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Abstract During cell division, the duplication of the genome starts at multiple positions called14

replication origins. Origin firing requires the interaction of rate-limiting factors with potential15

origins during the S(ynthesis)-phase of the cell cycle. Origins fire as synchronous clusters is16

proposed to be regulated by the intra-S checkpoint. By modelling either the unchallenged or the17

checkpoint-inhibited replication pattern of single DNA molecules from Xenopus sperm chromatin18

replicated in egg extracts, we demonstrate that the quantitative modelling of data require: 1) a19

segmentation of the genome into regions of low and high probability of origin firing; 2) that regions20

with high probability of origin firing escape intra-S checkpoint regulation; 3) that the intra-S21

checkpoint controls the firing of replication origins in regions with low probability of firing. This22

model implies that the intra-S checkpoint is not the main regulator of origin clustering. The minimal23

nature of the proposed model foresees its use to analyse data from other eukaryotic organisms.24

25

Introduction26

Eukaryotic genomes are duplicated in a limited time during the S phase of each cell cycle. Replication27

starts at multiple origins that are activated (fired) at different times in S phase to establish two28

diverging replication forks that progress along and duplicate the DNA at fairly constant speed29

until they meet with converging forks originated from flanking origins (DePamphilis and Bell, 2010;30

Machida et al., 2005). Themechanisms that regulate the origin firing timing remain largely unknown31

(Raghuraman, 2001; Heichinger et al., 2006; Eshaghi et al., 2007; Baker et al., 2012; Audit et al.,32

2013; Rhind and Gilbert, 2013). The core motor component of the replicative helicase, the MCM2-33

7 complex, is loaded on chromatin from late mitosis until the end of G1 phase as an inactive34

head-to-head double hexamer (DH) to form a large excess of potential origins (DePamphilis et al.,35

2006; Ticau et al., 2015). During S phase, only a fraction of the MCM2-7 DHs are activated to36

form a pair of active Cdc45-MCM2-7-GINS (CMG) helicases and establish bidirectional replisomes37

(DePamphilis and Bell, 2010). MCM2-7 DHs that fail to fire are inactivated by forks emanating from38

neighboring fired origins (Blow et al., 2011). Origin firing requires S-phase cyclin-dependent kinase39

(CDK) and Dbf4-dependent kinase (DDK) activities as well as the CDK targets Sld2 and Sld3 and the40
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replisome-maturation scaffolds Dpb11 and Sld7 in S. cerevisiae. The six initiation factors Sld2, Sld3,41

Dpb11, Dbf4, Sld7 and Cdc45 are expressed at concentrations significantly lower than the MCM42

complex and core replisome components, suggesting that they may be rate-limiting for origin firing43

(Mantiero et al., 2011; Tanaka et al., 2011). Among these six factors, Cdc45 is the only one to travel44

with the replication fork.45

DNA replication initiates without sequence specificity in Xenopus eggs (Harland and Laskey, 1980;46

Méchali and Kearsey, 1984), egg extracts (Mahbubani et al., 1992; Hyrien and Méchali, 1992; Carli47

et al., 2016, 2018) and early embryos (Hyrien and Méchali, 1993; Hyrien et al., 1995) (for review see48

Hyrien et al. (2003)). To understand how a lack of preferred sequences for replication initiation49

is compatible with a precise S-phase completion time, investigators have studied replication at50

the single DNA molecule level using the DNA combing technique (Lucas et al., 2000; Herrick et al.,51

2000; Blow et al., 2001; Marheineke and Hyrien, 2001, 2004). In contrast to population based52

approaches ( which average replication characteristics, this technique reveals cell-to-cell differences53

in origin activation important for understanding how genomes are replicated during S-phase) these54

experiments did not detect a regular spacing of initiation events but revealed that origin firing rate55

strongly increases from early to late replication intermediates, speeding up late replication stages56

(Lucas et al., 2000; Herrick et al., 2000). An observation that has been also confirmed for many57

other model organisms, including human cell lines (Goldar et al., 2009).58

Mathematical modelling based on the assumption (mean-field hypothesis) that the probability59

of firing of each replication origin can be replaced by the averaged probability of firing calculated60

over all degree of freedom of origin firing process (MCM2-7 DH density, genomic position, chromatin61

compaction, nucleosome density, etc) and agremented with the assumption of independent origins62

and a constant fork speed, allowed the extraction of a time-dependent rate of replication initia-63

tion, I (t), from the measured eye lengths, gap lengths and eye-to-eye distances on combed DNA64

molecules (Herrick et al., 2002). The extracted I (t)markedly increased during S phase. Simulations65

incorporating this extracted I (t) reproduced the mean eye length, gap length and eye-to-eye dis-66

tance, but the experimental eye-to-eye distance distribution appeared “peakier” than the simulated67

one (Hyrien et al., 2003; Jun et al., 2004). Modulating origin firing propensity by the probability to68

form loops between forks and nearby potential origins resulted in a better fit to the data without69

affecting I (t) (Jun et al., 2004).70

Importantly, experiments revealed that in Xenopus, like in other eukaryotes, replication eyes are71

not homogeneously distributed over the genome but tend to cluster (Blow et al., 2001;Marheineke72

and Hyrien, 2004). First, a weak correlation between the sizes of neighbouring eyes was observed73

