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The temporal dynamics of large-scale structures in a plane turbulent mixing layer are

studied through the development of a low-order dynamical system of ordinary di�erential

equations (ODEs). This model was derived by projecting the Navier{Stokes equations

onto an empirical basis set from the Proper Orthogonal Decomposition (POD) using

a Galerkin method. To obtain this low-dimensional set of equations, a truncation is

performed including only the �rst POD mode for selected streamwise/spanwise (k

1

=k

3

)

modes. The initial truncations included only k

3

= 0. Once these truncations were eval-

uated, non-zero spanwise wavenumbers were then added. These truncated systems of

equations are then examined in the pseudo Fourier space in which they are solved and by

reconstructing the velocity �eld. Two di�erent methods for closing the mean streamwise

velocity are evaluated to show the importance for the dynamical representation of the

ow to introduce in the low-order dynamical system a term allowing for feedback between

y Present address: National Research Council, NASA Langley Research Center, Mail Stop
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the turbulent and mean ows. The results of the numerical simulations showed a strongly

periodic ow indicative of the spanwise aligned vorticity. The simulated ow had the cor-

rect energy distributions in the cross-stream direction. These models also indicated that

the events associated with the centre of the mixing layer lead the temporal dynamics.

For truncations involving both spanwise and streamwise wavenumbers the reconstructed

velocity �eld exhibited the main spanwise and streamwise vortical structures known to

exist in this ow. The streamwise aligned vorticity was shown to connect spanwise vortex

tubes.

1. Introduction

Understanding and modelling turbulent ows are becoming more important as many

advanced applications require �ner details of the turbulence to be known. At the same

time it is becoming increasingly evident that large-scale organized motions present in

turbulent ows inuence many physical properties such as: mixing, noise, vibrations,

heat transfer, drag, lift, etc. Therefore, understanding the dynamics of large-scale ow

organizations will play a crucial role in the ability to understand turbulent ows. In that

vein, the method o�ered in this study leads to a simple dynamical model, in comparison

to the full Navier{Stokes equations, which can be used as a tool for understanding the

dynamics of the ow and serve as a test bed for control applications.

The idea of applying a low-order dynamical system approach of the type discussed

in this communication stems from the need to simplify the Navier{Stokes equations

to a minimal set of ordinary di�erential equations (ODEs), able to describe correctly
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the essential dynamical behaviour of the ow. The approach is based on a small set of

equations modelling some attractor (obtained through a truncation procedure based on

the physics of a given ow) which has enough of the same characteristics of the Navier{

Stokes equations and capture the underlying physical processes. The lower dimension

of the new system would allow easier comprehension of the mechanisms in turbulence;

thus utilizing the eigenfunctions of the Proper Orthogonal Decomposition (POD) for the

basis set is bene�cial. The POD, �rst introduced in uid mechanics by Lumley (1967),

provides an optimal basis set, in terms of kinetic energy representation, which can lead

to the smaller system of equations.

Lorenz (1963) was the �rst to utilize a low-order dynamical system to study uid

mechanics. Based on physical approximations, he developed a set of three �rst-order

di�erential equations to model the temperature and velocity �eld dynamics in a Rayleigh{

B�enard convecting layer. Some years later, Ruelle & Takens (1971) made the theoretical

link between low-order dynamical systems and turbulence. They proposed that, in a

certain bounded domain and under speci�c conditions, a mathematical object called

a strange attractor which corresponds to turbulence might exist for the Navier{Stokes

equations. This work led to many studies using dynamical systems techniques especially

for closed ow systems. The following is some of the work using POD{Galerkin models for

open ow systems. For a more comprehensive list see Berkooz, Holmes & Lumley (1993a)

or Delville (1995). A low-order dynamical system based on POD modes was �rst applied

to an open turbulent system by Aubry et al . (1988). They developed a low-dimensional

set of ODEs that model the near wall region of a turbulent boundary layer by using

the experimentally determined eigenfunctions of Herzog (1986). Their model equations

(hereafter called the Cornell model) exhibited several dynamical regimes (periodic, quasi-
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periodic, intermittent, chaotic) as the Heisenberg control parameter was varied. When

the solutions of their model ODEs are used to reconstruct the three dimensional velocity

�elds in the wall region, they found results consistent with experimental observations in

a turbulent boundary layer, i.e. the burst-sweep cycle. For a full review of their �ndings

in the context of dynamical systems, the reader is referred to the recent book of Holmes,

Lumley & Berkooz (1996).

Based on the initial work of Aubry et al . (1988), a signi�cant number of other studies

has been undertaken. Aubry, Lumley & Holmes (1990) modeled drag reduction on the

wall region by applying stretching transformations to the eigenfunctions of the Cornell

model. This study suggests that the intermittent events observed in the original model

can not be considered as an artifact of the closure assumption but are deeply rooted

in the dynamical phenomenon of the wall region. Berkooz, Holmes & Lumley (1991)

generalized the wall layer Cornell model to permit uncoupled evolution of streamwise and

cross-stream disturbances. Their main conclusion was that the intermittent behaviour

reported in Aubry et al . (1988) is a direct consequence of the ODE's invariant subspaces

and symmetries which reect natural physical symmetries of the ow. Sanghi & Aubry

(1993) investigated the persistency of the intermittent behaviour observed in the model

of Aubry et al . (1988) when streamwise variations which were not accounted for in an

explicit way in the Cornell model are now considered. With this higher order model, the

intermittent behaviour persisted, but with higher additional complexities.

Since the original work of the Cornell group, others have examined the role of coher-

ent structures in the wall region of a turbulent boundary layer with a similar approach.

To avoid introducing an inhomogeneous pressure term at the boundary as was done in

the Cornell model, Zhou & Sirovich (1992) constructed `wall' eigenfunctions with full
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channel validity. In order to facilitate comparisons with the results of the Cornell model,

they �rst adopt the same severe truncation: �ve modes with no streamwise variation. This

�ve mode model equations displayed intermittent, quasiperiodic, and chaotic behaviour

similar to that of the Cornell group. When propagating modes (streamwise dependent

modes) are included in the model, a physically more realistic dynamical behaviour is

then obtained. They concluded that the propagating modes lie more at the heart of the

triggering mechanism for the bursting process than does the idea of pressure uctuations

proposed previously by Aubry et al . (1988). To get a better understanding of the �nal

stages of transition in a boundary layer, Rempfer (1995) derived dynamical models for

di�erent regions of the ow, by Galerkin projection of the Navier{Stokes equations onto

the POD eigenfunctions extracted from numerically computed ow �elds.

Free shear ows have been studied using the POD{Galerkin type models in both

jets and mixing layers. A low-order dynamical system model was developed for the ax-

isymmetric jet by Glauser, Zheng & Doering (1989) and Zheng & Glauser (1991). The

eigenfunctions utilized in these studies have been extracted from two-point velocity mea-

surements in the mixing layer of a high Reynolds number axisymmetric jet (see Glauser

& George 1992 and Glauser 1987). Glauser, Zheng & George (1990) postulated a spatially

evolving dynamical system model for the axisymmetric jet mixing layer. In this model,

the mean velocity quantities would be solved simultaneously, thus resulting in equations

of a di�erent form from that of the temporally evolving case. Rajaee, Karlsson & Sirovich

(1994) applied the snapshot form of POD to measurements obtained in a non-turbulent

forced mixing layer. Since their ow was forced through phase aligning the measurements,

they were able to compute the time dependence of the POD random coe�cients directly

by projection of the snapshots on the eigenfunctions and to compare them with the result
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of the low-dimensional model. They found good agreement between the model and the

direct projection, serving as justi�cation for the low-dimensional description.

This study is the continuation of the work presented in Delville et al . (1998) that

discussed the experimental measurements and the results from applying the POD to

the plane turbulent mixing layer. Using the POD modes found in that study, a low-

dimensional dynamical system model is developed in this communication by utilizing a

Galerkin projection of the POD eigenfunctions on the Navier{Stokes equations. Due to

the orthogonality condition of the eigenfunctions, this yields an ODE for each stream-

wise/spanwise wavenumber pair kept in a given truncation. Several versions of the model

are presented for severely truncated systems. The temporal dynamics of the mixing layer

are studied through examination of the POD coe�cients and by transforming the results

to real space and examining the velocity �eld.

2. Application of the POD to the plane turbulent mixing layer

Discussion of the application of the POD to the mixing layer is detailed in the �rst

part of this paper (Delville et al . 1998); however, it is briey reiterated here for continuity

of this work.

Lumley (1967) suggested that the coherent structure should be the deterministic

structure  

i

(~x; t) which has the largest mean square projection on the random velocity

�eld u

i

(~x; t). Maximizing the mean square projection via the calculus of variations leads

to the following integral eigenvalue problem:

Z

T

Z

D

R

ij

(~x; ~x

0

; t; t

0

) 

j

(~x

0

; t

0

)d~x

0

dt

0

= � 

i

(~x; t): (2.1)
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The symmetric kernel of this Fredholm integral equation is the velocity cross-correlation

tensor R

ij

de�ned by:

R

ij

(~x; ~x

0

; t; t

0

) = hu

i

(~x; t)u

j

(~x

0

; t

0

)i; (2.2)

where the angle brackets denote the appropriate average for the problem under consid-

eration (see x3.1 for a discussion on how averaging was performed in the mixing layer).

If the random �eld is statistically homogeneous or periodic in one or more directions

or stationnary in time, the eigenfunctions  

i

(~x; t) become Fourier modes (Lumley 1970,

George 1988), so that the POD reduces to the harmonic decomposition in these directions.

In the mixing layer under study, the spanwise direction is considered to be homogeneous

allowing Fourier analysis in this direction. As detailed in Delville et al . (1998), time

is mapped to the streamwise direction through Taylor's Hypothesis thus forcing this

direction to be considered stationary and allowing for Fourier analysis of the streamwise

direction. The eigenvalue problem (2.1) can then now be written as

Z

D

	

ij

(x

2

; x

0

2

; k

1

; k

3

)�

(n)

j

(x

0

2

; k

1

; k

3

)dx

0

2

= �

(n)

(k

1

; k

3

)�

(n)

i

(x

2

; k

1

; k

3

); (2.3)

where 	

ij

(x

2

; x

0

2

; k

1

; k

3

) is the cross-spectral tensor, de�ned as the streamwise and span-

wise Fourier transform of the cross-correlation tensor. The above equation is the one

solved to extract the eigenfunctions used in the models developed in the next section.

