
HAL Id: hal-02990897
https://hal.science/hal-02990897

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Asset-Based Assistance for Secure by Design
Nan Messe, Nicolas Belloir, Vanea Chiprianov, Jamal El-Hachem, Régis

Fleurquin, Salah Sadou

To cite this version:
Nan Messe, Nicolas Belloir, Vanea Chiprianov, Jamal El-Hachem, Régis Fleurquin, et al.. An Asset-
Based Assistance for Secure by Design. APSEC 2020 - 27th Asia-Pacific Software Engineering Con-
ference, Dec 2020, Singapore, Singapore. pp.1-10. �hal-02990897�

https://hal.science/hal-02990897
https://hal.archives-ouvertes.fr


An Asset-Based Assistance for Secure by Design
Nan Messe∗, Nicolas Belloir∗, Vanea Chiprianov∗, Jamal El-Hachem∗, Régis Fleurquin∗, Salah Sadou∗

∗ Université Bretagne Sud - IRISA, France
Email: firstname.lastname@irisa.fr

Abstract—With the growing numbers of security attacks caus-
ing more and more serious damages in software systems, security
cannot be added as an afterthought in software development. It
has to be built in from the early development phases such as
requirement and design. The role responsible for designing a
software system is termed an “architect”, knowledgeable about
the system architecture design, but not always well-trained in
security. Moreover, involving other security experts into the
system design is not always possible due to time-to-market and
budget constraints. To address these challenges, we propose to
define an asset-based security assistance in this paper, to help
architects design secure systems even if these architects have
limited knowledge in security. This assistance helps alert threats,
and integrate the security controls over vulnerable parts of
system into the architecture model. The central concept enabling
this assistance is that of asset. We apply our proposal on a
telemonitoring case study to show that automating such an
assistance is feasible.

Index Terms—Security Assistance, Architecture and Design,
Attack Pattern, Secure-by-Design

I. INTRODUCTION

In the highly interconnected, ubiquitous computing world
of today and tomorrow, cyber-security has become a major
concern for organisations. To avoid harmful damages with
ever escalating attacks, designing security-aware software sys-
tems is essential [21]. The role responsible for designing
a software system is termed an “architect”, knowledgeable
about the system architecture design, but not always well-
trained in security [8], [17]. Thus they may not adequately
deal with security aspects when designing systems. Moreover,
it is suggested to bring together in the design team other
participants, having different backgrounds and expertise than
architects [34], including domain experts and security experts.
However, involving security experts into the system design
is not always possible due to time-to-market and budget
constraints [8], [28].

To allow the modeling of secure systems at early devel-
opment phases, security modeling languages, such as Se-
cureUML [18] and UMLSec [15], are proposed. In addition,
risk assessment methodologies, such as NIST SP 800-30 [3]
and OCTAVE [5], also provide the possibility of integrating
security aspects into the system development. Nevertheless,
these methodologies are time-consuming and require security
expertise. Architects without significant security knowledge
can not effectively rely on these methodologies to deal with
security aspects during the design phase.

In contrary, attackers are creative, actively collaborate and
have powerful tools. For example, in 2017, a worldwide cyber-
attack by the WannaCry ransomware cryptoworm has occured.

Around 200,000 computers were infected across 150 countries.
Critical infrastructures in organizations such as hospital and
transport domains were impacted. Wannacry worm propagated
through the exploit EternalBlue that targets Windows-based
computers and exploits a vulnerability of the Server Mes-
sage Block (SMB) protocol [9]. One month later, another
ransomware, Petya, also used the SMB network spreading
techniques to propagate among Windows-based computers
even if Microsoft has released patches against WannaCry [27].
In 2019, BlueKeep, which is a vulnerability in Microsoft
Remote Desktop Protocol (RDP) [30], has been estimated
to have the same disruptive potential as EternalBlue. As we
can see, with the need of security grows for applications,
services and technologies, the threats also grow as attackers
get more organized and sophisticated. As security defenses
get better, attackers get smarter and can adapt their attacks
to new defenses, and hence it is an on-going competition in
cyber space. In the example, ransomwares emerge unceasingly
with different attack forms on different specific targets such
as SMB and RDP, but the thing in common of these attacks
is that they all target a vulnerable network communication
protocol which makes the propagation of malware to the whole
network possible. To deal with this issue, a good general-
purpose solution is required on which flexible and adaptable
security features can be added. Studying attack goals in a
more general and abstract level allows to not only analyze
security aspects independently of specific domains or contexts,
but also understand the root cause of security breaches hidden
behind various attack technique forms, thus helping enhance
the security level by design.

To deal with the issues mentioned above, which are i) the
knowledge gap between architects and security experts; ii) the
high variability of applicable threats over time, depending on
the system deployment context and on other aspects, and iii)
the lack of a shared terminology for the characterization of
cyber security, we propose in this paper a security assistance,
which enables architects, who are not always security special-
ists, to integrate security aspects into the architecture model
during the design phase. This security assistance allows to
highlight known vulnerabilities contained in the architecture
elements and to recommend security countermeasures to ar-
chitects. The main objective of this paper is to show that it is
possible to define and automate such an assistance.

The paper is structured as follows: Section II presents
the background and useful knowledge bases required for the
security assistance, and a motivating example to illustrate our
approach throughout the paper. In Section III, we present



the overview of our approach by introducing an asset-based
three-view security assistance framework. In Section IV, we
introduce a data model before detailing the assistance process
in Section V. Then in Section VI, we verify that this data
model and this process provide the possibility of the assistance
automation with the motivating example. Related works are
discussed in Section VII. Finally, we conclude the paper and
discuss future works in Section VIII.

II. BACKGROUND AND MOTIVATING EXAMPLE

This section firstly presents the required knowledge back-
ground for the security assistance. Then, three well-known
public repositories are identified, helping the integration of
security knowledge into our assistance using standardized IT
elements representation. Thirdly, we introduce a case study
which illustrates our approach throughout the paper. Based on
this case study, we identify the requirements to which such an
assistance should conform.

A. Security Assistance Knowledge Background

Security aspects include at least the following concepts [29]:
i) an attack is the realization of a threat that impacts compu-
tational resources; ii) a vulnerability is a weakness that can be
exploited by attacks to violate the system security policy; iii)
a control can be either an alert of vulnerabilities (a residual
level of risk to the assets), or a countermeasure (a preventive
measure against attacks). A security assistance thus requires
some forms of knowledge base that encodes at least existing
attacks, vulnerabilities and controls. which are fundamental
concepts in computer security [29]. The concept of asset is
also fundamental. An asset, as defined by ISO 21827 [1], is
“anything that has value to an organisation”, such as software,
hardware, network, etc. We will later propose to rework on the
notion of asset to deal with security aspects. Finally, iv) an IT
products naming scheme is necessary to link, in a standardized
and structured way, the assistance with the general IT products
that can be involved in different domain architectures.

