.

Other problems encountered in non-structured brainstorm-
ing sessions are that some details or system parts are over-
looked, or the stakeholder input is not captured accurately.
Hence, more in-depth threat modeling is typically performed
afterwards by a security expert in isolation, which can be
error-prone, as it is performed by manually iterating through
a model, and with a lack of specific domain knowledge, such
as a particular technology used in the system [16]. Our asset-
based reference model can help consider both domain specific
knowledge, by instantiating domain assets, and security knowl-
edge, by extracting vulnerable assets. This two knowledge
is shared by vulnerable domain assets (VDA), which can be
established as a common vocabulary that can be understood
by both experts, responding to the Requirement 3.

The concept of asset is easily understandable by non-
security experts compared to the concept of threat together
with that of attack technique. ldentifying VA that can later
derive threats thus helps bridging the gap during the collabo-
ration between domain experts and security experts, satisfying
Requirement 2.

V. RELATED WORK

In this section, we investigate existing works with a specific
focus on the asset identification to deal with security issues,
and compare them with our proposition in threat modeling.

Then, as the purpose of our proposition is to support collabo-
ration between participants, we compare our study with other
works focusing on collaboration in threat modeling.

A. Asset identification

Asset identification is an important step in numerous risk
assessment (including threat modeling) methods, reviewed and
compared by [13], [32], such as EBIOS, MEHARI, OCTAVE,
IT-Grundschutz, MAGERIT, CRAMM, HTRA, NIST 800-
30, RiskSafe Assessment and CORAS. For some of them,
the concept of asset is defined very largely, rather vaguely,
as anything that can have value to the organisation . Other
methods try to separate the asset concept into several types,
e.g. EBIOS into primary and supporting, or the ISSRM model
into business and IT asset, the HERMENEUT approach [12]
into tangible asset and intangible asset, etc. These separations
help little, if any, the next phase of threat enumeration,
while our approach does, because it considers the different
perspectives between domain and security experts.

[4] proposes the notion of “secondary asset”, the harm of
which can cause harm to a “primary asset”. This is captured
by our reference model through the depends relation. In our
case, the “supplier” is equivalent to the “secondary asset”,
and the “client” depending on the “supplier” is equivalent to
the “primary asset”. However, we can model extended chains
of dependency relations between several assets, whereas the
“secondary asset” does not allow this.

[19] proposes a security repository meta-model to store all
the reusable elements. They add several concepts including
“asset”, based on the work of [29]. They indicate that the asset
can be valuable or critical, but also vulnerable. However, they
don’t detail more about how to systematically distinguish each
type of asset.

[23] identifies assets in the software architectural model,
by mapping them from a system or organizational level.
Their identification process is therefore focused on tracing
assets from a development phase to another, whereas our
identification process matches two different viewpoints.

B. Bridging the gap during the collaboration

[O] uses anecdotes and scenarios to express security
knowledge and to reason about security in order to facilitate
the communication among different stakeholders. Anecdotes
are frequently used to communicate knowledge about real,
concrete and specific security issues. However, Scenarios are
even more widely used as a means of communicating security
concepts, reasoning about security principles and justifying
viewpoints. Weaknesses of anecdotes and scenarios are related
to the difficulty in generalising their information content.
That is to say that anecdotes and scenarios contain highly
specific descriptions of particular events in a system, whereas
security needs have to encompass the system as a whole. Yet,
this approach only deals with requirements models, whereas
ours may involve domain models from any and all phases
of the development lifecycle. Moreover, the security details
involved are fine-grained and difficult to generalise, whereas

our reference model and process are aimed to be reused and
deal with multiple levels of security abstraction.

[8] proposes a security ontology to resolve the communica-
tion problem. They took into account the entire infrastructure
as asset which is physical and belongs to business domain. The
ontology guarantees shared and accurate terminology in order
to reduce misunderstandings. Comparing to their approach
which aims at replacing the security expert, we introduce a
collaborative process. As our abstract concept asset can be
refined into domain asset (which can be understood by domain
experts) and vulnerable asset (understood by security experts),
the projection of general VA on DA, resulting VDA (under-
stood by both), creates the possibility for better collaboration.

VI. CONCLUSION AND FUTURE DIRECTION

Threat modeling is a result of a collaborative process
involving many actors from different backgrounds. Despite
its importance, the collaboration between domain and security
experts to bridge the gap between domain modeling and threat
enumeration phases is not trivial. One of the main reasons is
that threat identification and enumeration is often a challenging
task for non-security experts. Thus, domain experts have to
rely on threat modeling processes, which may quickly turn
into a complex task when these processes lack guidance and
formalisation.

To address this limitation, we propose a reference model
and a systematic asset identification process to facilitate the
collaboration between actors. As a result, pertinent assets such
as Vulnerable Assets are structured and Vulnerable Domain
Assets are identified to improve the threat enumeration phase.
Then, we have discussed how the proposed approach could
be applied to structure the security knowledge base (CAPEC)
and how the proposed process could be integrated with,
and complementary to, the Microsoft SDL threat modeling
process, using an appropriate case study. Results show the
usefulness of our findings in identifying new assets and threats,
and in bridging the gap between the domain and the security
experts through the formalisation of the brainstorming activity.

The approach presented in this paper can be extended to
become an aid system for the experts mentioned above, thus
strengthening the bridge which facilitates their collaboration.
To achieve such an aid system, the following objectives will
have to be achieved, among others: 1) automating the security
knowledge base extraction to offer appropriate guidelines to
domain experts with modest security expertise; 2) proposing
a semi-automatic assistance based on the formalised reference
model and the structured process that we are proposing, in
order to suggest possible attack mitigation and/or security
controls to the domain experts. These two objectives guide
our future work.