As pointed out in Lumley (1967), the properties of the integral equation (2.3) are

governed by the Hilbert{Schmidt theory. One of the most interesting property is that the

eigenfunctions form a complete orthonormal set, which means that the Fourier transform

in the x

1

and x

3

directions of the uctuating random �eld can be reconstructed in the

following way:

eu

i

(k

1

; k

3

;x

2

; t) = (L

1

L

3

)

1

2

N

POD

X

n=1

a

(n)

k

1

;k

3

(t)�

(n)

i

(x

2

; k

1

; k

3

); (2.4)
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where a

(n)

k

1

;k

3

(t) are time random coe�cients. This relationship can be transformed back

into physical space by the two dimensional Fourier transform de�ned by:

u

i

(x

1

; x

2

; x

3

; t) =

Z

+1

�1

Z

+1

�1

eu

i

(k

1

; k

3

;x

2

; t)e

+2�j(k

1

x

1

+k

3

x

3

)

dk

1

dk

3

: (2.5)

In (2.4), L

1

and L

3

are the spatial extent of the domainD in the x

1

and x

3

directions,

respectively, and N

POD

is the number of POD modes.

The coe�cient a

(n)

k

1

;k

3

(t) can be determined from (2.4) by:

a

(n)

k

1

;k

3

(t) =

1

(L

1

L

3

)

1

2

Z

D

eu

i

(k

1

; k

3

;x

2

; t)�

(n)�

i

(x

2

; k

1

; k

3

) dx

2

: (2.6)

The low-order dynamical systems that will be developed in the following section solve

for the temporal evolution of the coe�cients a

(n)

k

1

;k

3

in (2.4). Therefore, in the context of

a deterministic dynamical model, the temporal coe�cients now become deterministic

functions of time. The time traces of these coe�cients serve as `building blocks' to study

the temporal evolution of the large-scale structures. One of the needs for developing

a dynamical system model of the expansion coe�cients is that the integral in (2.6)

cannot be solved unless the whole decomposition domain is known simultaneously which

was not the case for this study. Experimentally, obtaining the full �eld measurements

is extremely di�cult although the recent work of Citriniti (1996) has shown that it is

possible. Those experiments demonstrated there is a wealth of information that can be

gained to complement the dynamical systems model approaches.
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3. Temporal dynamical equations

This section details the derivation of the equations for the dynamical model. The

method used here is similar to that of Aubry et al . (1988) and Glauser et al . (1989) which

has recently been documented by Holmes, Lumley & Berkooz (1996). In the following

section, two sets of equations are derived with their di�erences stemming from the closure

method for the mean streamwise velocity. In the both methods (x3.2.1), the mean velocity

is calculated from a Boussinesq approximation. The �rst method yields a mean velocity

which is calculated a priori and is held constant throughout the time integrations. In the

other method (x3.2.2), a cuto� wavenumber will be chosen and the contribution to the

mean velocity from wavenumbers lower than this wavenumber are assumed to be steady,

while the contribution from wavenumbers greater than the cuto� will have their e�ects

vary with time. The di�erence between these two methods will become apparent in the

following discussion. The need to have some contribution to a time dependent mean has

been discussed in Holmes, Lumley & Berkooz (1996) and will become apparent in x6

where the linear stability of the trivial solution is discussed.

3.1. Momentum equations

In the same manner as detailed in Berkooz, Holmes & Lumley (1993b) and Aubry et al .

(1988), two di�erent types of averaging operators will be used. In the following sections:

the time average denoted by an overbar and a spatial average in the x

1

and x

3

directions

denoted by h�i:

(�) =

1

T

Z

(�) dt; (3.1)

h�i =

1

L

1

L

3

Z

(�) dx

1

dx

3

: (3.2)
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An overbarred quantity depends on x

1

; x

2

; x

3

but not on t, while a h�i quantity depends

on x

2

and t but not on x

1

and x

3

.

The �rst step is to perform a Reynolds decomposition of the Navier{Stokes equations

(u

i

= hu

i

i + u

0

i

where hu

i

i = U

i

). It should be noted that we are applying to the Ergodic

Hypothesis to swap between the spatial averages in the derived equations and the block

averages which were used to acquire the experimental data. For an incompressible uid,

without body forces, the following equations are obtained:

@u

0

i

@t

+ u

0

j

@u

0

i

@x

j

� hu

0

j

@u

0

i

@x

j

i + u

0

2

@U

1

@x

2

�

i1

+ U

1

@u

0

i

@x

1

= �

1

�

@p

0

@x

i

+ �

@

2

u

0

i

@x

j

@x

j

: (3.3)

The following two assumptions have been made in reducing (3.3) from the Navier{

Stokes equations:

(a) U

3

� 0,

(b) U

2

� 0.

These two assumptions corresponds to a thin layer assumption which is fairly standard

for the mixing layer. The �rst one is explicitly forced by the symmetries which were

applied to the experimental data. The second assumption has been examined, and it was

shown that the terms involving U

2

were small in comparison to the other terms kept in

the model. Finally, the mean velocity is such that U

1

= U

1

(x

2

; t).

3.2. Eddy viscosity representation

In this section a relationship will be developed for the mean streamwise velocity present

in (3.3). This relation is necessary because, in the severely truncated system which will

be modeled the measured mean velocity pro�le will be incorrect. Moreover, since there
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is no direct way to represent the mean velocity in terms of the POD modes, this study

will use an eddy viscosity relationship to balance the mean streamwise velocity with the

Reynolds stress a term which can easily be written in terms of POD modes. Two di�erent

ways of representing Reynolds stresses in terms of the POD modes will be discussed thus

introducing the two di�erent mean velocity closures.

Assuming that the Reynolds stresses act like the viscous stresses, Boussinesq (1877)

developed a relationship where the Reynolds stresses are directly proportional to the

velocity gradient. This relationship can be written for the mean streamwise velocity as

follows:

U

1

(x

2

) = �

1

�

e

Z

x

2

0

u

0

1

u

0

2

dx

0

2

+ U

1

(0); (3.4)

where the Reynolds stresses can be written in terms of the POD modes as,

u

0

1

u

0

2

=

N

POD

X

i=1

Z Z

1

�1

�

(i)

k

1

;k

3

�

(i)

1;k

1

;k

3

�

(i)�

2;k

1

;k

3

dk

1

dk

3

: (3.5)

In (3.4) �

e

is determined from the Free Shear layer model as formulated by Prandtl{

Reichardt: �

e

= K �

w

(U

a

� U

b

) where U

a

� U

b

represents the velocity di�erence, �

w

represents the vorticity thickness and the constant K is 0.01 for the mixing layer. This

approximation forces a constant eddy viscosity across the layer. Although �

e

is not truly

constant across the mixing layer the value from this relationship was found to be approx-

imately equal to the integral value of �

e

calculated from (3.4) with experimental data

(see Ukeiley 1995). In (3.4), U

1

(0) is set to be equal to U

m

=

U

a

+ U

b

2

to preserve the

convection velocity of the experimental system in our model. We will see in x6.2.1 that

this term is important for the spectral behaviour of our low-order system.

Before the actual relationships used in this study are derived, it is important to
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point out why it is bene�cial to have some feedback between the turbulent and mean

velocity. It is well known that the mean gradient contributes to the turbulence through

the production process. However, many researchers in turbulence also feel that turbulent

velocities must a�ect the mean velocities in some way. In Wick, Glauser & Ukeiley (1994)

the e�ect of the presence of a coherent structure on the mean streamwise velocity pro�le

was studied through the use of Pseudo Flow Visualization in a turbulent axisymmetric

jet mixing layer. It is clearly evident from that work that the presence or absence of a

structure alters the mean velocity pro�le. Following in this vein, the present study seeks to

incorporate feedback between the turbulence and the mean. The need for feedback from

the turbulence to the mean was also discussed in Holmes, Lumley & Berkooz (1996). They

stressed that in the dynamical model of Aubry et al . (1988) the system grew unbounded

without feedback which is similar to the results for this model discussed in x7.

3.2.1. No-feedback relationship

In this set of equations, a steady mean velocity is calculated and its numerical value

used in (3.3). This value is calculated from only the modes kept in the truncation as

follows:

U

1

(x

2

) = �

1

�

e

Z

x

2

0

"

N

POD

X

i=1

Z

k

1T

�k

1T

Z

k

3T

�k

3T

�

(i)

k

1

;k

3

�

(i)

1;k

1

;k

3

�

(i)�

2;k

1

;k

3

dk

1

dk

3

#

dx

0

2

+ U

1

(0); (3.6)

where k

1T

and k

3T

represent the largest streamwise and spanwise wavenumbers kept in

the truncation and N

POD

will be set to one. Even though there is no mechanism for

feedback between the turbulent and mean velocity, the amplitude of the mean velocity

should be appropriately scaled for the severely truncated systems studied here. This is

very important because the system of equations is driven by the production term and in
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order for it not to overwhelm the system, i.e. unbounded growth, this term must be of

the correct order.

3.2.2. Filter relationship

In this set of equations, (3.4) is split into a steady and time dependent part. This will

be done by choosing cuto� wavenumbers in both k

1

and k

3

. These cuto� wavenumbers

(k

1C

and k

3C

) act as a �lter point, and the contribution to the mean streamwise velocity

from wavenumbers less than the cuto� values will be considered steady while the contri-

bution from wavenumbers greater than the cuto� values will be used for feedback between

the turbulent and mean velocities. The set E

C6

, the ensemble of the modes (k

1

; k

3

) less

than the cuto� values is de�ned by E

C6

= fk

1

; k

3

; jk

1

j 6 k

1C

and jk

3

j 6 k

3C

g and

the set E

C>

of the wavenumbers kept in the truncation but with wavenumbers greater

than the cuto� values E

C>

= fk

1

; k

3

; k

1T

> jk

1

j > k

1C

and k

3T

> jk

3

j > k

3C

g. This

technique of spectral decomposition is applied to the mean velocity pro�le to yield:

U

1

(x

2

; t) = U

1F

(x

2

) + U

1 uns

(x

2

; t): (3.7)

U

1F

(x

2

) is estimated using (3.6) with the modes (k

1

; k

3

) 2 E

C6

and U

1 uns

(x

2

; t) can be

written as:

U

1 uns

(x

2

; t) = �

1

(L

1

L

3

)�

e

�

Z

x

2

0

"

N

POD

X

i=1

Z Z

(k

1

;k

3

)2E

C>

a

(i)

k

1

;k

3

(t) a

(i)�

k

1

;k

3

(t)�

(i)

1;k

1

;k

3

(x

2

)�

(i)�

2;k

1

;k

3

(x

2

)dk

1

dk

3

#

dx

0

2

;

(3.8)

by taking into account (2.4).
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Substituting (3.7) into (3.3) yields

@u

0

i

@t

+ u

0

j

@u

0

i

@x

j

� hu

0

j

@u

0

i

@x

j

i + u

0

2

@U

1 uns

@x

2

�

i1

+ U

1 uns

@u

0

i

@x

1

+ u

0

2

@U

1F

@x

2

�

i1

+ U

1F

@u

0

i

@x

1

= �

1

�

@p

0

@x

i

+ �

@

2

u

0

i

@x

j

@x

j

:

(3.9)

In this equation there is a �xed portion of the mean streamwise velocity which forces

a constant (non-time dependent) production term combined with a relationship that

allows for feedback between the turbulent and mean velocities at higher wavenumbers.