B. Useful Knowledge Databases

The Mitre Corporation1 offers security resources and de-
fines a standardized way to refer to IT products. The above
information can be retrieved from Mitre knowledge bases.

Firstly, to build secure systems, it is important to think
like an attacker and find out vulnerable architecture ele-
ment. Accordingly, understanding the attacker’s viewpoint
is critical to build secure systems. Attack pattern [24] is
a structured mechanism to capture and communicate this
viewpoint including common approaches used by attackers
to target weaknesses of software systems. Mitre’s Common
Attack Pattern Enumeration and Classification (CAPEC) [22]
provides a catalogue of common attack patterns that help
understanding how attackers exploit weaknesses. It involves
a wide range of attack categories, from social engineering,
to software and physical attacks. CAPEC helps us retrieve

1The Mitre Corporation : https://www.mitre.org/

the information about high-level attack goals and attack tac-
tics, which are useful for the security assistance. Secondly,
Mitre’s Common Weakness Enumeration (CWE) [23] collects
common weaknesses that can be exploited by attack patterns
in CAPEC. CWE contains the vulnerability information for
our assistance. Thirdly, security controls aim at reducing risks
caused by vulnerabilities and preventing attacks. Information
about security controls can be retrieved from both CAPEC
and CWE. An assistance could integrate this security control
information to warn the architect about vulnerabilities and to
recommend security countermeasures to prevent attacks.

Moreover, the use of CAPEC and CWE uncovers a con-
straint on the Archirecture Description Language (ADL) and
its uage. In particular, to use the assistance in multi-domains, a
common and formalized description of IT products is required,
to allow automatic machine interpretation and processing.
Mitre’s Common Platform Enumeration (CPE) [25] provides
this possibility by offering a structured naming scheme for
IT products. Consequently, it should be feasible to associate
each architectural element with a “type” that can be referred
to an “element” in the CPE repository. This could be tack-
led for example via the expression of typing, refinement or
composition relationships, compatible with CPE if the ADL
offers such language mechanisms; or if not, at least via naming
convention rules on architectural elements.

To summarize, a security assistance should integrate infor-
mation about: i) attack pattern (e.g. CAPEC) to represent the
attackers’ viewpoint, and to retrieve common attack goals and
tactics; ii) vulnerability or weakness (e.g. CWE) that can be
exploited by attackers; iii) security control that can be retrieved
from mitigation information corresponding to attack pattern
and weakness; and iv) standard naming scheme (e.g. CPE) to
identify general IT elements in a standardized way. Note that
CAPEC, CWE and CPE make references one to another, which
ease the knowledge integration into the assistance. Another
useful knowledge base is the Mitre’s Common Vulnerability
Enumeration (CVE). We don’t need it in this paper because the
vulnerabilities in CVE are platform- and technique-specific,
which is out of the concern of our proposal.

C. Motivating Example

To illustrate our approach throughout the paper, we intro-
duce a telemonitoring system for the heart failure management.
This system enables communications among the home care
point, the hospital and the doctor’s remote office in order
to reduce the burden of hospitalisations. For our example,
we consider that the architect uses an ad-hoc ADL for the
architecture modeling. We also assume that the typing of
each architectural element is compatible with CPE: either by
naming rules or through typing mechanisms expressible in the
ADL, which are not in the scope of this paper.

As shown in Figure 1, the telemonitoring system is mainly
composed of three parts: i) a home care point with a subset of
components such as a pacemaker, wearable technologies and
a fix phone; ii) a healthcare center with components such as



Figure 1: Heart Failure Patient Health Telemonitoring System
monitoring and processing servers and iii) a doctor’s remote
office with remote desktops.

We focus on the heart rhythm monitoring scenario to illus-
trate how the assistance helps integrating security aspects into
the architecture design. In this scenario, the architect models
an implantable device which is inside a patient’s body, e.g. an
ICD (Implantable Cardioverter Defibrillator), to continuously
monitor the heart and automatically deliver therapies to correct
fast heart rhythms when necessary. In addition, a monitor
device (e.g. “Medtronic 24950 MyCareLink”) is required to
collect data from the ICD and transfer it to the healthcare
center and doctor’s remote office through the network, to help
HF specialists make health decisions.

This scenario may be subject to a number of security
attacks since there are no data and system behavior protection
mechanisms in the architecture. For example, an attacker may
tamper the data transferred from the “Medtronic monitor”
to the healthcare center. For instance, heart failure signals
could be modified into “normal” status signals. If a hearth
failure happens, the specialist, who monitors the patient’s
health status in the remote office, should take decisions such as
sending an ambulance. However, as the data would have been
modified, the specialist could not take the correct decision of
sending the ambulance, potentially leading to serious medical
consequences and even the patient’s death. Another example
may be the Denial of Service (DoS) on the remote desktop
in the doctor’s remote office. If the patient suffers a hearth
failure, even if the correct data is sent to the HF specialists,
they cannot treat it in time because the system behavior of
their desktop is not available.

D. Security Assistance Requirements

To prevent such incidents, a security assistance could be
helpful during the architecture modeling phase, even in the
presence of abstract architectural elements. Indeed, the ar-
chitecture design can be performed in several stages and
therefore it involves elements of different levels of abstraction.
It is possible to mix abstract elements (whose implementation
details are not specific yet) with concrete ones (which are
precise). The architecture is thus refined gradually to become
finally a concrete architecture model. During this activity, the
architect should be able to request the launch of the security
assistance at any time. The level of details and relevance of
the security recommendations depend on the abstraction level

of the architectural elements. The recommendations are more
precise if the architecture elements are more concrete, referring
to existing components, whose vulnerabilities are cataloged in
common security knowledge bases.

The trigger behind this assistance is that architects have
limited security skills in general [8], [17]. However, to allow
our assistance, architects have to at least be able to: i)
distinguish the elements they want to protect (assets) in the ar-
chitecture model and ii) be aware of some well-known security
properties such as confidentiality, integrity and availability,
which they want to preserve on these valuable assets. Based
on these information and general security knowledge bases,
our security assistance returns alerts about the architectural
elements’ vulnerabilities and recommends countermeasures to
the prevent attacks.