(Blow et al., 2001; Marheineke and Hyrien, 2004; Jun et al., 2004), consistent with firing time cor-74

relations. Second, more molecules with no or multiple eyes than expected for spatially uniform75

initiation were observed in replicating DNA (Marheineke and Hyrien, 2004). There are two potential,76

non-exclusive mechanisms for these spatiotemporal correlations. The first one, compatible with a77

mean-field hypothesis, is that activation of an origin stimulates nearby origins. The second one, no78

longer consistent with a mean-field hypothesis, is that the genome is segmented into multi-origin79

domains that replicate at different times in S phase. This second hypothesis has been explored80

numerically in human and has been shown to be compatible with the universal bell shaped I (t)81

profile (Gindin et al., 2014).82

Interestingly, experiments in Xenopus egg extracts revealed that intranuclear replication foci labelled83

early in one S phase colocalized with those labelled early in the next S phase, whereas the two84

labels did not coincide at the level of origins or origin clusters were examined (Labit et al., 2008).85

Given the different characteristic sizes of timing domains (1-5 Mb) and origin clusters (50-100 kb) in86

the Xenopus system, it is possible that origin correlations reflect both a programmed replication87

timing of large domains and a more local origin cross-talk within domains.88

It is now well accepted that the intra-S phase checkpoint regulates origin firing during both89

unperturbed and artificially perturbed S phase (Marheineke and Hyrien, 2004; Ge and Blow, 2010;90

Guo et al., 2015; Platel et al., 2015; Forey et al., 2020). DNA replication stress, through the activation91
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of the S-phase checkpoint kinase Rad53, can inhibit origin firing by phosphorylating and inhibiting92

Sld3 and Dbf4 (Zegerman and Diffley, 2010). The metazoan functional analogue of Rad53 is Chk1.93

Experiments in human cells under low replication stress conditions showed that Chk1 inhibits the94

activation of new replication factories while allowing origin firing to continue within active factories95

(Ge and Blow, 2010). Experiments using Xenopus egg extracts suggested that the checkpoint mainly96

adjusts the rate of DNA synthesis by staggering the firing time of origin clusters (Marheineke and97

Hyrien, 2004). Recently, we showed that even during an unperturbed S phase in Xenopus egg98

extracts, Chk1 inhibits origin firing away from but not near active forks (Platel et al., 2015). We99

used our initial model for DNA replication in Xenopus egg extracts (Goldar et al., 2008) (which100

combined time-dependent changes in the availability of a limiting replication factor, and a fork-101

density dependent affinity of this factor for potential origins) to model the regulation of DNA102

replication by the intra-S checkpoint. To account for the regulation of DNA replication by the intra-S103

checkpoint, we replaced the dependency of origin firing on fork density by a Chk1-dependent104

global inhibition of origin firing with local attenuation close to active forks as was proposed in other105

contexts (Trenz et al., 2008; Dimitrova and Gilbert, 2000; Thomson et al., 2010; Ge and Blow, 2010).106

This model was able to simultaneously fit the I (f ) (the rate of origin firing expressed as a function107

of each molecule’s replicated fraction f ) of a control and a UCN-01-inhibited Chk1 replication108

experiment (Platel et al., 2015). However, in that work we did not push further the analysis to109

verify if our model was able to explain simultaneously I (f ) (temporal program) and the eye-to-eye110

distance distribution (spatial program).111

In the present work, using numerical simulations, we quantitatively analyse both the temporal112

and spatial characteristics of genome replication as measured by DNA combing in the in vitro113

Xenopus system. The use of Xenopus egg extracts has been proven to study DNA replication in114

metazoans (Hoogenboom et al., 2017). Rooted on experimental data, we build a general and115

minimal model of DNA replication able to predict its temporal and spatial characteristics either116

during an unchallenged or a challenged S phase. By analysing the spatio-temporal pattern of DNA117

replication under intra-S checkpoint inhibition and comparing it to an unchallenged pattern we118

disentangle the complex role of the intra-S checkpoint for replication origin firing.119