In the limit that k

1C

and k

3C

are set to zero one arrives at a set of equations where

all of the represented mean velocity is allowed to vary with time. This limiting case is

examined as the feedback relationship in x6 and in Ukeiley (1995).

3.3. Fourier transform and Galerkin projection

Before the Galerkin projection is performed two steps must be taken. The �rst step is to

take the two dimensional Fourier transform of (3.9). The second is to expand the Fourier

coe�cients of the of the velocity in terms of POD modes using (2.4).

After the two previous operations were performed to the manipulated Navier{Stokes

equations, a Galerkin projection was applied. As de�ned in Aubry et al . (1988), this

projection is represented by the following inner product:

(N;�

(l)

) =

Z

D

N

i;k

1

;k

3

(t; x

2

)�

(l)�

i;k

1

;k

3

(x

2

) dx

2

= 0 l = 1; � � � ; N

gal

; (3.10)

where N

i;k

1

;k

3

(t; x

2

) represents the Fourier transform of the Navier{Stokes equations

and N

gal

the number of Galerkin modes kept in the dynamical system. Before the �nal

equations were achieved, one other relationship was applied to the equations; this was



POD analysis of a mixing layer 15

the orthogonality relationship of the eigenfunctions:

Z

D

�

(n)

i;k

1

;k

3

�

(l)�

i;k

1

;k

3

dx

2

= �

nl

: (3.11)

After some analytical manipulations, (3.9) can be rewritten in a general form as:

da

(n)

k

1

;k

3

dt

(t) =

N

gal

X

m=1

�

(m)

k

1

;k

3

a

(m)

k

1

;k

3

(t) +

N

gal

X

p;q=1

X

k

0

1

;k

0

3

Q

(p)(q)

k

0

1

;k

0

3

;k

1

;k

3

a

(p)

k

0

1

;k

0

3

(t) a

(q)

k

1

�k

0

1

;k

3

�k

0

3

(t)

+

N

gal

X

p;q;r=1

X

k

0

1

;k

0

3

C

(p)(q)(r)

k

0

1

;k

0

3

;k

1

;k

3

a

(p)

k

0

1

;k

0

3

(t)a

(q)�

k

0

1

;k

0

3

(t)a

(r)

k

1

;k

3

(t)

�

1

�

Z

D

@ep

k

1

;k

3

@x

i

�

(n)�

i;k

1

;k

3

(x

2

) dx

2

:

(3.12)

Since the eigenfunctions are divergence free and the streamwise and spanwise di-

rections are assumed to be homogeneous, the pressure term in (3.12) can be written

as:

Z

@D

ep

k

1

;k

3

(x

2

)�

(n)�

k

1

;k

3

:n dS =

h

ep

k

1

;k

3

(x

2

)�

(n)�

2;k

1

;k

3

(x

2

)

i

L

2

�L

2

; (3.13)

where @D is the boundary domain and n the outer normal on @D. If decay of the

eigenfunctions is assumed at in�nity, we can write that �

(n)

2;k

1

;k

3

(x

2

) = 0 at x

2

= �L

2

and x

2

= L

2

. The result is that the pressure term can be eliminated in the rest of the

analysis contrary to the case of Aubry et al . (1988) where the e�ect of the pressure term

on the outer layer needed to be modeled.

In the following two subsections, the dynamical equations will be shown for the two

di�erent mean velocity closures discussed in x3.2.1 and 3.2.2.
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3.4. No-feedback relationship

For the no-feedback relationship, (3.12) can be written in a simpli�ed form as follows:

da

(n)

k

1

;k

3

dt

(t) =

N

gal

X

m=1

�

�

1(m)

k

1

;k

3

+�

2(m)

k

1

;k

3

�

a

(m)

k

1

;k

3

(t)

+

N

gal

X

p;q=1

X

k

0

1

;k

0

3

Q

(p)(q)

k

0

1

;k

0

3

;k

1

;k

3

a

(p)

k

0

1

;k

0

3

(t) a

(q)

k

1

�k

0

1

;k

3

�k

0

3

(t);

(3.14)

where the coe�cients �

1(m)

k

1

;k

3

, �

2(m)

k

1

;k

3

and Q

(p)(q)

k

0

1

;k

0

3

;k

1

;k

3

are calculated from the POD eigen-

functions. The exact form of these coe�cients is given in appendix A.

The �rst two terms on the right hand side of (3.14) are linear. The �rst term �

1

is

a direct result of the viscous di�usion term in (3.9) (term �

@

2

u

0

i

@x

j

@x

j

). The second term

�

2

results from the production and convection terms (one part comes from the term

u

0

2

@U

1

@x

2

�

i1

and the other part comes from the term U

1

@u

0

i

@x

1

of (3.9) and contains the

mean velocity calculated from (3.6). The next term Q is a quadratic term. This term is

representative of the uctuation interactions and exhibits the transfer of energy between

the Fourier and POD modes in the dynamical system (terms u

0

j

@u

0

i

@x

j

� hu

0

j

@u

0

i

@x

j

i of (3.9).
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3.5. Filter relationship

For this relationship, the equation can be written as follows:

da

(n)

k

1

;k

3

dt

(t) =

N

gal

X

m=1

�

�

1(m)

k

1

;k

3

+ �

2(m)

k

1

;k

3

�

a

(m)

k

1

;k

3

(t)

+

N

gal

X

p;q=1

X

k

0

1

;k

0

3

Q

(p)(q)

k

0

1

;k

0

3

;k

1

;k

3

a

(p)

k

0

1

;k

0

3

(t) a

(q)

k

1

�k

0

1

;k

3

�k

0

3

(t)

+

N

gal

X

p;q;r=1

X

(k

0

1

;k

0

3

)2E

C>

C

(p)(q)(r)

k

0

1

;k

0

3

;k

1

;k

3

a

(p)

k

0

1

;k

0

3

(t)a

(q)�

k

0

1

;k

0

3

(t)a

(r)

k

1

;k

3

(t) :

(3.15)

For this closure assumption, the linear term �

1(m)

k

1

;k

3

is equal to the one in the no-

feedback case (xA.1). The other linear term �

2(m)

k

1

;k

3

is similar to the one in (3.14) except

now �

2

uses the �ltered mean streamwise velocity U

1F

which is calculated using (3.6)

with the modes (k

1

; k

3

) 2 E

C6

. The quadratic term Q

(p)(q)

k

0

1

;k

0

3

;k

1

;k

3

is the same as in (3.14).

The last termC

(p)(q)(r)

k

0

1

;k

0

3

;k

1

;k

3

is cubic and is a result of the modeling of the mean velocity. One

part comes from the term u

0

2

@U

1uns

@x

2

�

i1

and the other part comes from the term U

1uns

@u

0

i

@x

1

of (3.9) where U

1uns

is calculated from (3.8). This term represents the interaction between

the mean velocity and the turbulent uctuations with the summations performed only

over values greater than the �lter setting and not the whole truncated domain. The cubic

coe�cients are shown in appendix A.2.

4. Turbulent viscosity model

In order to limit the degrees of freedom in the dynamical system, the number of

POD and streamwise/spanwise wavenumber modes kept in the model will be truncated.
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Due to the rapid convergence of the POD modes (49% of the turbulent kinetic energy is

contained in the �rst mode, Delville et al . 1998), we will use only the �rst one. Hence,

from here, the superscript denoting POD mode will be dropped and the �rst POD mode

can be assumed.

A consequence of the truncation of streamwise/spanwise wavenumbers is that the

dynamical system is no longer complete because it will not account for the energy transfer

between the modes kept and those lost to the truncation. As a �rst attempt to account

for this, a Heisenberg spectral model (Hinze 1975) similar to the one utilized by Aubry et

al . (1988) and Glauser et al . (1989) will be used. In this approach, it is assumed that the

small scales (neglected modes) remove energy from the larger ones (the modes kept) by

a global viscous action of kinematic turbulence viscosity �

T

. See appendix B for details

of the method to estimate �

T

.

In introducing the turbulent viscosity �

T

into the dynamical equations, (3.12) can

now be written as:

da

k

1

;k

3

dt

(t) =

h�

1 + �

�

T

�

�

�

1

k

1

;k

3

+�

2

k

1

;k

3

i

a

k

1

;k

3

(t)

+

X

k

0

1

;k

0

3

Q

k

0

1

;k

0

3

;k

1

;k

3

a

k

0

1

;k

0

3

(t) a

k

1

�k

0

1

;k

3

�k

0

3

(t)

+

X

k

0

1

;k

0

3

C

k

0

1

;k

0

3

;k

1

;k

3

ja

k

0

1

;k

0

3

(t)j

2

a

k

1

;k

3

(t) ;

(4.1)

where C

k

0

1

;k

0

3

;k

1

;k

3

is zero for the no-feedback case. The coe�cient � controls the portion of

energy which the small scales, neglected by the truncation, acquire. In terms of dynamical

systems, � is considered like a bifurcation parameter. Large values of � correspond to a

stable system.
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5. General properties of the ODEs and solutions

This section details some of the properties of the di�erential equations along with

the properties of the numerical integrations.