In Figure 1, some examples of architecture elements are
highlighted in the red rectangles: two concrete architecture
elements: i) “Medtronic 24950 MyCareLink patient monitor”
(mentioned as “Medtronic monitor” later) and ii) “Aerospike
database server 3.10.0.3”; iii) an abstract one “remote desk-
top”. The architect chooses the “Medtronic monitor”, which is
at his/her disposal, as a concrete architecture element to play
the monitoring role. Meanwhile, in the healthcare center, the
“Aerospike database server 3.10.0.3” could be used to store the
patient’s data. In doctor’s remote office, a “remote desktop”
is required to be allocated to the HF specialist to monitor the
patient’s condition. However, at this stage of the architecture
modeling phase, the architect is not yet sure which concrete
“remote desktop” to employ.

Secondly, the security assistance should enable the architect
to indicate the security properties that need to be assured for
each chosen assets. For example, the architect may indicate the
preservation of Data Integrity on the “Medtronic monitor”,
of Data Confidentiality on the “Aerospike Database Server
3.10.0.3” and of System Behavior Availability on the “remote
desktop” (shown as stars in Figure 1). To help ensure these
properties, the assistance could interrogate a security knowl-
edge base, about vulnerabilities that have been previously
exploited by attacks, on similar architecture elements as those
tagged as assets by the architect. If such vulnerabilities are
discovered, alerts could be fed back together with possible
security countermeasures. For example, for the Data Integrity
of the “Medtronic monitor”, a possible alert can be that
there is a vulnerability of “using of hard-coded credentials”,
which may lead to serious attack consequences such as data
tampering. A possible countermeasure “using a first login
mode” could be recommended to be taken into consideration
during design to change the default credentials in order to
prevent the corresponding attacks.

III. THE FOUNDATIONS OF THE SECURITY ASSISTANCE

In this section, we present the basis of our security assis-
tance approach. We refine the concept of asset into domain,
vulnerable and vulnerable domain asset to allow the definition
of the security assistance. Then we elaborate an asset-based
three-view framework and we introduce “Attack Pivot Tree”



(APT), which is designed based on “attack tree” and focuses
on asset-based security analysis, to link up these three assets.

A. Rework on the Refinement of Asset

The traditional process of risk assessment begins by 1)
listing valuable assets of an organization, 2) identifying threats
to these assets and vulnerabilities exploitable by these threats,
3) estimating risks to these assets and 4) proposing coun-
termeasures to protect them. Therefore, asset is a central
and pivotal concept. Asset analysis is a critical step for
risk assessment, involving the viewpoints of several actors,
such as the architect, the attacker (tester) and the security
expert (defender). In traditional approaches, these actors work
together to identify assets which are useful for further risk
assessment steps. In our opinion, asset means differently for
these three actors. It thus encompasses three viewpoints: i)
the architect’s viewpoint, describes different architectural
elements of the system under design, while focusing on
the architect’s understanding of the asset concept, such as
software, hardware, network; ii) the attacker’s viewpoint,
illustrates mainly a vulnerable architecture element as the
target of an attack with the following information: attacker’s
tactic, exploitable vulnerabilities, security breaches and their
impact; iii) the security defense expert’s viewpoint, who
understands how the attacks are performed and proposes
security control solutions such as vulnerability notifications
and countermeasures to prevent attacks.

A same asset may mean differently under different view-
points. For example, “Medtronic monitor” is a valuable asset
from the architect’s viewpoint, because it should perform its
function as expected by stakeholders. Similarly, it is a valuable
asset from the attacker’s viewpoint, because it contains the
vulnerabilities that the attacker can exploit. A “Medtronic
monitor” is also a valuable and vulnerable asset from the
security defense expert’s viewpoint because it is important and
needs the protection against potential attacks.

We therefore refine asset according to these three views to
facilitate the fulfillment of the security assistance:

Domain Asset (DA): Anything that has value to the archi-
tect, towards the fulfilment of the function and goal of the
system. It thus represents assets that are domain specific. For
example, the “database server” is a valuable domain asset to
keep patients’ information.

Vulnerable Asset (VA): Anything that has value to the
attacker. It has vulnerabilities that can be exploited by attacks.
Hence it is the direct, core target of the attacker. If it is
compromised, it can impact related domain asset. In contrast
to domain assets, which are anchored to architecture elements,
vulnerable assets enable raising the security-based abstraction
level. This allows tapping into reusable attack knowledge
patterns, which do not depend on the specific architecture
model under design. As such, domain assets comprises ar-
chitecture elements, which evolve with time, making domain
assets evolutionary, varying and unstable, whereas vulnerable
assets stay mostly the same and more stable because they are
identified by weaknesses. By distinguishing these two assets,

Figure 2: Asset-Based 3-View Security Assistance Framework

the assistance process is able to separate the asset which is the
direct target of an attack (i.e., vulnerable asset) from secondary
asset that suffers the consequences (i.e., domain asset).

Vulnerable Domain Asset (VDA): Anything that has value
to the security defense expert. As the vulnerable asset operates
at a high abstraction (pattern) level, we introduce the VDA as
its projection (instance) on the architecture model. The security
expert is aware of the value of the VDA for the architect and
of its vulnerabilities exploitable by potential attacks and thus
proposes countermeasures.

Therefore, we consider asset as the pivot and the bridge
between domain architecture knowledge and security (attack
and defense) aspects. Consequently, the originality of our
approach is to bring together 3 different viewpoints from the
architect, the attacker and the security defense expert, which
helps us refine the notion of asset in order to provide a security
assistance to the architect.

B. Asset-Based Three-View Security Assistance Framework

In the architect’s viewpoint as presented in Figure 2, a DA
is annotated on an architecture element to be protected (e.g.
“Medtronic monitor”, “Aerospike database server 3.10.0.3”
and “remote desktop” in Figure 1), with a security property
to be preserved (e.g., confidentiality, integrity and availability)
and with a DA category (data and system behavior).

In the attackers’ viewpoint, the goal is to compromise a VA
using their knowledge of vulnerability types (e.g., contained in
databases such as CWE) and of attack patterns (e.g., captured
in databases like CAPEC). In contrast to DA, which concern
with architecture elements, VA enables raising the security-
based abstraction level. They represent general direct attack
targets, whose compromise can indirectly harm related DAs.
In our approach, VAs are retrieved from common security
knowledge base (e.g. CAPEC). These VAs are characterized
by vulnerabilities, which we retrieve from the database CWE.

To define the mapping relation between DA and VA, we
use the concepts of category and security property. On the one
hand, when compared with DA, category and security property
are model-independent (they do not contain any architecture
element). On the another hand, the security property of a
category can be impacted by the compromise of VAs.