Results120

Finding the best integrative model of unperturbed S phase121

Our previous model (Platel et al., 2015) failed to simultaneously reproduce the eye-to-eye distance122

distribution and the I (f ) of the same control experiment (Figure 1 a and b). This discrepancy could123

be explained if initiation events have a strong tendency to cluster (Blow et al., 2001; Marheineke124

and Hyrien, 2004). Clustering produces an excess of small (intra-cluster) and large (inter-cluster)125

eye-to-eye distances compared to random initiations, but only the former could be detected on126

single DNA molecules due to finite length (Marheineke and Hyrien, 2004). Chk1 action has been127

proposed to regulate origins clusters (Ge and Blow, 2010). However, Chk1 inhibition by UCN-01 did128

not result in the broader eye-to-eye distribution predicted by random origin firing (Figure 1 c and d),129

suggesting that other mechanisms than intra-S checkpoint are involved in the origin clustering.130

We therefore explored the ability of several nested models with growing complexity (designated131

MM1 to MM4) (Appendix 1). MM1 corresponds to a mean field hypothesis of origin firing : all132

potential origins have a constant firing probability Pout (Goldar et al., 2008;Gauthier and Bechhoefer,133

2009). MM2 corresponds to MM1 with a local perturbation, whereby the proximity of forks facilitates134

origin firing (Jun et al., 2004; Löb et al., 2016) over a distance d downstream of an active fork where135

the probability of origin firing is Plocal. In MM3 origin firing does not follow mean field hypothesis136

but assumes that the genome can be segmented into regions of high and low probabilities of origin137

firing (Gindin et al., 2014; Löb et al., 2016) as accepted for most eukaryotes (McCune et al., 2008;138

Yang et al., 2010; Rhind and Gilbert, 2013; Boulos et al., 2015; Das et al., 2015; Petryk et al., 2016;139

Siefert et al., 2017). In this scenario, the probability of origin firing of potential origins located140
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Figure 1. Chk1 does not control origin clustering. The black symbols are experimental data and the red curves are simulations. (a) and (c)
Fitting of I (f ) data reported in Platel et al. (2015) for control and Chk1 inhibition experiments respectively. (b) and (d) Discrepancy between
experimental and simulated distributions of eye-to-eye distances in control and Chk1 inhibition experiments, respectively.

within a fraction � of the genome, Pin, is assumed to be higher than the firing probability Pout of141

potential origins in the complementary fraction 1 − �. Lastly, MM4 combines the specific features of142

MM2 and MM3 into a single model. Furthermore, to verify if the localized nature of potential origins143

(Yang et al., 2010; Arbona et al., 2018) can influence the spatio-temporal program of origin firing,144

each considered scenario was simulated assuming either a continuous or a discrete distribution of145

potential origins.146

For each model, we coupled dynamic Monte Carlo numerical simulations to a genetic optimization147

algorithm to find the family of variables that maximized the similarity between the simulated and148

measured profiles of I (f ), replicated fraction of single molecules, global fork density, eye-to-eye149

distances, gap lengths and eye lengths. MM4 with localized potential origins (Figure 2) provided the150

best fit to the experimental data (Appendix 1, Figure 8). The increase in concordance between MM4151

and the data occurs at the expense of increasing the number of parameters, which is justifiable on152

statistical grounds (Appendix 1,Table 2).153

Verifying the predictive ability of MM4 model154

The real DNA replication process is far more complex than any of the above models. To explore how155

accurately MM4 can map a more complex process, we built, based on replication process in other156

eukaryotes (McCune et al., 2008; Yang et al., 2010; Rhind and Gilbert, 2013; Boulos et al., 2015;157

Das et al., 2015; Petryk et al., 2016; Siefert et al., 2017) and our previous model (Platel et al., 2015),158

a more elaborate model (MM5, Appendix 2) to generate in silico data with 8%, 19% and 53% global159

replicated fractions. MM5 assumes that the replication pattern of the genome is reproduced by the160

coexistence between regions with low probability of origin firing and localised domains with higher161

probability of origin firing, furthermore MM5 includes explicitly the effect of intra-S checkpoint162

through supplementary probabilities of origin firing inhibition. However, as during combing experi-163

ment the genome is broken randomly into smaller molecules the positional information of each164
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Figure 2. Schematic representation of MM4. Potential replication origins located in a fraction � of the genome (not necessary contiguous) have
a probability of firing Pin higher than probability of firing Pout of potential origins located in the complementary genome fraction 1 − �. The firing of
a potential origins requiers its encounter with limiting factors which number N (t) = N0 + Jt increases as S phase progresses. Potential origins fire
with a probability Plocal over a distance d ahead of a replication fork.

combed single molecule is lost and therefore only genome averaged information can be extracted165

from a traditional combing experiment. We calculated the expected genome averaged values for166

each parameter of MM5 (Appendix 2, "Reduction of MM5 to MM4"). Each sample was then fitted167

with MM4 (Appendix 2 Figure 1, Figure 2 and Figure 3) and we compared the extracted parameters168

with their expected values after reduction of MM5 to MM4 (Figure 3; Appendix 2, Table 3).169

For each sample, the mean values of the inferred parameters were statistically similar to the input

Figure 3. The fitting strategy infers accurately the expected values for the reduced MM5 free parameters. The black circles correspond to
the averaged value of the parameter over 100 independent fits and the error bars are the standard-deviations. The solid blue line is the expected

value of the parameter as obtained in Appendix 2, Table 3. The red dashed line is the mean value of the parameter obtained by averaging the
parameter inferred values over the 3 samples.