5.1. Symmetry properties

To solve the equations derived in the previous section it will be necessary to map some

quantities to negative wavenumbers using symmetry properties of the ow �eld. For

the eigenfunctions the applied symmetries are based on the relationships for the cross-

spectral tensor as shown in Cordier (1996). The following symmetries are used for the

eigenfunctions:

�

1;�k

1

;�k

3

= �

�

1;k

1

;k

3

; �

2;�k

1

;�k

3

= �

�

2;k

1

;k

3

; �

3;�k

1

;�k

3

= �

�

3;k

1

;k

3

;

�

1;�k

1

;k

3

= �

�

1;k

1

;k

3

; �

2;�k

1

;k

3

= �

�

2;k

1

;k

3

; �

3;�k

1

;k

3

= ��

�

3;k

1

;k

3

;

�

1;k

1

;�k

3

= �

1;k

1

;k

3

; �

2;k

1

;�k

3

= �

2;k

1

;k

3

; �

3;k

1

;�k

3

= ��

3;k

1

;k

3

:

(5.1)

The expansion coe�cients a

k

1

;k

3

(t) are instantaneous quantities, and there is no

explicit reason that they should be forced to satisfy the above stated symmetries at

all times. However, due to the fact that the velocity is real, certain constraints can be

imposed on these coe�cients. Utilizing the symmetries on the eigenfunctions it can be

shown that:

a

k

1

;k

3

(t) = a

�

�k

1

;�k

3

(t): (5.2)

5.2. Solution domain

For truncations involving several k

1

values with k

3

= 0, only positive values of k

1

are

solved; and the others are extracted from the application of the above symmetry on the
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k
1

k
1

k
3

k
3

Solved 

Symmetry

+

-

- +

Figure 1. Solution domain

a's. When truncations involved wavenumbers of k

3

6= 0 the solution expands dramatically.

In these cases �k

1

is solved along with +k

3

. The solution domain is graphically depicted

in �gure 1.

Due to the fact that the only symmetry involved relates the diagonal quadrants, the

choice of solution domain is rather arbitrary. The solution domain could have easily been

the inverse: �k

3

is solved along with +k

1

. Checking this, in fact, showed the domain

solution chosen did not a�ect the solutions.

5.3. The zero wavenumber coe�cient

The zero wavenumber mode (k

1

= 0; k

3

= 0) needs to be considered independently in

the truncation. Due to (5.2), the coe�cient a

0;0

is real. The temporal evolution is given
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by equation:

da

0;0

dt

= (1 + �

�

T

�

) �

1

0;0

a

0;0

; (5.3)

where the coe�cient �

1

0;0

is found numerically to be strictly negative.

Starting from (4.1), the previous equation can be obtained after the introduction of

di�erent properties (see appendix A for the expression of the dynamical system coe�-

cients):

(a) The factor (1 � �

k

1

;0

�

k

3

;0

) in front of the quadratic term implies that the contri-

bution of this term is zero for the (k

1

= 0; k

3

= 0) mode.

(b) The cubic term, is either equal to zero (for the no-feedback case) or is composed

of two terms. In front of the �rst term, there is a factor (2�|k

1

), making this term equal

to zero for k

1

= 0. In the second term the eigenfunction �

2;k

1

;k

3

appears causing it to be

zero.

The continuity equation in the spectral domain can be written as:

(2�|k

1

)�

1;k

1

;k

3

(x

2

) +

@

@x

2

�

2;k

1

;k

3

(x

2

) + (2�|k

3

)�

3;k

1

;k

3

(x

2

) = 0: (5.4)

For k

1

= k

3

= 0, this equation becomes:

@

@x

2

�

2;k

1

;k

3

(x

2

) = 0;

and the eigenfunction �

2;k

1

;k

3

(x

2

) is constant. We remind the reader that in x3.3, we

assumed that lim

x

2

!�1

�

2;k

1

;k

3

(x

2

) = 0; the consequence is that �

2;k

1

=0;k

3

=0

(x

2

) = 0.

Finally, the contribution of the cubic term in the feedback case is also equal to zero.

Equation (5.3) expressed the fact that the amplitude of the mode a

0;0

(t) decreased
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exponentially to zero with a time constant given by:

�

0;0

= �

1

(1 + �

�

T

�

)�

1

0;0

:

Therefore, this mode can only inuence the dynamical evolution of the system for a

short transienty. From now on, the amplitude of the coe�cient a

0;0

(t) will be assumed

to be zero, and the mode (k

1

= 0; k

3

= 0) will not be retained in the truncation.

5.4. Initial conditions

The initial conditions for the system of equations is based on the magnitude of the

eigenvalues. Essentially since a goes like (�)

1

2

the initial values for the coe�cients will be

determined by the following equationz:

Re

�

a

(1)

k

1

;k

3

(t = 0)

�

= Im

�

a

(1)

k

1

;k

3

(t = 0)

�

=

 

�

(1)

k

1

;k

3

2

!

1

2

: (5.5)

Using this value for the initial conditions the simulations should start with approximately

the correct magnitude. In the discussion of the simulations this will help to serve as a

criteria to evaluate the results.

The e�ects of varying the initial conditions have been studied and shown to have

little e�ect on the results. A change in amplitude of the initial conditions, by as much as

an order of magnitude, only a�ected the amount of time before the results settled into

the same behaviour.

y However, we have to keep in mind that for the very low values of the control parameter �,

the time constant �

0;0

may be very high.

z In this equation, Re and Im denote the real and imaginary part of a complex number

respectively.
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5.5. Numerics

To investigate the temporal evolution of the coe�cients, a Runge{Kutta technique was

utilized. The particular Runge{Kutta method used was a 5

th

/6

th

order Verner method

from the IMSL numerical libraries. This particular method was chosen for ease of appli-

cation along with its ability to multi-step between prescribed time steps. Several other

Runge{Kutta methods were tried and shown to give the same quantitative results.

A minimum time step of 8. 10

-5

seconds was chosen. This time step was used in

order to minimize the intermittent stepping. Since for the truncations studied here one

should not see frequencies greater than 1000 Hz; therefore, the selected step-size allows

for adequate resolution of any waves observed.

Since the Runge{Kutta method used can only handle real valued numbers, the co-

e�cients are split into their real and imaginary parts,

a

k

1

;k

3

(t) = a

r

k

1

;k

3

(t) + |a

i

k

1

;k

3

(t): (5.6)

The number of degrees of freedom for the system then becomes twice the modes included

in the system. Computationally this involved twice the number of equations; however, in

the function evaluation for the Runge{Kutta method the real and imaginary parts were

combined and complex manipulations were used.

Computations were performed on an IBM RS6000 550 work station using double

precision arithmetic.
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6. Linear stability analysis of the trivial solution

In order to understand the inuence of the two di�erent closure assumptions, the

no feedback relationship (x 3.2.1) and �lter relationship (x 3.2.2), on the dynamical

behaviour of the low-order system and the role of the di�erent terms involved in (4.1),

a linear stability analysis of the trivial solution have been done. The turbulent viscosity

model introduced in appendix B is function of the speci�c truncation used in the low-

dimensional system. Then, to permit this study, the factor �

�

T

�

of (4.1) will be replaced

in this section by 100 �.

6.1. Analysis method

The time evolution equation of a particular mode (k

1

; k

3

) assumed without interaction

with other modes is given by:

da

k

1

;k

3

dt

=

�

(1 + 100�)�

1

k

1

;k

3

+�

2

k

1

;k

3

�

a

k

1

;k

3

+C

k

1

;k

3

ja

k

1

;k

3

j

2

a

k

1

;k

3

: (6.1)

If the complex number a

k

1

;k

3

is written in its polar form as r

k

1

;k

3

e

|�

k

1

;k

3

, and �

1;r

k

1

;k

3

,

�

2;r

k

1

;k

3

, C

r

k

1

;k

3

and �

1;i

k

1

;k

3

, �

2;i

k

1

;k

3

, C

i

k

1

;k

3

are the real and imaginary part of the terms

�

1

k

1

;k

3

; �

2

k

1

;k

3

; C

k

1

;k

3

respectively.

Linearizing (6.1) around the trivial solution yields the following equations:

dr

k

1

;k

3

dt

=

h

(1 + 100�)�

1;r

k

1

;k

3

+ �

2;r

k

1

;k

3

i

r

k

1

;k

3

;

d�

k

1

;k

3

dt

=

h

(1 + 100�)�

1;i

k

1

;k

3

+ �

2;i

k

1

;k

3

i

:

(6.2)

The linear stability of the trivial solution is then directly determined by the sign of



POD analysis of a mixing layer 25

the linear growth rate de�ned as:

�

k

1

;k

3

= Re(�

k

1

;k

3

) = Re

�

(1 + 100 �)�

1

k

1

;k

3

+�

2

k

1

;k

3

�

; (6.3)

where Re(�

1

k

1

;k

3

) < 0 for each mode (k

1

; k

3

). If Re(�

2

k

1

;k

3

) have negative values then

the linear growth rate �

k

1

;k

3

remains negative for all values of the control parameter �

(the term (1 + 100 �) is assumed to be strictly positive). At the opposite, if Re(�

2

k

1

;k

3

)

is positive, there exist a critical value �

c

k

1

;k

3

such that the linear growth rate becomes

equal to zero:

�

c

k

1

;k

3

= �

1

100

�

Re(�

2

k

1

;k

3

)

Re(�

1

k

1

;k

3

)

+ 1

�

: (6.4)

The response of the mode (k

1

; k

3

) to a small disturbance can then be determined in

the following manner:

� If �

k

1

;k

3

< 0 or � > �

c

k

1

;k

3

, every harmonic disturbance is exponentially damped and

the mode (k

1

; k

3

) is said stable.

� If �

k

1

;k

3

> 0 or � < �

c

k

1

;k

3

, every harmonic disturbance is exponentially ampli�ed

and the mode (k

1

; k

3

) is said unstable.

� If �

k

1

;k

3

= 0 or � = �

c

k

1

;k

3

, the mode (k

1

; k

3

) is said marginally stable.

6.2. No feedback relationship

Figure 2 showsy the surface of marginal stability when (4.1) is closed with a constant

streamwise velocity. Several observations can be made:

y On this �gure, �k

1 exp

and �k

3 exp

correspond respectively to the experimental step in

streamwise and spanwise directions (see on x 7.1 for the de�nition and numerical values of these

quantities).
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Figure 2. Marginal stability surface. No feedback relationship.

(a) When � is su�ciently high, all the modes are stable, then the trivial solution is

stable.

(b) When � decreases, there is a mode (k

1

; k

3

) which is the �rst to become unstable.

This particular mode is called the most unstable mode.

(c) When � is lower than this critical value, there is an ensemble of modes (k

1

; k

3

)

which are unstable at the same time.

(d) The most unstable modes are found for k

3

= 0 (2 dimensional modes). This result

is compatible with the Squire theorem.

(e) When � is even lower than this value and tends to zero, there is a great number

of unstable modes (k

1

; k

3

).