Figure 3: The Attack Pivot Tree (APT)
In our motivating example, if the domain expert annotates

the architecture element “Medtronic monitor” with the cate-
gory Data and the security property Integrity, we obtain the
“Data Integrity of Medtronic monitor” as an annotated domain
asset, which can be considered as a security requirement.
Using the category Data and the security property Integrity,
our assistance approach searches in the integrated knowledge
base to find the compromises of which VAs have negative
impacts on the Data Integrity. In our example, the assistance
finds for example the VA “readable credentials”. If “readable
credentials” are stolen by the attacker, then remote services
such as RDP, telnet, SSH, and VNC can be leveraged to log
into a system, and malicious activities could be performed
such as modifying the patient’s heart rhythm, thus the data
integrity is threatened.

The defender’s viewpoint takes into account the vulnerabil-
ities of the assets that can be exploited by attacks. To protect
the assets from being compromised, the defender recommends
security countermeasures. In order that the security assistance
takes the role of the security defense expert, it is necessary to
relate the concept of VDA with those of DA and VA.

If for a DA, the assistance process finds at least one related
VA, involving one or more vulnerability types, then this DA
is presented as a VDA. In this way, our assistance uses
domain-independent and general security attack knowledge to
identify vulnerable architecture elements. For the “Medtronic
monitor” (DA), it contains a “readable credential” (VA), thus
the “Medtronic monitor readable credential” is a VDA.

VA and VDA (together with other security knowledge such
as vulnerabilities and controls) depict assets from the attacker
and defender viewpoints. This information is usually not
easily-understandable to the architect. Therefore, our assis-
tance encodes the knowledge of these two viewpoints, taking
their roles and helping the architect with recommendations.
The assistance achieves this by bridging the three viewpoints
through the refinement of the concept of asset.

C. Relation Between DA and VA : The Attack Pivot Tree

As mentioned above, an annotated DA valuable to the
architect is related to an architecture element, a security
property and a category. Our assistance needs to relate a DA
to at least one VA in order to find VDA. Attack Pivot Tree
(APT) is used to allow this transition.

APT is designed based on the Attack Tree [16]. An attack
tree is an hierarchical data structure that represents a set of
potential techniques to exploit vulnerabilities. The security
incident which is the final attack goal is represented as the
root node of the tree, and the actions that allow an attacker
reaching the root are iteratively represented as branches and
intermediate level nodes. Each node defines an action-based

subgoal, and each subgoal may have its own set of further
subgoals. The bottom nodes on the paths, i.e., the leaf nodes,
represent different actions to initiate an attack. Each node
other than a leaf is either an AND-node or an OR-node. To
achieve the goal represented by an AND-node, the subgoals
represented by all of that node’s subnodes must be achieved;
and for an OR-node, at least one of the subgoals must be
achieved. Our motivation of the use of attack trees is to
effectively exploit the information available on attack patterns
in CAPEC.

In an attack tree, the nodes are action-based, i.e., attack
techniques. In comparison, APT is an asset-based attack tree,
in which the nodes are either vulnerable assets or tactics, both
of them are less technique-specific. The VAs are the target of
the attack tactics. Extracting the VA as an independent concept
enables our assistance to make the connection with the DA
from the architect’s viewpoint. Similarly to attack trees’ nodes,
the VAs of APTs can be refined and decomposed into more
concrete and detailed ones.

Whereas VAs are inspired mainly from the two (of four)
most abstract levels of CAPEC (Category and Meta Attack
Pattern), tactic is inspired from the other two less abstract
levels: Standard and Detailed Attack Pattern. A tactic in APT
is an abstraction of the attack techniques in attack tree. Hence
an APT is model-independent, whereas attack tree is used for
specific domain architecture models.

In APT, to enable the link between DA and VA, the root
of the APT is a special node. It constitutes the final goal of
an APT, but at the same time it aggregates a category with
a security property from an annotated DA. Figure 3 presents
the root and the first level of VAs of an APT. The root is a
pair of two elements, the first element belonging to the set
of possible categories, the second one belonging to the set
of possible security properties. Each instance of the root (e.g.
data confidentiality) is related to a subset of the VAs whose
compromise can impact on the root.

The VAs are iteratively refined with each level of the APT.
The most detailed level of the VAs are linked with tactics. A
similar refinement exists for tactics. The top of the tree is the
most abstract level while the leaves are the most concrete ones
(respecting the four abstraction levels of CAPEC).

Both VAs and attack tactics can be related to vulnerabilities
(extracted from databases CWE) and to controls, i.e., mitiga-
tions. In this way, the APT relates an architecture element of
an annotated DA with one or several VAs, which are, in turn,
related with vulnerabilities and controls. The APT thus enables
finding for an architecture element possible vulnerabilities and
controls to assist the architect.

For example, in Figure 3, based on our security knowledge,
we manually identify and extract the 8 children (VAs) of the
root node (summarized in Table I), from the most abstract
level of the attack mechanisms in CAPEC.

According to the above philosophy, we propose an approach
which integrates and structures the necessary knowledge into
a data model, presented in the next section. We propose a



APT Vulnerable Asset CAPEC Attack Mechanism Reference
Manipulable interaction Engage in deceptive interactions CAPEC-156
Application functionality Abuse existing functionality CAPEC-210
OS data structure Manipulate data structures CAPEC-255
System resource Manipulate system resources CAPEC-262
Untested user input Inject unexpected items CAPEC-152
Timing and state Manipulate timing and state CAPEC-172
Readable information Collect and analyze information CAPEC-118
Manipulable access control Subvert access control CAPEC-125

Table I: VAs from Figure 3 extracted from CAPEC

sequence of tasks organised in a systematic process based on
this data model to enact the assistance (Section V).

IV. DATA MODEL

Based on the asset-based three-view security assistance
framework, we introduce the assistance data model capturing
important concepts and their relations in this section. For
the simpler readability, we split it into four parts, including
the three viewpoints, represented with different colors: the
domain architecture (blue), the attack (green) and the defense
(red). The fourth transverse part describes the structure and
refinement mechanisms of concepts presented in the three
viewpoints. To ensure that the relations between these four
parts are preserved, some concepts are reused in several parts.

A. Domain Architecture Specific Aspects

Figure 4: Domain Specific Architecture

The concepts described in Figure 4 capture the specificities
of the domain architecture under study (e.g., healthcare),
which are required to launch the security assistance.