170

ones (Appendix 2, Table 3) and none of the pairwise differences between the predicted parameters171

values for the 3 considered samples were statistically significant. This demonstrates that our172

fitting and comparison strategies do not introduce artifactual differences between parameters if173

their values do not change between different samples (Appendix 2 Figure 4). In conclusion, any174
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variation in parameter value detected by MM4 when analysing samples at different time points175

independently can be considered as statistically significant. Therefore, MM4 can adequately model176

more complex DNA replication dynamics than itself using a reduced number of parameters.177

Retrieving the dynamics of an unchallenged S phase using the MM4 model178

MM4 faithfully reproduced the temporal and spatial program of DNA replication from unperturbed S179

phase samples with global replicated fractions of 8%, 19% and 53% (Appendix 1, Figure 8; Appendix180

3, Figure 1 and Figure 2). The fitted values of parameters changed as S phase progressed (Figure 4).181

However, only changes in J , �, Pout and d were statistically significant (Appendix 3 Figure 3). In

Figure 4. Inferred model parameters by fitting unchallenged S phase data as global replicated fraction increases. The black circles are
the averaged value of the parameter over 100 independent fitting processes and the error bars are standard-deviations. The green dashed line is

the mean value among consecutive parameters which differences are not statistically significant (Appendix 3 Figure 3).
182

particular we found that J increased from 8% to 19% replication and then drop back at 53%183

replication. � and Pout increased only from 8% to 19% replication but not later, while d stayed184

constant between 8% and 19% replication and decreased at 53% replication.185

These observations suggest that during an unchallenged S phase both the fraction (�) of the genome186

with high probability of origin firing and the background probability (Pout) of origin firing outside that187

fraction increase as S phase progresses. Interestingly, Plocal is higher than Pin and Pout, suggesting188

that firing of an potential origin significantly favours the firing of nearby potential origins over a189

distance d, compatible with a chromatin looping process (Löb et al., 2016). This fork-related firing190

process is consistent with the observation that nearby origins tend to fire at similar times, which191

has been proposed to result from a different regulation of nearby and distant origins by Chk1 (Ge192

and Blow, 2010; Platel et al., 2015).193

Modeling DNA replication under Chk1 inhibition194

To decipher the regulation of origin firing by Chk1, we examined if the MM4 model could also195

reproduce the replication program observed when the intra-S phase checkpoint was inhibited196

by the specific Chk1 inhibitor UCN-01. We analyzed combed fibres from a replicated sample in197
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the presence of UCN-01 (replicated fraction 22%) that had spent the same interval of time in S198

phase as the control sample (global replicated fraction of 8%). The MM4 model reproduced the199

experimental observations very well (Appendix 3, Figure 4, GoFglobal = 0.85). The three

Figure 5. J , �, and the Pout are the only parameters that change when comparing unchallenged and Chk1 inhibited S phase The black
circle is the averaged value of the parameter over 100 independent fitting processes of unchallenged S phase and the error bars are

standard-deviations. The red star is the averaged value of the parameter over 100 independent fitting processes of Chk1 inhibited sample and the

error bars represent the standard-deviations.

200

parameters J , �, and the Pout were significantly higher in the UCN-01 treated sample than in the201

control samples with either the same harvesting time or a similar replicated fraction (22% and 19%,202

respectively) (Figure 5 and Appendix 3 Figure 5). The other parameters were unchanged compared203

to both control samples. These results suggest that upon Chk1 inhibition (i) a fraction � of the204

genome, where initiation probability is high, increases during S phase; (ii) the probability of origin205

firing is insensitive to Chk1 within this fraction (Pin is unaltered) but is increased in the rest of the206

genome (Pout is increased) ; (iii) the import/activation rate of the limiting factor, J , is increased,207

while the starting number of factors, N0, is unaffected. As was expected, MM4 detected that Chk1208

inhibition by UCN-01 increased origin firing (Platel et al., 2015; Syljuasen et al., 2005; Guo et al.,209

2015;Michelena et al., 2019; Pommier and Kohn, 2003; Deneke et al., 2016).210

In conclusion , the level of active Chk1 appears to regulate the kinetics of S phase progression (i) by211

limiting the genome fraction that escapes its inhibitory action, (ii) by down regulating the probability212

of origin firing outside this fraction (Syljuasen et al., 2005; Maya-Mendoza et al., 2007; Guo et al.,213