REFERENCES

[1] ISO/IEC 21827:2008. Information technology — security techniques —
systems security engineering — capability maturity model, 2008.

[2] Christopher J. Alberts, Audrey J. Dorofee, James Stevens, and Carol
Woody. Introduction to the octave approach. 2003.

[3]

[4]

[5

=

[6]

[10]
[11]

(12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[33]

[34]

[35]

R. Bayer and E. McCreight. Organization and maintenance of large
ordered indices. New York, NY, USA, 1970. Association for Computing
Machinery.

K. Beckers, D. Hatebur, and M. Heisel. A problem-based threat analysis
in compliance with common criteria. pages 111-120, 09 2013.
Microsoft Corporation. Sdl threat modeling tool. security development
lifecycle., July 2018.

D. Dhillon. Developer-driven threat modeling: Lessons learned in the
trenches. IEEE Security Privacy, 9(4):41-47, 2011.

Marc Donner. Toward a security ontology. /EEE Security and Privacy,
1(3):6-7, May 2003.

A. Ekelhart, S. Fenz, M. Klemen, and E. Weippl. Security ontology:
Simulating threats to corporate assets. pages 249-259, 12 2006.

I. Flechais and A. Sasse. Stakeholder involvement, motivation, respon-
sibility, communication: How to design usable security in e-science. Int.
Journal of Human-Computer Studies, 67:281-296, 04 2009.

The OWASP Foundation. Owasp attack list, 2017.

Martin Fowler. UML Distilled: A Brief Guide to the Standard Ob-
Jject Modeling Language. Object Technology Series. Addison-Wesley,
Boston, MA, 3 edition, 2003.

E. Frumento and C. Dambra. The role of intangible assets in the modern
cyber threat landscape: the hermeneut project. 5:2019, 02 2019.

D. Gritzalis, G. Iseppi, A. Mylonas, and V. Stavrou. Exiting the risk
assessment maze: A meta-survey. ACM Comput. Surv., 51(1):11:1-
11:30, January 2018.

Michael Howard and Steve Lipner. The Security Development Lifecycle,
volume 34. 06 2006.

R Kamatchi and Kimaya Ambekar. Analyzing impacts of cloud
computing threats in attack based classification models. 2016.

Y. Koen, H. Thomas, V. Dimitri, S. Laurens, W. Kim, and J. Wouter.
Threat modeling: from infancy to maturity. New Ideas and Emerging
Results, ICSE, 2020.

Loren Kohnfelder and Praerit Garg. The threats to our products.
Microsoft Interface, Microsoft Corporation, 33, 1999.

Gary McGraw. Software Security: Building Security In. Addison-Wesley
Professional, 2006.

D. Mellado, E. Fernandez-Medina, and M. Piattini. A common criteria
based security requirements engineering process for the development of
secure information systems. 29(2), 2007.

MITRE. Common attack pattern enumeration and classification., 2007.
MITRE. Attck matrix for enterprise, 2015.

N. M. Mohammed, M. Niazi, M. Alshayeb, and S. Mahmood. Exploring
software security approaches in software development lifecycle: A
systematic mapping study. Comp. Stand. & Int., 50:107-115, 2017.

T. Rauter, A. Holler, J. Iber, and C. Kreiner. Asset-centric security risk
assessment of software components. In Workshop on MILS: Architecture
and Assurance for Secure Systems, 01 2016.

Keunwoo Rhee, Dongho Won, Sang-Woon Jang, Sooyoung Chae, and
Sangwoo Park. Threat modeling of a mobile device management system
for secure smart work. Electronic Commerce Research, 13, 09 2013.
R. Scandariato, K. Wuyts, and W. Joosen. A descriptive study of
microsoft’s threat modeling technique. Requirements Engineering, 20,
06 2013.

N. Shevchenko, T. A Chick, P. O’riordan, Thomas P. Scanlon, and
C. Woody. Threat modeling: a summary of available methods. Software
Engineering Institute. Carnegie Mellon University, 2018.

Adam Shostack. Experiences threat modeling at microsoft. 01 2008.
Adam Shostack. Threat Modeling: Designing for Security. 2014.
Guttorm Sindre and Andreas Opdahl. A reuse-based approach to
determining security requirements. 05 2003.

W. Stallings and L. Brown. Computer Security: Principles and Practice.
Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2014.
J. Steven. Threat modeling - perhaps it’s time. IEEE Security Privacy,
8(3):83-86, May 2010.

A. Syalim, Y. Hori, and K. Sakurai. Comparison of risk analysis meth-
ods: Mehari, magerit, nist800-30 and microsoft’s security management
guide. In Int. Conf. on Availability, Reliability and Security, 2009.

P. Torr. Demystifying the threat modeling process. [EEE Security
Privacy, 3(5):66-70, Sep. 2005.

K. Tuma, G. Calikli, and R. Scandariato. Threat analysis of software
systems: A systematic literature review. Journal of Systems and
Software, 144:275 — 294, 2018.

Tony UcedaVelez. Real world threat modeling using the pasta method-
ology. OWASP App Sec EU, 2012.

[36] Anton V. Uzunov and Eduardo B. Fernandez. An extensible pattern-

based library and taxonomy of security threats for distributed systems.
Computer Standards Interfaces, 36(4):734 — 747, 2014.

[37] Wenjun Xiong and Lagerstrom Robert. Threat modeling — a systematic

literature review. Computers Security, 84:53-69, 03 2019.