In the rest of this section, we will restrict ourselves to the case where the most

unstable modes occur: k

3

= 0. In �gure 3, the linear growth rate variation, function of

the non-dimensional streamwise wavenumber

k

1

�k

1 exp

, is represented for di�erent values of
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Figure 3. Linear growth rate of the 2 dimensional modes (k

3

= 0) for several values of the

control parameter �. No feedback relationship.

the control parameter �. When � = 14, the linear growth rate is negative for every value of

k

1

: all the modes are stable, the trivial solution is then stable. When � decreases the curve

seems globally translated to the upper side. The streamwise wavenumber

k

1

�k

1 exp

' 20

is the �rst mode to cross the horizontal axis, then this is the most unstable mode. This

particular mode becomes unstable for � ' 13; 2.

Figure 4 compares the linear growth rate obtained for an inviscid mixing layer by

Michalke (1964) to the one obtained with the simpli�ed dynamical system. An excellent

agreement is observed. Both the most linear unstable mode k

max

1

and the value of its lin-

ear growth rate being comparable. It should be noted an important point: the dynamical

system obtained from the POD is only based on the two point correlation tensor, (by

opposition to Michalke's approach where the stability of the pro�le of the longitudinal

velocity was in concern). This is a striking result that both approaches lead to similar

results.
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Figure 4. Linear growth rate of the inviscid turbulent plane mixing layer. No feedback

relationship.

This point con�rms that the �rst POD mode is more than solely useful to describe

the energy content of the ow but contains the necessary information for the linear

stability description too. This shows further evidence why a low-order dynamical system

approach based only on the �rst POD mode could be fruitful to follow the dynamical

evolution of the ow under concern.

6.2.1. Spectral behaviour

From (6.2), we conclude that the natural frequency of a 2 dimensional mode (k

1

; 0)

is given, in �rst approximationy, by:

f

k

1

;0

=

Im(�

k

1

;0

)

2�

=

Im

h

(1 + 100�)�

1

k

1

;0

+ �

2

k

1

;0

i

2�

:

(6.5)

This equation points out that f

k

1

;0

is function of the control parameter �. How-

y The behaviour of the full dynamical system will not be exactly this one because, through

the intermediary of the quadratic terms, the mode (k

1

; 0) is inuenced by the other modes.
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ever, the numerical values of Im(�

1

k

1

;0

) are lesser than 10

-7

and the numerical values of

Im(�

2

k

1

;0

) are at least equal to 10

2

. Hence, for reasonable values of the control parameter,

the natural frequency can be approximized with a good accuracy by: f

k

1

;0

=

Im(�

2

k

1

;0

)

2�

.

Figure 5 represents the evolution of this frequency function of k

1;0

.

Michalke (1964) demonstrated that, when the mean velocity pro�le is antisymmetric

with respect to y = 0, the instabilities phase velocity is independent of k

1

and is equal

to U

1

(0). In a �xed reference frame, these instabilities, convected by the ow, are seen to

move at frequency U

m

k

1

. On �gure 5, we observe that the natural frequency of the ow

have comparable values with the theoretical ones. This result is a posterior justi�cation

of the use as mean velocity pro�le in (3.4) of U

1

(0) = U

m

.

Lastly, in �gure 5 is represented the evolution of U

c

k

1

where U

c

is the ow convection

velocity determined in Delville et al . (1998). We �nd that the variation of f

k

1

;0

is better

described by the term U

c

k

1

than by the term U

m

k

1

. This last result is particularly true

in the interval [50; 80] where U

c

exhibits a constant value equal to 0; 8U

m

.

6.3. Feedback relationship. k

1C

= k

3C

= 0

If k

1C

= k

3C

= 0, the steady part of the mean velocity pro�le is U

1F

(x

2

) � U

1

(0) and

the linear term �

2

k

1

;k

3

de�ned in appendix A.1 is then equal to:

�

2

k

1

;k

3

= �(2�jk

1

)U

m

: (6.6)

This represents the limiting case of the �lter relationship where the mean velocity is

allowed to vary solely as a function of time.

This linear term is pure imaginary, recalling that Re(�

1

k

1

;k

3

) < 0 for each mode
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Figure 5. Natural frequencies of the low-order dynamical system. No feedback relationship.
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Figure 6. Linear growth rate of the 2 dimensional modes (k

3

= 0) for several values of the

control parameter �. (For � = �0; 01 no viscosity). Feedback relationship.

(k

1

; k

3

) this implies that the trivial solution is stable whatever the control parameter

� is (see �gure 6 for the most unstable modes, the two dimensional ones k

3

= 0). In

this case, the marginal stability surface is de�ned by the horizontal plane of equation

�

c

k

1

;k

3

= �0; 01.



POD analysis of a mixing layer 31

6.3.1. Global stability

The question we want to address in this section is the following: does the attraction

basin of the trivial solution cover all the space of initial conditions ?

The previous results of linear stability analysis showed that, varying the control

parameter � from the trivial solution, no bifurcation is found. To con�rm this result, an

analysis of the system understudy was done (see Cordier 1996). Using the bifurcation

package AUTO94 developed by Doedel, Keller & Kernevez (1991), no other branch of

solution was found. If the low-order dynamical system could exhibit an isolated branch

then the previous argument would be wrong. However, we assumey that this is not

the case for the system 4.1. The long term evolution of the system is then either the

trivial solution, either unbounded growth to in�nity. If all the cubic term of the low-

order dynamical system would be negative, the solutions would converge to zero and the

system would be called globally stable. Unfortunately, contrary to the original study of

Aubry et al . (1988), this is not the case here. The global stability of the system is not

assured and some initial conditions could lead to a divergence to in�nity of the solutions.

The conclusion is that the attraction basin of the trivial solution doesn't cover the space

of all the initial conditions.

6.3.2. Spectral behaviour

In this section, we consider only two dimensional modes k

3

= 0. The natural fre-

quency f

k

1

;0

of these modes is still de�ned by (6.5) where for the same reason as in

x 6.2.1, the contribution of the linear term �

1

k

1

;0

can be neglected. Finally, the natural

y All the numerical integrations that have been done con�rm this assumption.
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frequency writes:

f

k

1

;0

=

Im(�

2

k

1

;0

)

2�

= U

m

k

1

:

(6.7)

Since �

2

k

1

;0

has the same form similar results to those in section 6.2.1 are found.

When k

1C

= k

3C

= 0, the feedback relationship closure equation is not of interest

in a physical point of view because the system can only, either converge to the trivial

solution, either grows unbounded to in�nity. When k

1C

6= 0 or/and k

3C

6= 0, the linear

term �

2

k

1

;k

3

is no more pure imaginary (see A 2) and linear unstable modes (k

1

; k

3

) appear

for the trivial solution.

These results shows the justi�cation for the �lter technique if one wants to allow for

feedback from the turbulence to the mean velocity.

7. Solution for truncations with k

3

= 0

Simulations of (4.1) using both the No-Feedback relationship and the �lter technique,

will be presented in this section. In addition to running the simulations for the two sets

of equations, two di�erent truncations with only k

3

= 0 modes were evaluated. The �rst

truncation, detailed in this work, involved seven modes. In the second the system was

shrunk to �ve modes while keeping the domain size L

1

the same. This second truncation

was studied in Ukeiley (1995) and will not be presented here. The essential result is that

this smaller system had essentially the same dynamics as the larger system but would

allow for the inclusion of less modes when the inclusion of non-zero spanwise wavenumbers

are included. For all the simulations involving only k

1

, a spanwise domain size, L

3

, of

0.27 m was used. This spanwise domain size was chosen because it is the physical domain
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of the experiments. The choice of domain size was shown to have no e�ect on the observed

dynamics of the zero streamwise wavenumber simulations of Aubry et al . (1988).

7.1. 7 mode model no-feedback

The wavenumbers included in the system are de�ned as an integer times the experimental

step �k

1 exp

=

�f

U

c

= 0:29 m

-1

and �k

3 exp

= �k

z

= 3:70 m

-1

where �f and �k

z

are,

respectively, the minimal step size in frequency f and spanwise wavenumber k

z

dictated

by the experimental arrangement. From here on, only the integer value will be used and

the appropriate � will be assumed.

In this truncation with no spanwise wavenumbers k

3

= 0, the streamwise spacing is

10� �k

1 exp

. The included streamwise wavenumbers are the modes k

1

= 10; 20; 30; 40,

50; 60; 70. The streamwise domain size L

1

, is then 0.345 m. Table 4 in appendix C shows

the initial conditions used for the simulation. With a vorticity thickness of 28 mm and

considering an average structure has an aspect ratio of 4 or 5, the numerical window

studied should contain at least two structures.

It is important to recall that the mean streamwise velocity used in (4.1) is not the

measured quantity, but rather it is calculated from (3.6). For the particular truncation

studied here the integration in k

1

runs from 10 to 70. Figure 7 shows the velocity used

for these simulations. In this �gure and the ones to follow, x

2

=�

!

will be denoted by y+.

When comparing the pro�le in �gure 7 to the measured values (see Delville et al . 1998),

it is obvious that the convection velocity is preserved; however, the magnitudes on the

low and high speed sides are signi�cantly larger and smaller, respectively. This scales the

production term, since it is dependent on the gradient of the mean streamwise velocity.
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Figure 7. Mean streamwise velocity for 7 mode no-feedback simulations.

7.2. Dynamics as a function of �

Before discussing the dependence of � we will consider behaviour that occurs regardless

of the value of �. There is an underlying periodic (sinusoidal) behaviour that exists for

all modes in the truncation. The frequencies of this behaviour depend on the streamwise

wavenumber and are shown in table 1.

(k

1

; k

3

) (10; 0) (20; 0) (30; 0) (40; 0) (50; 0) (60; 0) (70; 0)

Frequency (Hz) 98.9 196.6 294.4 392.0 489.6 587.6 685.1

Table 1: Fundamental frequency for wavenumber pairs in the seven mode system.

This periodic behaviour is always buried in the time traces of the coe�cients, to some

scale, regardless of larger time scale events. The frequency increases with larger values of

k

1

; since streamwise wavenumbers are mapped from frequency, which vary by less than
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0.5 % of the values in table 1, this seems intuitively correct. Other complex behaviour,

which will be discussed in further detail, sits on top of the underlying periodicities.

Rajaee et al . (1994) obtained similar behaviour in a forced plane mixing layer where

the results showed their coe�cients exhibiting a complex behaviour on top of underlying

periodicities.

The other behaviour that is observed regardless of the value of � is that the mode

(20; 0) appears to lead the temporal evolution, i.e. the coe�cient has a larger magnitude

and tends to be the �rst coe�cient to increase or decrease in time. This is consistent with

the results discussed in x 6 where this mode was found to be the most linearly unstable. It

is also interesting to note that this streamwise wavenumber is associated with energy in

the centre of the mixing layer (see Delville et al . 1998). This behaviour is also consistent

with the results of Metcalfe et al . (1987) where it was postulated that disturbances from

the centre of the mixing layer manifest into the instabilities that cause the ow to exhibit

three-dimensionality.