2015; Michelena et al., 2019), and (iii) by controlling the import/activation rate of limiting firing214

factors (Guo et al., 2015). However, no significant differences in the strength of origin regulation215

by nearby forks (Plocal) was observed after Chk1 inhibition, suggesting that this local action is not216

mediated by Chk1 (Trenz et al., 2008; Ge and Blow, 2010).217

Discussion218

We explored several biologically plausible scenarios to understand the spatio-temporal organization219

of replication origin firing in Xenopus egg extracts. We used a quantitative approach to objectively220
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discriminate which model best reproduced the genomic distributions of replication tracks as221

analyzed by DNA combing at different stages of S phase. We found that model MM4 with discrete222

potential origins best reproduced the experimental data with a minimal number of adjustable223

parameters. This model combines five assumptions (Herrick et al., 2002; Goldar et al., 2008;224

Gauthier and Bechhoefer, 2009; Blow and Ge, 2009; Sekedat et al., 2010; Yang et al., 2010; Platel225

et al., 2015; Löb et al., 2016; Gindin et al., 2014; Arbona et al., 2018): 1) origin firing is stochastic,226

2) the availability of a rate-limiting firing factor captures the essential dynamics of the complex227

network of molecular interactions required for origin firing, 3) the speed of replication forks is228

constant 4) origins fire in a domino-like fashion in the proximity of active forks (Guilbaud et al.,229

2011; Löb et al., 2016) ; 5) the probability of origin firing is heterogeneous along the genome (Yang230

et al., 2010; Gindin et al., 2014).231

We used MM4 to model DNA combing data from Xenopus egg extracts in presence or absence of232

intra-S checkpoint inhibition. In both conditions, this model was able to match the experimental233

data in a satisfactory manner. Furthermore, the inferred parameters values indicated that the234

global probability of origin firing and the rate of activation/import of the limiting firing factor (J )235

were increased after Chk1 inhibition by UCN-01(Pommier and Kohn, 2003; Seiler et al., 2007; Guo236

et al., 2015). Importantly, this model assumes a heterogeneous probability of origin firing and237

suggests that Chk1 exerts a global origin inhibitory action during unperturbed S phase (Platel et al.,238

2015). On the other hand, the constancy of the initial number of limiting factors N0 in the presence239

or absence of UCN-01 suggests that Chk1 does not actively control origins before S phase actually240

starts (Lupardus et al., 2002; Stokes et al., 2002; Forey et al., 2020). These observations indicate241

that MM4 can deliver a reliable, minimally complex picture of origin firing regulation in Xenopus egg242

extracts.243

The global inhibition of origin firing by Chk1244

We previously showed that Chk1 is active and limits the firing of some potential origins in an245

unperturbed S phase (Platel et al., 2015). Therefore, the earliest origins must be immune to Chk1246

inhibition while later potential origins are strongly inhibited. The comparison between themodelling247

of Chk1 inhibition and of unperturbed S phase data suggests that i) the probability of origin firing248

is reduced by active Chk1 in a fraction 1 − � of the genome, ii) in this Chk1-sensitive fraction the249

probability of origin firing increases as S phase progresses and iii) the probability of origin firing250

is unaffected by Chk1 inhibition within the Chk1-immune, � fraction of the genome. Therefore,251

this model supports the idea that at the start of S phase, some origins fire unimpeded by Chk1,252

whereas others remain silent. The latter only becomes progressively relieved from Chk1 inhibition253

as S phase progresses. Indeed, recent works in cultured mammalian cells (Moiseeva et al., 2019),254

Drosophila (Deneke et al., 2016) and Xenopus (Krasinska et al., 2008) showed that in unperturbed S255

phase the global origin firing inhibitory effect (by Chk1 and Rif1) is reduced as S phase progresses.256

Interestingly, a recent study in unperturbed yeast cells suggests that dNTPs are limiting at the257

entry into S phase, so that, similar to Xenopus (Zou, 2007), the firing of the earliest origins creates a258

replication stress that activates the Rad53 checkpoint which prevents further origin firing. Rad53259

activation also stimulates dNTP synthesis, which in turn down regulates the checkpoint and allows260

later origin firing (Forey et al., 2020). However, it remains uncertain if this feed-back loop does also261

exist in Xenopus egg extracts which contain an abundant pool of dNTPs.262

A key mechanism of our model is the enhancement of origin firing close to active forks. The263

necessity to introduce this mechanism supports the domino-like view of DNA replication progression264

(Guilbaud et al., 2011; Löb et al., 2016). It was previously shown in Xenopus egg extracts that the265

probability of origin firing could depend on the distance between left and right approaching forks266