An AnnotatedDA annotates a domain asset, which is an Ar-
chitectureElement, with a SecurityProperty and a Category. As
presented previously, the SecurityProperty and Category are
used to relate the AnnotatedDA to the VA, through the concept
of Root. The compromise of the Root, in its characteristic as
the final goal of the APT (cf. Sec. III-C), threatens a Category
and impacts a SecurityProperty.

An ArchitectureElement is an element represented in the
architecture model. A SecurityProperty expresses the security
objective that the architect wants to protect. Here we consider
the most studied ones: confidentiality, integrity and availability
[2]. The architect is supposed to understand these properties
and annotates them on the ArchitectureElement to require
the preservation of these properties. A Category represents
the category of the AnnotatedDA to be protected. Based
on assets that are commonly impacted by security attack
consequences, we identified 4 types of categories. Indeed,
most of threats in [29] have consequences on data and/or
system behavior. Moreover, as people can be involved, attacks

may have possible consequence on human-related assets, e.g.
identity. Finally, the destruction of physical devices is also
a possible consequence. Hence CategoryType contains: data,
systemBehavior, humanRelated and physicalAsset.

B. Attack Specific Aspects

This subsection captures the attacker’s viewpoint as shown
in Figure 5. The AttackPivot is inspired from the concept of
node of an attack tree. It represents at once the Goal and
the Tactic. As discussed, we differentiate the Goals into VA
and Root. As APT is centered on asset, which is pivotal to
our approach, we name the node of the APT: AttackPivot.
The AttackPivots are related with each other through Relation
of the type RelationType: and, or, sand (sequential and). A
Goal relates with one or several Tactics through and/or/sand-
Realization relations. The RelationType realization means that
a Tactic can realize the compromise of a VA.

An Attack is composed of at least a Goal and a Tactic.
It consists of exploits performed by an attacker, to take
advantage of VulnerabilityTypes to obtain negative impacts.
A VulnerabilityType models a vulnerability, a weakness or a
design error that may result in an undesirable event.

C. Defense Specific Aspects

The concepts discussed in this subsection capture the view-
point of the security defense expert as shown in Figure 6. An
ArchitectureElement can be matched to a general ElementType
to pass from domain-dependent to domain-independent. If an
ElementType has at least one VulnerabilityType, the corre-
sponding ArchitectureElement becomes a VDA. To mitigate
the VulnerabilityType, ControlTypes applying on ElementTypes
may be proposed. These ControlTypes may fall in one of
the two ControlCategories: alerts about the VulnerabilityTypes
whose exploitation may impact the ElementTypes, or recom-
mendations of countermeasures to prevent attacks. A notewor-
thy remark is related to ElementType being connected to con-
cepts from all three viewpoints. As such, an ArchitectureEle-
ment from the architect’s viewpoint matches an ElementType.
An ElementType having VulnerabilityTypes may match a VA,
from the attacker’s viewpoint. A ControlType applies on an
ElementType from the security defense expert’s viewpoint. The
concept of ElementType encodes information about possible
elements of an architecture. Our knowledge base contains a
list of such ElementTypes and their relations. This allows the

Figure 5: Attack
Specific Aspects

Figure 6: Defense Specific As-
pects



Figure 7: Refinement and Structural Mechanisms
automatic assistance process to make the link between domain
specific knowledge and security attack knowledge through the
match relations with ArchitectureElement and respectively VA.

As will be detailed in Section V, the matching algorithm
uses the naming information. Therefore, a common naming
scheme is essential. This imposes constraints on the archi-
tect’s modeling viewpoint. It is thus necessary to make use
of approaches, which ensure that the value of the Archi-
tectureElement’s naming attribute conforms to the common
naming scheme. Potential ADLs with which we may con-
sider integrating our assistance approach have thus to provide
mechanisms of enforcing and/or verifying this naming scheme.
Alternatively, this would be left at the charge of the architect.

D. Refinement and Structural Mechanisms

The architect defines the architecture iteratively, progres-
sively refining it from a more abstract architecture to a
more (partially) concrete one. As part of this architecture,
the name of the ArchitectureElement needs to match the
name of an ElementType existing in our knowledge base,
as shown in Figure 7. As an ArchitectureElement becomes
more concrete with time, the ElementType needs to mir-
ror this evolution. Therefore, there is a need to model an
abstraction hierarchy among ElementTypes. We model this
with the help of the is relation. In our motivating example,
the domain specific architecture model contains an Archi-
tectureElement “Aerospike Database Server 3.10.0.3”. This
matches an “Aerospike Database Server” ElementType, which
is a refinement of the “Database Server” ElementType. The
reason of identifying more abstract level of ElementType is that
not all vulnerabilities of specific product are revealed in the
security breach databases (not exploited by any attack yet), but
it doesn’t mean the vulnerability doesn’t exist. Identifying the
type or family of products (ElementTypes) may help provide
information about the family’s VulnerabilityType, which gives
an idea about possible vulnerabilities for specific product.

Similar considerations about the abstraction levels hold for
VulnerabilityTypes and ControlTypes. Vulnerabilities are usu-
ally concrete and correspond to concrete ArchitectureElements,
i.e. the vulnerabilities from database CVE. However, there are
more abstract vulnerability types, such as those proposed by
databases like CWE. We model VulnerabilityType similarly
with the abstraction levels of the ElementType, through an
is relation. In our motivating example, the concrete Architec-
tureElement “Medtronic 24950 MyCareLink Patient Monitor”
contains a concrete vulnerability “a hard-coded operating
system password” (CVE-2018-8870). This concrete vulner-
ability is modeled as a VulnerabityType. It is a refinement
of the more abstract VulnerabilityType “Use of Hard-coded
Credentials” (CWE-798), which in turn is a refinement of the
VulnerabilityType “Improper Authentication” (CWE-287).

Moreover, an ArchitectureElement may be composed of
other ArchitectureElements. We model this through the has re-
lation. Similarly, ElementTypes may also be composed of other
ElementTypes (has relation). Identifying the VulnerabilityType
of a component can help enrich the vulnerability information
about the ElementType containing the component.

V. SECURITY ASSISTANCE PROCESS

The data model unifying concepts from the 3 viewpoints
allows us to integrate (semi-)automatically the knowledge
specific to attacker and defender into our assistance. In this
section we present in detail how the security assistance process
assist the architect based on this data model.

The security assistance process is presented using an en-
hanced BPMN diagram as shown in Figure 8. It consists of
two major phases: one performed by the architect, and another
performed by the automatic assistance process. Note that the
yellow parts are independent of the domain architecture.