Value of � Behaviour

� < 1:55 All modes grow unbounded to in�nity

1:55 < � < 1:75 Complex behaviour in full space

1; 8 < � < 2:0 Intermittent/Complex Periodic behaviour for all modes

2:05 < � < 2:45 Periodic Behaviour

� > 2:5 Trivial solution

Table 2: Description of dynamics for seven mode no-feedback model.

The typical dynamic behaviour for di�erent values of the bifurcation parameter �

is outlined in table 2. For values of � less than 1.55 the system is unstable and grows



36 Ukeiley et al.

to in�nity. In this range of the bifurcation parameter �, the term �

2

linked to turbulent

production, grows at a rate which the dissipation term �

1

cannot overcome. While, for

� > 2:5, the behaviour is the opposite. The global attractor for the system is a trivial

solution. This means that all the modes decay to zero. Most of the modes decay at a

similar rate except for the mode (20; 0) which has a much larger decay rate.

For � in the range of 2:05 < � < 2:45 the system exhibits a periodic behaviour.

Figure 8 displays the real and imaginary parts of the time histories for � = 2:2 which

is indicative of the dynamical behaviour in this range of �. For these time history plots

of the coe�cients, the abscissa is time in seconds. In part a) of this �gure, long time

evolution of the coe�cients is plotted while part b) is a more detailed view of the be-

haviour over 0.4 second window. The time traces for values of � in this range are best

described as two sinusoids superimposed on each other. The �rst is underlying streamwise

wavenumber dependent frequency, while the second varies with � for all modes. Increas-

ing � decreases the amplitude of the second frequency. The mode (20; 0) always leads on

the secondary frequency acting like it transfers to all the other modes. For streamwise

wavenumbers greater than 30, the amplitude of the oscillations is small, generally an

order of magnitude less than the initial condition. While for streamwise wavenumbers

less than 30, the amplitude tends to remain the same order as the initial conditions.

For � in the range of 1:8 < � < 2:0 the system exhibited an intermittent periodic

behaviour. In this range of � the solutions tend to exhibit a complex secondary period

behaviour superimposed on the underlying periodicities. This behaviour would intermit-

tently go through bifurcations in time and pop in and out of the secondary periodicities.

Modes (10; 0), (40; 0) and (60; 0) exhibit behaviour which is indicative of two sinusoids

while the other modes still exhibit two periodicities although not in as simple of a manner.
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Figure 8. a

k

1

;k

3

(t) � = 2:2 a) long time evolution b) short time evolution.

For � in the range of 1:55 < � < 1:75 the system exhibits a complex behaviour for

all modes. In this region the coe�cients have oscillations with amplitude on the order of

the initial conditions which then grow to larger amplitude, chaotic looking motions. This

behaviour is observed for all values of � in this range; however, the larger the value is,
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the longer it takes to exhibit large amplitude behaviour. The large amplitudes observed

in this region are order 1 which is signi�cantly larger than the initial conditions shown

in table 4. This can be indicate that � is too small and too little energy is being removed

from the system. It is interesting to note that for this range of �, the real and imaginary

parts exhibit identical behaviour with only a small phase di�erence.

7.3. Reconstructed velocity �eld

In this section, the instantaneous velocity �eld will be reconstructed from the results of

the simulations discussed in the previous section. The velocity is reconstructed using the

inverse Fourier transform of (2.4). For the simulations only involving k

3

= 0, discussed

in this section, u

3

is zero (recall from x5.1 that �

(1)

3;k

1

;k

3

=0

= 0:). Then, this allows for

only the reconstruction of an x,y plane.

In the following, only two values of � are studied, 2.2 and 1.85. In each of the plots

shown in this section, the ow goes from left to right. The time increment between plots

is 4.0 10

-04

seconds which is �ve times the minimal resolved time step. The dimensions

of the window are 345 mm in the x

1

direction and 66 mm in the x

2

direction. The �gures

are plotted in a frame of reference moving at the convection velocity U

c

. This is to say

that the velocity plotted is

u(x

2

) + U (x

2

)� U

c

where U (x

2

) is the mean streamwise velocity calculated for the particular truncation (see

�gure 7).

Figure 9 displays the velocity vector plots for � = 2:2. The simulations yielded essen-

tially periodic solutions for this value of �. In the \pseudo" real space plotted here, this is
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Figure 9. Velocity vector plots for � = 2:2.

represented by what appear to be spanwise aligned vortices passing through the window.

The structures pass through the window at evenly spaced intervals without interacting

with each other. This type of solution is consistent with the results of Metcalfe et al .

(1987) who observed roll-up without pairing in the absence of sub-harmonic excitation.

These results are also similar to those of Rajaee et al . (1994) where the mixing layer was

forced and where periodic solutions with structures being convected through the resolved

window were found. The average length of these structures, in the x

1

direction, is about

215 mm. While in the x

2

direction they have a scale equivalent to the vorticity thickness.
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Figure 10. Velocity vector plots for � = 1:85.

Figure 10 shows the velocity vector plots for � = 1:85. These plots exhibit more

active behaviour than the plots for � = 2:2. There appears to be similar structures to

� = 2:2 passing through the windows along with other events. The other major event can

be observed in the �rst window (t = 4 s). This structure is much longer in the streamwise

direction and appears to have two cores. This is how a pairing event would appear plotted

with velocity vectors although this organization does not seem to have the energy wrap

around as would be truly indicative of a pairing event. The scenario of these two events

passing through the window has a regular period.
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7.4. Reconstructed energy pro�les

Once the velocity �elds have been reconstructed, the turbulent kinetic energy pro�les

can be reconstructed by averaging the time series data. These pro�les have also been

calculated directly from the �rst POD modes using the equations:

u

0

i

u

0

j

(1)

(x

2

) =

Z Z

+1

�1

	

(1)

ij

(x

2

; x

2

; k

1

; k

3

) dk

1

dk

3

; (7.1a)

=

Z Z

+1

�1

�

(1)

k

1

;k

3

�

(1)

i;k

1

;k

3

�

(1)�

j;k

1

;k

3

dk

1

dk

3

; (7.1b)

As long as signi�cant averaging was used, the two methods yielded similar results.

Figure 11 is a plot of the measured components of the turbulent kinetic energy

pro�les. The values in this plot are obtained with (7.1a) where the integral in wavenumber

space is from k

1

= 0 to 70 � �k

1 exp

for k

3

= 0. In this plot one can see that the kinetic

energy from v is dominant. This is consistent with the discussion on the spectral tensor

in Delville et al . (1998) where it was shown that the energy associated with v is dominant

at k

3

= 0 while the energy associated with u is more broad band and spread out over

several values of k

3

.

Figures 12 through 14 are plots of the Turbulent kinetic energy pro�les for � =

2:2; 1:85 and 1:7, respectively. All of these plots show the streamwise component of the

Reynolds stress being dominant with a x

2

distribution similar to the measured value

(�gure 11). The model represents quite well the streamwise component of Turbulent

kinetic energy. This should be expected because in the application of the POD, the

Reynolds stress is very well reconstructed by the �rst POD mode. For the values of �

studied, the uv pro�le is approximately one-third of the streamwise Turbulent kinetic

energy pro�les which is in good agreement with the experimental data. As with the vv
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Figure 11. Turbulent kinetic energy pro�les integrating from measured spectra for

wavenumbers kept in the truncation.
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Figure 12. Turbulent kinetic energy pro�les (� = 2:2).
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Figure 13. Turbulent kinetic energy pro�les (� = 1:85).
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Figure 14. Turbulent kinetic energy pro�les (� = 1:7).
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component, the model is not able to represent correctly the Reynolds stress for all values

of � (the reason for this discrepancy is discussed in the next paragraph).

When �gures 12 through 14 are compared with �gure 11, the most striking feature is

the swapping of dominance between the u pro�le and the v pro�le. This is caused by the

coe�cients for the �rst two modes, a

10;0

and a

20;0

, being dominant in amplitude for the

simulations. It was shown in the discussion of the spectra in Delville et al . (1998) that

streamwise wavenumbers less than 5.8 m

-1

are associated with u energy at the centre

of the mixing layer. When calculating the pro�les in �gures 12 through 14 the two �rst

modes become the dominant terms in the integration over streamwise wavenumber, thus

making the u energy pro�le dominant. It is as if the model compensated for the distribu-

tion of energy of the average quantities by altering the magnitudes of the instantaneous

coe�cients to arrive at the correct energy distribution.

7.5. Spectra of reconstructed velocity

Figures 15 and 16 display autospectra, calculated from the reconstructed velocities dis-

cussed above for the u component and the v component of velocity, respectively. In these

plots the y axis has units of m

2

=s

2

=Hz while the x axis is a non-dimensional frequency,

f�

!

=U

c

. Only the spectra from half of the mixing layer are included here because the

upper and lower halves demonstrated the same characteristics consistent with the mea-

sured spectra presented in Delville et al . (1998). Only spectra for � = 1:85 are shown

because the behaviour described below is representative of results regardless of the value

of �.

In �gures 15, the x

2

distribution of energy that was discussed in the experimental
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Figure 15. Autospectra u

1

component � = 1:85.

section on spectra (see Delville et al . 1998) is clearly pronounced. For the outer part of

the mixing layer, x

2

=�

!

= � 0:75 through � 1:178, the energy distribution is similar to

that for the v component and contains information near the dominant Strouhal number.

In the centre of the mixing layer, the energy is contained at lower frequencies.

For the v component of velocity (�gure 16), a similar energy distribution in frequency

regardless of the x

2

location is obtained, while the amplitudes reach a maximum near

the centre of the mixing layer. The frequencies observed here correspond closely to the

experimentally observed values.
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component � = 1:85.

The behaviour described here for the x

2

distribution of spectra mimics well the

experimental behaviour presented in Delville et al . (1998). It is very encouraging that

our severely truncated model has the correct trends in the spectral distributions.

7.6. 7 mode model �lter

In this section, the solution of (4.1), written for the �lter case, will be discussed for

the seven mode system retained in x7.1. With the method of closure of (3.7), the mean

velocity is split into a steady part that is held constant for all time and a time dependent

part that manifests itself as a cubic term in the dynamical equations. The introduction
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Figure 17. Mean streamwise velocity pro�les for di�erent �lter values.

of this �ltering technique discussed in x 3, allows time dependent interaction between the

coherent structures and mean velocities. This technique will also allow for the scaling of

the production term. The need for this will become apparent when truncations involving

k

3

6= 0 are discussed in x 8.