(Jun et al., 2004). While this could in principle reflect an origin firing exclusion zone ahead of267

forks (Lucas et al., 2000; Löb et al., 2016), our model did not allow for a negative Plocal. Other268

proposed mechanisms for origin clustering include the relief of Chk1 inhibition ahead of active269

forks by checkpoint recovery kinase polo like kinase 1 (Plk1) (Trenz et al., 2008; Platel et al., 2015).270
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However, we find that the range, d, and the strength, Plocal, of origin stimulation by nearby forks,271

were both insensitive to checkpoint inhibition (Figure 5 a and b). Other potential mechanisms such272

as propagation of a supercoiling wave ahead of forks may better explain this insensitivity to Chk1273

inhibition (Achar et al., 2020).274

Heterogeneous probability of origin firing275

In this model, the origin firing process in Xenopus egg extracts is not fiably described by a mean-276

field approximation. In other words, the probability of origin firing is heterogeneous along the277

genome. Based on this hypothesis, one important outcome of our study is that the genome can278

be segmented into domains where origin firing probability is either high and immune to Chk1279

inhibition or subjected to a tight Chk1 control that attenuates as S phase progresses. This picture280

challenges the common view that the embryonic Xenopus in vitro system would lack the temporal281

regulation by the intra-S checkpoint at the level of large chromatin domains in contrast to findings in282

somatic vertebrate cells where Chk1 controls cluster or replication foci activation (Maya-Mendoza283

et al., 2007). However, observations of replicating nuclei in Xenopus system have shown that284

early replication foci are conserved in successive replication cycles, supporting the heterogeneous285

domain hypothesis (Labit et al., 2008). Furthermore, we found that the fraction of the genome286

covered by these domains increases and that the inhibitory action of Chk1 decreases over time287

during an unperturbed S phase (Figure 4 and Figure 5), consistent with the idea that as S phase288

progresses more regions of the genome evade the checkpoint inhibition of origins. By comparing289

samples that have spent the same time interval in S phase or that have reached the same replicated290

fraction in the absence and presence of UCN-01 (Figure 5), we noticed that the probability of origin291

firing in the Chk1-immune domains (Pin) did not change upon Chk1 inhibition. This further suggests292

that these domains escape actually the regulation of origin firing by Chk1 that rules the rest of the293

genome.294

All together the results of our modelling approach and the existing literature suggest that in the295

Xenopus system the position of early replicating, Chk1-immune domains is conserved in individual296

nucleus. However, there is no experimental or numerical evidence that the positions of these297

domains are conserved in a population of nuclei. Assuming that the position of these domains298

changes randomly from one nucleus to another would result in a flat mean replication timing299

pattern and involves that each nucleus has its specific replication regulation process. While we300

cannot reject such a hypothesis objectively, the recent report of a structured replication timing301

program in zebrafish early embryos (Siefert et al., 2017) encourage us to assume that in Xenopus302

early embryos the position of early replication domaines are conserved from one nucleus to an303

other. Thus, we propose that the mean replication timing pattern of Xenopus sperm nuclei in egg304

extracts is not flat but is structured similarly to other eukaryotic systems (Baker et al., 2012; Rhind305

and Gilbert, 2013; Boulos et al., 2015).306

The generality of assumptions and conclusions of our model suggest that it can be used to analyze307

the dynamics of S phase and its regulation by the intra-S phase checkpoint in other organisms.308

Methods and Materials309

Monte Carlo simulation of DNA replication process.310

A dynamical Monte Carlo method was used to simulate the DNA replication process as before311

(Goldar et al., 2008). We simulate the replicating genome as a one-dimensional lattice of L = 106312

blocks of value 1 for replicated and 0 for unreplicated state, respectively. To match the spatial313

resolution of DNA combing experiments each block represents 1kb. After one round of calculation314

an existing replication track grows in a symmetric manner by 2 blocks. Considering that the fork315

speed v = 0.5 kb.min−1 is constant, one round of calculation corresponds to 2 minutes. In the316

continuous case we assume that the potential replication origins are continuously distributed on317

the genome with an average density of one potential origin per 1kb (1 block); in the discrete case we318
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assume that potential origins are randomly distributed along the genome with an average density of319

one potential origin per 2.3 kb (Edwards et al., 2002). In both cases origins fire stochastically. Origin320

firing requires an encounter with a trans-acting factor which number N (t) increases as S phase321

progresses with a rate J , N (t) = N0 + Jt. If an encounter produces an origin firing, the trans-acting322

factor is sequestrated by replication forks and hence the number of available trans-acting factor is323

Nf (t) = N (t) −Nb (t), where Nb (t) is the number of bound factors. To ensure that origins do not324

re-fire during one cycle and are inactivated upon passive replication, only “0” blocks are able to fire.325

At each round of calculus, each block is randomly assigned 2 independent values between 0 and326

1. The first one is compared to � to decide whether the block belongs to the � or 1 − � fraction of327

the genome. The second one to Pin or Pout, respectively, to decide whether the block may fire. In328

total,M “0” blocks (M ≤ L) with value strictly smaller than their reference probability may fire. If329