In the architect’s annotation phase, the architect selects on
the architecture model an ArchitectureElement (1), on which
he/she annotates a selected SecurityProperty (2) and Category
(3), obtaining an AnnotatedDA. In the security assistance
phase, two tasks are conducted in parallel after the annotation
(4) task of the architect:

i) The assistance process uses the ArchitectureElement to
obtain a list of relevant ElementTypes. It starts by matching the
architecture element with the element type (5). The matching
algorithm takes as input, on the one hand, the CPE-formated
name of the ArchitectureElement, and on the other hand, the
name of the ElementType. For the correct function of the
matching algorithm, a common naming scheme between the
ArchitectureElements and the ElementTypes is necessary. We
implement this scheme based on CPE. This matching approach
is based on the hypothesis that the architect follows the
imposed naming constraints. If there is a match, the assistance
generalises (6) the abstraction hierarchy (described by the is
relation) into the increasingly more abstract ElementTypes.
After this, the assistance defines, for each of the ElementTypes
identified in the previous task, of which ElementTypes it is
composed, according to the has relation (7). This repeats until
no new ElementType is discovered.

ii) In parallel, the assistance uses the APT to develop
(refine and/or decompose) VA (8). Then it uses the APT to
develop (refine and/or decompose) tactic (9). The root of the
APT is the SecurityProperty and the Category selected by the
architect. These two tasks result in two lists of Selected VA
and respectively of Tactics. From these two lists, the assistance
identifies attacks (10).

Based on the list of Selected ElementType and on the
list of Selected VA, our assistance process matches VA with
ElementType (11). The matching algorithm takes as input, on
the one hand, the CPE-formated name of the ElementType,
and on the other hand, the name of the VA. If the name of
the VA is found matching with an item in the Selected Ele-
mentType list, then the assistance highlights the corresponding
ArchitectureElement as a VDA (12). The ElementType that



Figure 8: Assistance Process. Each task is uniquely identified with a number placed before its description.

is related with the ArchitectureElement from the architecture
model is as valuable as the Annotated DA for the architect.
Meanwhile, this ElementType is as vulnerable as the VA to an
attacker and needs protection from the security defense expert
as the VDA. This triple nature of the ElementType makes it
the bridge among the architect, the attacker and the security
defense expert’s viewpoints.

Using the identified VDA and a vulnerability database (e.g.
CWE) as input, the assistance identifies VulnerabilityTypes
(13). Once the list containing the concerned vulnerability types
is enriched, the assistance recommends security ControlTypes
corresponding to these VulnerabilityTypes to the architect (14).

VI. APPLICATION OF THE SECURITY ASSISTANCE ON THE
MOTIVATING EXAMPLE: THE RESULTS

To show the automation and usefulness of the security
assistance, we apply it on three annotated DA in the motivating
example to illustrate concrete and abstract aspects. We first
show how we developed a database enabling the query-
based simulation of the assistance process. The results of
this simulation for each of the three annotated DAs of the
motivating example are presented in the next sections.

A. Assistance Enactment

As the data model used by our assistance process integrates
knowledge from several databases, we chose to implement it
using a database. The tasks of the process described previously
are implemented as “SQL select statements”. Our database is
filled with information extracted from several existing, widely-
used databases. As such, the VAs, Tactics and Relations of the
APT, are extracted from CAPEC. The VulnerabilityTypes are
extracted from CWE, and the SecurityControls are extracted
from both CWE and CAPEC. The names of the ElementTypes
are extracted from CPE. The extraction process is, for the
moment, manual, and based on security experts’ knowledge. In
the current state, our database contains a part of the knowledge
of the existing databases. For example, our database contains
the knowledge associated with 50 attack patterns from the 575
that CAPEC contains, and with 62 vulnerabilities out of the
1141 that CWE contains.

B. Assistance on DA1: Concrete Security Control Recommen-
dation on a Concrete Architecture Element

The results of the application of the assistance process on
these three Annotated DAs are presented in Table II. Each row
corresponds to each Annotated DA. Each column corresponds
to data objects obtained from the task of the assistance process.
The number of the corresponding task is indicated in brackets.
In the first case of our motivating example, we consider
that the architect selects the ArchitectureElement “Medtronic
monitor” (the task 1 Select architecture element in Figure 8).
The architect also selects (2) the SecurityProperty “Integrity”
and selects (3) the Category “Data”, with which he/she anno-
tates the “Medtronic monitor”, obtaining the AnnotatedDA (4)
{Medtronic 24950 MyCareLink Monitor, Integrity, Data}.

Taking as input the ArchitectureElement “Medtronic 24950
MyCareLink Patient Monitor”, our assistance process obtains
a list of ElementTypes, starting with an initial match (5) with
the current list of ElementTypes in our database. This initial
match is in this case an ElementType named “Medtronic 24950
MyCareLink Patient Monitor”. The ElementType List is en-
riched following generalisation (is) (6) and composition (has)
(7) relations, containing numerous items, among which we
cite here only four: the “Medtronic monitor” itself, “Monitor”
as a generalisation of “Medtronic monitor”, “Mobile” as a
generalisation of the “Monitor” and “Hard-coded password”
as a constituent of the “Monitor”.

In parallel, starting from the SecurityProperty “Integrity”
and the Category “Data”, considered as the Root of the
APT, our assistance expands/develops (8) it into a tree of
VAs containing, among other: “Information”, “Configuration
detail”, “Software Structure and Composition”, “Compiled
object”, “Executable”, “Machine instructions”, “Hard-coded
credential” and “Hard-coded password”, following the hier-
archy of CAPEC. For the most concrete VA, which is “Hard-
coded password”, the APT is further developed with Tactics
(9) that compromise it, such as: “Reverse engineering”, “White
box reverse engineering” and “Read sensitive strings within
an executable”. From this Tactics list and from the VA list
obtained from (9,8), the assistance identifies attacks (10), such
as “Hard-coded password realized by reading sensitive strings



(4) Annotated DA Element Type List (8) VA (9) Tactic (10) Attack (11,12)
VDA

(13) Vulnerability
Type (14) Control TypeID (1) Architecture Element (2) Security Property (3) Category (5,6) is (7) has

DA1

Medtronic
24950

MyCareLink
Patient

Monitor
(Concrete)

Integrity Data

-Medtronic
24950

MyCareLink
Patient

Monitor
-Monitor
-Mobile

Hard-coded
Password

...

-Information
-Configuration Detail
-Software Structure
and Composition
-Compiled Object

-Executable
-Machine Instructions

-Hard-coded Credential
-Hard-coded Password

...