Figure 17 shows U

1F

estimated from (3.6) for di�erent values of k

1C

and k

3C

. For

values of k

1C

= 50 or 60, the mean velocity pro�les are essentially the same as the one

used in the no-feedback case (k

1C

= 70 and k

3C

= 0 in �gure 17). Then, as one should

expect, the lower the �lter value k

1C

is, the smaller the gradient in the mean velocity

pro�le is.
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7.6.1. Filter cuto�=(50,0) or (40,0)

Since the simulations of the no-feedback yielded reasonable results, it seemed like a

natural �rst step to start with k

1C

= 50. This allows for some contribution to the cubic

term without much loss in mean streamwise velocity gradient. Upon further examination

of �gure 17, one notices that when k

1C

= 40, U

1F

is relatively close to the pro�le

obtained for k

1C

= 50; and in fact these two values of k

1C

yielded similar dynamics in

numerical integrations. Since the mean streamwise velocity pro�le is essentially the same,

the turbulent production terms in (4.1) would have the same order of magnitude; yet

the introduction of the cubic term should act as a feedback between turbulent and mean

streamwise velocities.

Initial results from the numerical simulations showed that the introduction of the

cubic term had a stabilizing e�ect on the systemy. For values of � > 1:55 the behaviour

is the same as for the no-feedback case and is still characterized by the descriptions

in table 2. Now, however for values of � < 1:55 the system no longer exhibits the

unbounded growth mentioned in the discussion of the no-feedback case. For values of �

in this range the system now exhibits a complex behaviour in full space on top of the

underlying periodicities, much the same as the region between 1:8 > � > 1:55 for the

no-feedback case. For example, when � = 0:5, the complex behaviour is similar to that of

the no-feedback simulations although the mean square amplitudes of the coe�cients have

increased even more. These characteristics were observed whether k

1C

= 50 or k

1C

= 40.

y We recall that in the context of dynamical system theory, the cubic terms may have stabi-

lizing e�ects when their contribution is the opposite of the linear term contribution.
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7.6.2. Other values for cuto� wavenumber

For values of k

1C

smaller than 40, the system took on di�erent characteristics which

indicate the importance of having the correct level of production. For k

1C

= 20 and k

1C

=

30 the dynamical behaviour is similar. The systems yielded trivial solutions except for

small values of �. For these small values, the dynamics were very similar to the complex

behaviour discussed for the no-feedback model although the mean square amplitude of

the coe�cients were more reasonable when compared to the experimental values.

As one would expect, the smaller the value of k

1C

, the more closely the system

mimics the limiting case examined in the section on linear stability. Although as long as

there was some contribution of the production term, the systems never reached the region

of unbounded growth and they always appeared to be decaying systems. The reason for

this is again the lack of linear growth as stated previously. It is also noticed that as U

1F

is decreased the production term is reduced in magnitude. This allows for the complex

secondary behaviour to occur with the smaller amplitude of the coe�cients.

8. Truncations for k

3

6= 0

In this section, simulations of both the no-feedback and the �ltered equations will

be presented for truncations that included modes with non-zero spanwise wavenumbers.

It was observed in the results of truncations for k

3

= 0 that some of the instantaneous

and statistical features have been well represented. The extension was performed in an

attempt to mimic the full �eld ow dynamics and see if the dynamics observed in the

smaller truncations still existed.
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The speci�c truncation studied here is an extension of a �ve mode model (k

1

=

10; 20; 30; 40; 50 ; k

3

= 0) discussed in Ukeiley (1995). In brief, the smaller system ex-

hibited essentially the same dynamics as the seven mode system and allowed for inclusion

of non-zero spanwise wavenumbers without the system becoming too large. The exten-

sion discussed in this section includes k

3

= 1, 2 and 3. This involves the solution of

equations for 38 modes. Table 5 in appendix C shows the wavenumber pairs and the

initial conditions.

For this truncation, the streamwise domain was kept the same as before. The span-

wise domain L

3

is approximately 0.27 m. The plots of R

ij

in Delville et al . (1998) have

a domain size that is large enough to allow the correlations to decay.

8.1. No-feedback relationship

Figure 18 displays the mean pro�le used for the simulations discussed in this section. It

has an observably larger gradient than those used for the k

3

= 0 simulations, as shown

in �gure 17. This larger gradient results in an increase in the production term allowing

more energy into the system.

8.1.1. Dynamics as a function of �

Table 3 summarizes the dynamics of the system of equations as a function of �. The

values of � where interesting dynamics occur are much higher than with the seven mode

model. However, with the 38 mode model, the same underlying frequencies, as a function

of k

1

(see table 1), were observed regardless of the value of k

3

. With the inclusion of

non-zero spanwise wavenumbers, the model now includes three modes involving k

1

= 0.
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Figure 18. Mean streamwise velocity pro�les for 38 mode model no-feedback case.

For these modes there was no underlying frequency, causing the events to seem more

intermittent than periodic. In the �gures showing the time histories of the coe�cients

only positive values of k

1

are shown. The negative values of k

1

exhibited similar dynamics

to their positive counterparts; thus their graphical representation has been omitted.

As with the seven mode no-feedback simulations there is a cuto� value for � below

which the solutions to the equations grow unbounded. For the 38 mode simulations this

value was � = 36:5. With � greater than 65 the viscous dissipation term is dominant,

and a trivial solution is the global attractor.
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Value of � Behaviour

� < 36:5 All modes grow unbounded to in�nity

36:5 < � < 39 Unstable solutions switching between

unbounded growth and complex behaviour

with low-order amplitude coe�cients

39 < � < 45:5 Complex behaviour in full space

45:5 < � < 47 Complex behaviour for k

3

= 0

Intermittent behaviour for k

3

6= 0

47 < � < 52:6 System blows up

52:6 < � < 57 Complex behaviour for k

3

= 0

Trivial solution for k

3

6= 0

57 < � < 65 Intermittent/periodic solution k

3

= 0

Trivial solution for k

3

6= 0

� > 65 Trivial solution for all space

Table 3: Description of dynamics for 38 mode no-feedback model.

When 36:5 > � > 39, the system switched between complex behaviour and

unbounded growth with small changes in �. In this range, when the solutions did not

grow unbounded, all the modes exhibited a complex `random' solution over the underlying

periodicity. The behaviour of the system for � between 39 and 45.5 is similar to the one

obtained for the values of � that did not grow unbounded in the previous range. For

these values of � when k

3

= 0, the solutions exhibit very similar dynamics. However,

when k

3

6= 0, the solutions switch between behaviour, similar to the one obtained for

the modes k

3

= 0 and an intermittent type of behaviour with the coe�cients being zero
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between events. Also as � approaches 47 the amplitude of the coe�cients for k

3

= 0 grow

until in the region of � between 47 and 52.6 they cause the system to become unstable.

The dynamics for � between 52.6 and 65 follow trends similar to the seven mode

model for � between 2.05 and 2.45, especially in the observed intermittent behaviour.

For all the modes with k

3

6= 0, a trivial solution was obtained, while for k

3

= 0, all

modes in k

1

exhibited active dynamics. These modes evolved through periodic solutions

with the underlying periodicity remaining constant and the secondary periods becoming

larger and larger. As with the other simulations,mode (20; 0) is controlling the dynamical

behaviour of the system. This mode grows in amplitude dragging the mode (40; 0) with

it. Then these two modes distribute their energy to the rest of the system. These results

are interesting because they imply that the ow is relaxing to a two-dimensional state.

For these values of �, the system is being damped so much that any variations in the

streamwise direction are not able to arise. However, this is the only range of � that has

realistic amplitudes for the coe�cients. This implies that when the �ltering technique

is applied to the truncations involving k

3

6= 0, it should be possible to obtain three-

dimensional dynamics at the correct coe�cient amplitudes.

8.1.2. Representation in physical space

Figures 19 and 20 display the turbulent kinetic energy pro�les for � = 39 and 45, re-

spectively. As with the seven mode dynamical system, these systems exhibit distributions

in the x

2

direction similar to the experimental distributions. For both of these pro�les

the streamwise turbulent kinetic energy is much higher than expected. For � = 45 it is

even greater than the experimental values. This result, although not very physical, is due

do the high magnitudes of the coe�cients when compared to the initial conditions. Using
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Figure 19. Turbulent kinetic energy pro�les for � = 39 (38 mode model).

the mean streamwise velocity pro�le shown in �gure 18 causes too much production and

the system cannot obtain a three-dimensional solution with realistic values for the coe�-

cients. The amplitude of the Reynolds stress were always found to be signi�cantly larger

than those of the experimental values. This is a result of too much production causing

the amplitudes to be too large and shows why there is a need to scale the linear growth

term.

8.2. 38 mode model �lter relationship

The results discussed for the 38 mode no-feedback model suggests that using the �lter

technique would prove useful in scaling the production term and obtaining coe�cients

with a more realistic amplitude. The e�ects of the �lter were not the same as for the trun-
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Figure 20. Turbulent kinetic energy pro�les for � = 45 (38 mode model).

cation involving only k

3

= 0, although the desired results were achieved. The di�erences

will be discussed in the next paragraphs.

Several values of �lter setting (k

1C

; k

3C

) have been evaluated in this study. For

values of the �lter that extremely reduced the mean streamwise velocities gradient, the

system exhibited a behaviour where the coe�cients were always decreasing (for example

in Ukeiley 1995 simulations were presented where all of the mean velocity was modeled

in the feedback term). For values where the �lter did not alter the mean streamwise

velocities gradient signi�cantly, the system behaved similarly to the no-feedback results

discussed in the previous section as was expected. Finally, a setting of k

1C

= 40 and

k

3C

= 2 will be focus of the following discussion.
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Figure 21. Mean streamwise velocity pro�les for �lter setting of (40; 2) (38 mode model).

8.2.1. Filter cuto� (40; 2)

Figure 21 shows a pro�le of U

1F

calculated with a �lter setting of (40; 2). It has a

noticeably smaller gradient than that of the un�ltered case (see �gure 18) resulting in a

reduction of the production term in (4.1). The smaller production term should limit the

energy input into the model resulting in coe�cients with smaller amplitudes.

The dynamics exhibited as a function of � were simpler than for the no-feedback

case described in the previous section. For � < 35 the system was unstable and grew

to in�nity. There was a small range, 39 > � > 35, where the system exhibited active

dynamics for all modes. For higher values of � the system exhibited the same behaviour

as in the no-feedback simulations.