M ≤ Nf (t) allM blocks may fire, otherwise Nf (t) blocks may fire. Furthermore in MM2 and MM4,330

we consider that the probability of origin firing Plocal may be increased downstream of a replication331

fork over a distance dfork. The trans-acting factors sequestered by forks are released and are made332

available for new initiation events when forks meet.333

Measuring: the replicated fraction f (t), the rate of origin firing I (t), fork density Nfork (t),334

eye-to-eye, eye and gap length distributions.335

The genome is represented as an one-dimensional lattice of 106 elements xi ∈ {0, 1}. At each round336

of calculation the replicated fraction is calculated as f (t) = ⟨x⟩i corresponding to the average value337

of xi over the genome.338

The rate of origin firing per length of unreplicated genome per time unit (3 min) is calculated at each339

round of calculation, by counting the number of newly created “1” blocks, N1 and I (t) =
N1

(1−f (t))LΔt
340

where Δt = 3 min and L = 106. The density of replication forks is calculated at each round of341

calculation by counting the number of “01” tracks, Nlef t, and “10” tracks, Nrigℎt and Nforks (t) =342

Nrigℎt+Nlef t
L

. The distributions of eye-to-eye distances, eye lengths and unreplicated gap sizes are then343

computed from the distribution of “0” and “1” tracks after reshaping the data (see below).344

Comparing experimental and numerical data.345

The simulation results were compared to the DNA combing data from Platel et al. (Platel et al.,346

2015). The fluorescence intensities for total DNA and replicated tracks of each fiber were measured347

and binarized on a Matlab ® platform by using a thresholding algorithm. The threshold value348

was chosen to minimize the difference between the replicated fraction measured by �32P-dATP349

incorporation and by DNA combing. Replicated tracks larger than 1kb were scored as eyes. Gaps350

were considered significant if > 1kb, otherwise the two adjacent eyes were merged. The eyes351

whose lengths span from 1 to 3 kb were considered as new origin firing events. The time interval352

in which these new detectable events can occur was calculated as Δt = 3min assuming a constant353

replication fork velocity of v ≈ 0.5 kb.min−1. This data reshaping protocol was also applied to354

simulated DNA molecules, in order to match the spatial and temporal resolutions between the355

experimental and simulated data. The global replicated fraction of each sample was computed as356

the sum of all eye lengths divided by the sum of all molecule lengths. To minimize finite molecule357

length effects in comparisons between data and simulations, the experimental molecule length358

distribution was normalised and considered as probability density of molecule length in the sample359

and used to weight the random shredding of the simulated genome at each time (Figure 6). The360

global replication fraction of simulated cut molecules was calculated. Only molecules from the361

simulation time that had the same global replication fraction as the experimental sample were362

further considered.363

364

Molecules were sorted by replicated fraction f (t). The rate of origin firing and fork density365

were calculated for each molecule as a function of f (t) (I (f ) and Nfork (f ), respectively) for both366

simulated and experimental data. The experimental I (f ), Nfork (f ), eye-to-eye distances, eye and367
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Figure 6. Molecular length distribution (global replicated fraction of 8%). The black open circles are the experimentally measured and the
red curve is the simulated cut molecular length distributions, respectively .

gap length distributions were computed as the averaged value of three independent experiments.368

Modeling experimental data: parameters optimization.369

To estimate the parameters of the model, we fitted the six experimental observables (I (f ),Nfork (f ),370

replicated fiber, eye-to-eye distances, eye and gap length distribution) using a genetic optimization371

algorithm (Matlab ®). The fitness function was defined as the sum of the square of the differences372

between experimental and simulated data curves divided by the squared mean of the experimental373

data curve. The genetic optimization algorithm was set over three subpopulations of 20 individuals374

with a migration fraction of 0.1 and a migration interval of 5 steps. Each individual defined a set375

of variables for the simulation and the variables were chosen within the range reported in Table 1376

for the model that best fit the data. At each generation, 3 elite children were selected for the next377

generation. The rest of the population corresponds to a mixture between 60% of children obtained378

after a scattered crossover between two individuals selected by roulette wheel selection and 40%379

of children obtained by uniform mutation with a probability of 0.2, leading to a variability of 8%.380

The genetic algorithm was stopped after 50 generations corresponding to the convergence of the381

optimization method. As the size of variable space is unknown, we considered a large domain382

of validity for the variables. This has as an effect to reduce the probability that the optimization383

process reaches a unique global minimum. For this reason we repeat the genetic optimization384

method 100 times independently over each data set and consider for each optimization round only385

the best elite individual.

Table 1. Lower and upper bounds of adjustable variables.