-Reverse engineering
-White box

reverse engineering
-Read sensitive strings
within an executable

...

-Hard-coded
password

realized by
reading

sensitive strings
within

an executable
...

-Medtronic Monitor
Hard-coded
Password

...

-Use of
hard-coded
credentials
(CWE-798)

...

-Utilize a first
login mode

-Store credentials
outside of the

code in a strongly
protected encrypted

configuration
file or database...

(Concrete)

DA2

Aerospike
Database

Server
3.10.0.3

(Concrete)

Confidentiality Data

-Aerospike database
server 3.10.0.3

-Aerospike
Database Server
-Database Server

-Server

-SQL
Statement

...

-Data Input
Interpretation

-Command Input
Interpretation

-SQL Statement
...

-Blind SQL statement
-Command line

execution through
SQL injection

...

-SQL statement
compromised by
command line

execution through
SQL injection

...

-Aerospike Database
SQL Statement

-Improper
input

validation
(CWE-20)

...

-Use an
“accept known good”

input validation
strategy...
(Abstract)

DA3
Remote
Desktop

(Abstract)
Availability System

Behavior

-Remote
desktop

-Desktop

-Web
Browser
-XML

Parser...

-Application
functionality
-Appropriate

memory allocation
-XML parser...

-XML entity
expansion

-XML
quadratic

expansion...

-XML parser
compromised

by XML entity
expansion...

-Remote Desktop
XML Parser

-missing
XML

validation
(CWE-112)

...

-always validate
XML input against

a known XML
Schema or DTD...

(abstract)

Table II: Assistance results for the three cases of the motivating example.

within an executable”.
By matching (11) the list of VAs with that of ElementTypes,

the assistance obtains the “Medtronic Monitor Hard-coded
password” as a common item. It therefore highlights it (12)
as a VDA. For this VDA and the identified list of Tactics,
the assistance identifies VulnerabilityTypes (13), among which
“Use of hard-coded credentials” (CWE-798). Based on this
list of VulnerabilityTypes, the assistance may recommend (14)
several ControlTypes, extracted from CAPEC and CWE. For
example, for the VulnerabilityType “Use of hard-coded creden-
tials” (CWE-798), the ControlType list contains among other:
“Utilize a first login mode” and “Store credentials outside of
the code in a well protected encrypted configuration database”.

To sum up, the assistance highlights at least the “Medtronic
Monitor Hard-coded Password” as a VDA, a concrete con-
stituent of the concrete architecture element “Medtronic mon-
itor”; alerts the architect to at least the VulnerabilityType
“Use of hard-coded credentials”; and recommends at least
two concrete ControlTypes “Utilize a first login mode” and
“Store credentials outside of the code in a strongly protected
encrypted configuration file or database”.

C. Assistance on DA2 and DA3: Abstract Security Controls on
a concrete and respectively Abstract Architecture Element

The application of the assistance process on DA2 and DA3
is very similar to the application on DA1. The only difference
is related to the abstraction level of the ArchitectureElements
and ControlTypes. As such, for DA2, while the assistance
process is applied on a concrete ArchitectureElement, like
in the case of DA1, it finds abstract ControlTypes, such as
“Use an accept known good input validation strategy”. If
the ArchitectureElement is abstract, the ControlTypes that are
proposed can only be abstract as well. This is the case for DA3,
in which the abstract ControlType “Always validate XML input
against a known XML schema or DTD” is proposed for the
abstract ArchitectureElement “Remote Desktop”.

To sum up, the assistance is capable of dealing with different
architecture abstraction levels. We have shown the possibility
to automatize the assistance process on a database that we
have defined. A prototype web application is implemented to
show the feasibility2 of this assistance.

2http://share-irisa.univ-ubs.fr/abs4sos/index.php

VII. RELATED WORK

A number of concepts of our data model are inspired from
risk assessment/management approaches: the initial definition
of Asset (central concept to risk assessment, which we refined
into the DA, VA and VDA), VulnerabilityType and Control.
Some of these concepts can be found in other model-based se-
curity approaches, such as attack trees or modeling languages
for describing security defensive architectures. We discuss the
relation of our work with these existing approaches.

Asset-based risk assessment: There are numerous risk
assessment methods, reviewed and compared for example
by [13] : MEHARI, OCTAVE, IT-Grundschutz, MAGERIT,
CRAMM, HTRA, NIST 800-30, RiskSafe Assessment,
CORAS and Microsoft’s Security Management Guide. For
some of them, the concept of asset is defined very largely,
rather vaguely, as anything that can have value to the organi-
sation (NIST SP 800-30, CRAMM, ISO TR-13335, BS 7799
and OCTAVE). Other methods try to separate the asset concept
into several types, such as EBIOS into primary and supporting,
or ISSRM into intangible business and tangible information
system. [32] proposes an asset-driven, security-aware, service
selection framework for selecting services that best satisfy
the security and cost constraints of assets. However, none of
the above methods, even if they deal with the security of
the assets, identify types of assets from the attackers’ point
of view, which we do with the concept of VA. Moreover,
these risk assessment methods require long application times
and the intervention of security experts. Our approach shows
the feasibility of integrating automatically security knowledge,
thus enabling risk assessment more easily.

Model-based security engineering: Model-based ap-
proaches cover risk assessment, attacker modeling and defen-
sive architectures [6]. For example, Coras, Magerit and Mehari
are model-based risk assessment methods. Formal models such
as attack trees [19] and Petri nets [26] model concrete attack
paths on concrete assets, and they need the intervention of
security expert. Compared to an attack tree, our attack pivot
tree is more generic, asset-based, includes common attack
goals and tactics and easily relates to architectural elements.

Security architectures are usually described and analysed
using modeling languages, such as SecureUML [18] and
UMLSec. Twenty-eight of these languages are reviewed by
[33]. This systematic review identifies, among other limita-



tions, that only few (6 out of the 28 surveyed languages)
propose automatic analysis mechanisms. Four case studies are
discussed in [10] using a strategic, system-wide architectural
approach, implemented as a security framework. Guidelines
are proposed to detect security design flaws in [31]. Both
of them lack an automatic process as well. Our approach
addresses this limitation by offering the possibility of defining
an automatic security assistance for architects.

Our approach thus covers several limitations of the existing
state of the art. It bridges system domain specific architec-
ture design with security attack and defense engineering (as
suggested for example by [14] and [7]).