Figure 22 displays the time traces for � = 36:65. This plot displays a short time
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Figure 22. Real part a

k

1

;k

3

(t) � = 36:65 for a �lter setting of (40; 2) (38 mode system) short

time evolution.

evolution of the coe�cients. In this �gure, all modes exhibit the underlying periodicities,

with a more complex second periodic behaviour sitting on top. The mean square ampli-

tudes of the coe�cients are also much closer to the POD eigenvalues than those from the

no-feedback case. Hence this is an appropriate �lter setting and value of � for examining

the reconstructed ow �eld.

Figure 23 displays the turbulent kinetic energy pro�les for � = 36:65. The behaviour

in the x

2

direction is the same as has been observed in the no-feedback case. However the

amplitudes are signi�cantly smaller than those for the no-feedback case. The amplitudes
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Figure 23. Turbulent kinetic energy pro�les for � = 36:65 with a cuto� �lter of (40; 2) (38

mode model).

are now of the same order as those obtained from integrating the measured spectra over

the �rst POD modes contribution from the wavenumbers kept in the model. The ratio

of the u

1

component to the u

2

component is now comparable to original experimental

values shown in Delville et al . (1998).

Figures 24 and 25 plot the u

1

and u

2

autospectra for the case discussed above. The

axis on these plots have the same units as for �gures 15 and 16. The u

3

component is

not shown because its magnitude was quite small as evidenced by the amplitude of the

Reynolds stress in �gure 23. As with the seven mode system (x7.5), only values from

the bottom half of the mixing layer are shown due to the symmetric nature of the ow.

These plots exhibit qualitatively the same behaviour as was discussed with the seven

mode system. The frequency content of the u

2

component does not change as a function
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Figure 24. Autospectra u

1

component � = 36:65.

of the x

2

location, and the amplitude of the spectral peaks gets larger near the centre.

The u

1

component has a shift in the frequency between the inner and outer parts of

the mixing layer: the outer region has the same frequency content as the u

2

component

and the inner part has a dominant frequency of approximately one{half the outer. The

spectral peaks are now noticeably broader than those shown in �gures 15 and 16 because

more modes have been included in the system, each containing its own spectral content.
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Figure 25. Autospectra u

2

component � = 36:65.

Figures 26 and 27 show plots, determined at t =3.6 seconds, of the total vorticityy

for the x

1

; x

2

and x

2

; x

3

planes, respectively. It should be noted that the vorticity plots

are utilized here to analyse the reconstructed �eld instead of velocity vectors due to the

complex nature of three-dimensional velocity �elds. In �gure 26, a slice of the ow at

x

3

= 0 is displayed. In this �gure, there is strong evidence of several spanwise vortices,

e.g. the two contour peaks at locations B and F along with the two in the other half of

y (j!

1

j+ j!

2

j+ j!

3

j)
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the domain. Figure 27 displays the x

2

; x

3

plane contours of the vorticity at the locations

marked on �gure 26. In this �gure, there is evidence, between the two spanwise vortices, of

streamwise aligned vortices in x

1

. These are represented by the contour lines at locations

D and E which lie between the spanwise vortex centres at locations B and F. This result is

in good agreement with previous studies of the mixing layer (Metcalfe et al . 1987), where

there is strong evidence that spanwise vortex tubes are connected by streamwise aligned

vorticity. The average ratio of the spanwise distance between structures to that of the

streamwise structures was approximately 0.7. This is in good agreement with the results

of Pierrehumbert & Widnall (1982) where the most unstable wavelength was shown to

be approximately

2

3

.

9. Conclusions

In this work, a low-order dynamical system model has been presented that allows

to represent some of the properties known to exist in the turbulent mixing layer. The

results of the simulations mimic the essential physics as determined by comparisons to

actual measurements. It is quite remarkable considering the fact that the model only

consists of less than 80 equations. The fact that the system exhibits the correct essential

physics makes it a likely candidate to develop control strategies for the mixing layer such

as those proposed for the dynamical systems model of the near wall region by Berkooz

(1992).

To obtain the ordinary di�erential equations of the low-order dynamical system, a

Galerkin projection of the Navier{Stokes equations on the POD eigenfunctions of Delville

et al . (1998) was performed. The �rst simulation of these equations show clearly the im-
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Figure 26. Vorticity � = 36:65 for a �lter setting of (40; 2) (38 mode system) x

1

; x

2

plane.

portance of including the feedback between the mean and turbulent ow. Then, two sets

of equations have been presented, each with a di�erent means of representing the mean

streamwise velocity. In the �rst set of equations, a Boussinesq approximation was used to

calculate the contribution from the truncation to the mean streamwise velocity. The mean

velocity pro�le was then held constant for all time causing a �xed level of production.

Several truncations were evaluated for this model. The �rst truncation involved 7 modes

evenly spaced in k

1

for k

3

= 0. With this truncation, the system exhibited a rich range of
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Figure 27. Vorticity � = 36:65 for a �lter setting of (40; 2) (38 mode system) x
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plane.

dynamics. Along with this rich behaviour, an underlying periodicity was always present.

This underlying periodicity, was at realistic frequencies for the truncation studied and

is representative of the spanwise vortex tubes which are known to be a periodic event.

While the complex behaviour on top of the underlying periodicity appears to control the

structure interaction. The wavenumbers associated with the energy at the centre of the

mixing layer tended to lead the temporal dynamics, which is consistent with the results

of the stability analysis presented in x 6 and those of Metcalfe et al . (1987). Di�erent

statistical quantities were checked for several values of the bifurcation parameter. The
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mean square velocity pro�les displayed the correct x

2

distribution along with the proper

magnitude ratio for the various component. The distribution of the spectra, from the

simulations, also showed the correct trends in the x

2

direction. For large values of the

bifurcation parameter, the velocity vector plots and spanwise vorticity contours showed

the periodic spanwise structure passing through the window.

A truncation which involved spanwise wavenumbers not equal to zero was also ex-

amined. The time histories of the coe�cients also exhibited a rich dynamical behaviour.

The behaviour ranged from complex dynamics in full space to solutions which tended

to revert back to a two dimensional solution. In the systems that exhibited complex

dynamics in full space there was too much production which suggested that a scaling

relationship (or �lter) for the mean streamwise velocity would be useful.

The other set of equations that was studied allowed for both linear growth and

feedback between the turbulence and the mean. In this method, a cuto� wavenumber

was chosen and wavenumbers greater than this value are allowed to vary with time

while the contribution from wavenumbers lesser than this value contribute in a non time

dependent manner as with the �rst set of equations. Initial application of this method

was encouraging. It served two purposes; �rstly it allows feedback from between the

turbulence, secondly it scales the mean velocity gradient which will in turn scale the

contribution from the production term.

Solution of this equation for the 7 mode model had a de�nite e�ect the results. For

�lter settings which did not alter the mean streamwise velocity gradient the introduction

of the cubic term served to stabilize the solutions. The system did not go unstable and

exhibit a blow up condition regardless of the value of �.
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Applying the Filter technique to the truncation involving non-zero spanwise wavenum-

bers also had a pronounced e�ect. The scaling of the mean streamwise velocity gradient

reduced the production term thus resulting in magnitudes for the coe�cients that were in

good agreement with the experimentally determined ones. With the reduced energy in the

system the amplitudes of the reconstructed mean square velocity pro�les were consistent

with what one would expect from the severely truncated system. Plots of the vorticity

showed strong evidence of the known ow organizations. These plots showed spanwise

vortex tubes being connected by streamwise aligned vorticity. This type of structure is

consistent with what has been reported in many previous studies (see Metcalfe et al .

1987 for example).
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Appendix A. General dynamical equations

A.1. No feedback relationship
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Appendix B. Turbulent viscosity model

In Aubry et al . (1988) this assumption is written in the following form:
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denoting that the small scale stress tensor is proportional to the strain rate tensor for

the modes resolved. In this equation, �
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where the notation ( )

LS

(Large Scale) corresponds to the summation over all the modes

and wavenumbers inferior or equal to the truncation point; the notation ( )

SS

(Small

Scale) corresponds to the small scales (summation over all the modes wavenumbers larger

than the truncation point). By observation that the energy decreases rapidly with higher

POD and streamwise/spanwise wavenumber modes (see the 3D eigenspectra represented

in Delville et al . 1998), the assumption can be made that the relevant scales are given

by characteristic scales of the �rst neglected modes.

With these conditions the turbulent viscosity can be de�ned as follows:
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The integrals over x

2

are used to eliminate the inhomogeneous direction since �

T

should not be a function of this direction. In (B 4), the term�

1

3
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ij
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)

has been dropped because it can be combined with the pressure term which has been

dropped in this analysis (see x 3.3). This representation is simpler than that of Aubry et
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al . (1988) since it was necessary in that study to keep the pressure term, but is the same

of that of Glauser et al . (1989).

Utilizing the relationships of (2.4) and (3.11), the following expression arises:
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where the sum

X

k

1

;k

3

;n

corresponds only to the �rst neglected modes.
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Appendix C. Wavenumber pairs and initial conditions

C.1. 7 mode model

(k

1

; k

3

) a

k

1

;k

3

(t = 0)

(10; 0) 7.6000010

-03

(20; 0) 1.1377110

-02

(30; 0) 1.7275510

-02

(40; 0) 2.0643110

-02

(50; 0) 1.7252410

-02

(60; 0) 8.7966410

-03

(70; 0) 5.0021010

-03

Table 4: Wavenumber pairs and initial conditions for 7 mode model.

C.2. 38 mode model

(k

1

; k

3

) (10; 0) (20; 0) (30; 0) (40; 0) (50; 0)

a

k

1

;k

3

(t = 0) 7.6000010

-03

1.1377110

-02

1.7275510

-02

2.0643110

-02

1.7252410

-02

(k

1

; k

3

) (0; 1) (10; 1) (20; 1) (30; 1) (40; 1) (50; 1)

a

k

1

;k

3

(t = 0) 6.8004010

-03

7.5392610

-03

1.2097110

-02

1.9660810

-02

2.4208510

-02

2.0748410

-02

(k

1

; k

3

) (0; 2) (10; 2) (20; 2) (30; 2) (40; 2) (50; 2)

a

k

1

;k

3

(t = 0) 7.1037110

-03

7.0966010

-03

9.4114210

-03

1.2601310

-02

1.4384910

-02

1.1807910

-02

(k

1

; k

3

) (0; 3) (10; 3) (20; 3) (30; 3) (40; 3) (50; 3)

a

k

1

;k

3

(t = 0) 6.7477310

-03

6.5809910

-03

8.2058910

-03

9.5702910

-03

1.0279010

-02

8.2903410

-03

Table 5: Wavenumber pairs and Initial conditions for 38 mode model.
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