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we advocate the definition of a security
assistance for the architect when designing software systems.
We propose an asset-based three-view security assistance
framework, which includes: i) a data model and ii) a systematic
process. We rely on sound existing security knowledge bases,
such as CAPEC and CWE, to build the assistance database
implementing the data model. We show that we can automatize
this assistance, by applying it on a telemonitoring case study.
This application also highlights how the proposed assistance
can help the architect when integrating security aspects into
the early phases of software development life cycle.

In the future, we plan to: 1) Add other concepts and related
mechanisms such as Risk and its computation, for which
at least partial information could be extracted from existing
bases, such as attack impact from CVSS [20]. 2) Automa-
tize the security knowledge extraction from existing security
bases and its insertion into the assistance database. Possible
directions include machine learning approaches such as topic
modeling [4]. 3) Investigate alternatives to the current standard
CPE-based naming scheme which relies on its appropriate
application by the architect. These alternatives need to be
transparent for the architect, which is a non-trivial task. Di-
rections include: ADL typing mechanisms, ontology matching
and text mining [12]. 4) Develop a tool suite which enacts the
assistance during the architecture modeling phase, relying on
SysML for example. 5) Extend concepts such as SecurityProp-
erty (e.g., to take into account authenticity or traceability),
RelationType (e.g., with XOR or NOT). This requires taking
into account future development of existing databases (e.g.,
CAPEC may consider other security properties). 6) Consider
the inter-dependencies among domain assets and analyze the
consistency of the architect’s annotations, using for example
colored graphs [11] to identify contradictions.

REFERENCES

[1] ISO/IEC 21827:2008. Information technology – security techniques –
systems security engineering – capability maturity model, 2008.

[2] ISO/IEC 27000:2018. Information technology - security techniques -
information security management systems - overview and vocabulary.

[3] NIST SP 800-30. Guide for conducting risk assessments.
[4] S. Adams, B. Carter, C. Fleming, and P. A. Beling. Selecting system

specific cybersecurity attack patterns using topic modeling. In 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications, pages 490–497, Aug 2018.

[5] Ch. J. Alberts and A. Dorofee. Managing Information Security Risks:
The Octave Approach. Addison-Wesley, USA, 2002.

[6] S. Alpers, R. Pilipchuk, A. Oberweis, and R. Reussner. The current
state of the holistic privacy and security modelling approach in business
process and software architecture modelling. In Information Systems
Security and Privacy, pages 109–124. Springer, 2019.

[7] S. Bode, A. Fischer, W. Kühnhauser, and M. Riebisch. Software
architectural design meets security engineering. In 16th Annual IEEE
International Conference and Workshop on the Engineering of Computer
Based Systems, pages 109–118, April 2009.

[8] V. Casola, A. De Benedictis, M. Rak, and U. Villano. A novel
security-by-design methodology: modeling and assessing security with
a quantitative approach. Journal of Systems and Software, 2020.

[9] Microsoft Security Response Center. Guidance for wannacrypt attacks,
2017.

[10] H. Cervantes, R. Kazman, J. Ryoo, D. Choi, and D. Jang. Architectural
approaches to security: 4 case studies. Computer, 49(11):60–67, 2016.

[11] E. Coatanéa and R. Roca. Dimensional analysis conceptual modeling
supporting adaptable reasoning in simulation-based training. In 13th
Conference on System of Systems Engineering, pages 245–252, 2018.

[12] Hamish Cunningham. Gate, a general architecture for text engineering.
Computers and the Humanities, 36(2):223–254, 2002.

[13] D. Gritzalis, G. Iseppi, A. Mylonas, and V. Stavrou. Exiting the risk
assessment maze: A meta-survey. ACM Comput. Surv., 51(1):11:1–
11:30, January 2018.

[14] R. A. Jones and B. Horowitz. A system-aware cyber security architec-
ture. Syst. Eng., 15(2):225–240, June 2012.

[15] J. Jürjens. Umlsec: Extending uml for secure systems development. In
UML 2002 — The Unified Modeling Language, 2004.

[16] R. Kumar, S. Schivo, E. Ruijters, B. Yildiz, D. Huistra, J. Brandt,
A. Rensink, and M. Stoelinga. Effective analysis of attack trees: A
model-driven approach. In Fundamental Approaches to Soft. Engineer-
ing, pages 56–73. Springer, 2018.

[17] Ruby B Lee. Security basics for computer architects. Synthesis Lectures
on Computer Architecture, 8(4):1–111, 2013.

[18] T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-Based
Modeling Language for Model-Driven Security. In UML — The Unified
Modeling Language, pages 426–441, 2002.

[19] S. Mauw and M. Oostdijk. Foundations of attack trees. In Proc. of the
8th Int. Conf. on Inf. Secu. and Cryp., ICISC’05, 2006.

[20] P. Mell, K. Scarfone, and S. Romanosky. A Complete Guide to the
Common Vulnerability Scoring System Version 2.0. NIST and Carnegie
Mellon University, 1 edition, June 2007.

[21] D. Mellado, E. Fernández-Medina, and M. Piattini. A common criteria
based security requirements engineering process for the development
of secure information systems. Computer standards & interfaces,
29(2):244–253, 2007.

[22] MITRE. Common attack pattern enumeration and classification,
https://capec.mitre.org/.

[23] MITRE. Common weakness enumeration. https://cwe.mitre.org.
[24] A. Moore, R. Ellison, and R. Linger. Attack modeling for information

security and survivability. 2001.
[25] NIST. Common platform enumeration. https://cpe.mitre.org/.
[26] J. L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, 1977.
[27] Symantec Security Response. Petya ransomware: Here’s what you need

to know, : https://www.symantec.com/blogs/threat-intelligence/petya-
ransomware-wiper.

[28] Adam Shostack. Threat Modeling: Designing for Security. 2014.
[29] W. Stallings and L. Brown. Computer Security: Principles and Practice.

Prentice Hall Press, 3rd edition, 2014.
[30] TechTarget. Bluekeep (cve-2019-0708), 2019.
[31] K. Tuma, D. Hosseini, K. Malamas, and R. Scandariato. Inspection

guidelines to identify security design flaws. In Proceedings of the 13th
European Conference on Software Architecture - Volume 2, ECSA ’19.

[32] G. Tziakouris, M. Zinonos, T. Chothia, and R. Bahsoon. Asset-centric
security-aware service selection. In 2016 IEEE International Congress
on Big Data (BigData Congress), pages 327–332, June 2016.

[33] A. Van Den Berghe, R. Scandariato, K. Yskout, and W. Joosen. Design
notations for secure software: A systematic literature review. Softw. Syst.
Model., 16(3):809–831, 2017.

[34] Hans van Vliet. Software engineering - principles and practice. 2007.