Variable Lower bound Upper bound Significance

N0 1 2000 Initial number of limiting-factor

J (s−1) 0 4000 Rate at which the number of limiting-factor increases

Pout 0 1 Probability of origin firing in the 1 − � fraction

Pin 0 1 Probability of origin firing in the � fraction

Plocal 0 1 Probability of origin firing ahead of an active replication fork over a distance d

� 0 1 Fraction of genome where the probability of origin firing is Pin

d (kb) 0 1000 Distance over which a fork acts on the probability of origin firing

386
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Appendix 1561

Different models562

To model experimental observations a series of nested models were compared with ex-

perimental data. Below are the fits of each model to experimental sample with 8% global

replicated fraction. To assess the goodness of the fit (GoF) we considered the normalised

mean square error between the simulated profile and the fitted entity as the indicator of

likelihood (GoF = 1 − ||yfit−yexp||2

||yexp−⟨yexp⟩||2
). GoF costs vary between −∞ (bad fit) to 1 (perfect fit). If

GoF = 0, yfit is no better than a straight line at matching experimental data. The global
cost is calculated as GoFglobal =

1
6

∑6
1 GoFi where i represents one fitted entity. All models

reproduce with the same accuracy the distribution of replicated fibres, gaps lengths and

eyes lengths distributions. The major contributions to score values come from residuals

of average fork density, average I (f ) and eye-to-eye distances distribution fits. From the
value of GoFglobal (Appendix1, Table 1), the model that best described the whole data set
is the MM4 with localized distribution of potential origins: its GoFglobal value is closest to
one. However, MM4 also has the highest number of fitting variables (7) compared to other

models ( MM1 has 3 fitting variables, MM2 and MM3 have 5 fitting variables), and facilitating

fit to the data.
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Appendix 1 Figure 1. Modeling experimental data with MM1 model in the case where the potential
origins are continuously distributed along the genome. Open circles are experimental data and the red

dashed line is the fit.
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583

Appendix 1 Figure 2. Modeling experimental data with MM2 model in the case where the potential
origins are continuously distributed along the genome. Open circles are experimental data and the red

dashed line is the fit.

584

585

586587

588

Appendix 1 Figure 3. Modeling experimental data with MM3 model in the case where the potential
origins are continuously distributed along the genome. Open circles are experimental data and the red

dashed line is the fit.
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593

Appendix 1 Figure 4. Modeling experimental data with MM4 model in the case where the potential
origins are continuously distributed along the genome. Open circles are experimental data and the red

dashed line is the fit.
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598

Appendix 1 Figure 5. Modeling experimental data with MM1 model in the case where the potential
origins form a discrete set along the genome. Open circles are experimental data and the red dashed

line is the fit.
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603

Appendix 1 Figure 6. Modeling experimental data with MM2 model in the case where the potential
origins form a discrete set along the genome. Open circles are experimental data and the red dashed

line is the fit.
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608

Appendix 1 Figure 7. Modeling experimental data with MM3 model in the case where the potential
origins form a discrete set along the genome. Open circles are experimental data and the red dashed

line is the fit.
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613

Appendix 1 Figure 8. Modeling experimental data with MM4 model in the case where the potential
origins form a discrete set along the genome. Open circles are experimental data and the red dashed

line is the fit.

614

615

616617

Continuous Discrete Continuous Discrete

model GoFglobal GoFglobal
(

yexp − yfit
)2 (

yexp − yfit
)2

MM1 -0.95 -5.28 0.66 0.56

MM2 0.85 0.72 0.08 0.10

MM3 0.87 0.88 0.08 0.09

MM4 0.90 0.92 0.08 0.05

618

Appendix 1 Table 1. Values of GoFglobal and fitting residual norm (
(

yexp − yfit
)2
) for each model.619620

Models comparison621

To address whether the better data fit with MM4 is solely due to the higher degree of com-

plexity of the model, we used two different approaches : a traditional statistical hypothesis

testing: the extra sum of squares F test (Bevington and Robinson, 2003) and the Akaike’s
criterion (ΔAIC) that is based on information theory (Ljung, 1998). We can objectively reject
MM1 as it did not reproduce in a satisfactory manner the averaged fork density, I (f ) and
eye-to-eye distances distributions (Appendix 1, Figure 1 and Figure 5 ). MM2 and MM3
satisfactorily reproduced all measured quantities (Appendix 1, Figure 2 , Figure 3, Figure 6
and Figure 7 ) but with lower GoFglobal value than the MM4 models (Appandix1, Table 1).
The discrete MM4 model has higher GoFglobal value than the continuous one, whereas the
continuous MM2 and MM3 models were better than or equal to their discrete version,

respectively (Appandix1, Table 1). To choose the best model, we compared the discrete
MM4 model, continuous MM2, MM3 and MM4 corresponding to fits with highest GoFglobal
values (Appendix1, Table 1). Comparing the discrete MM4 with the continuous MM2, MM3
and MM4 models led in all cases to F > 1 with p-values p < 10−6 and negative ΔAIC values
(Appendix1, Table 2). The discrete MM4 model is therefore the best model and the observed
increase in GoFglobal does not reflect an overfitting of the data.
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model F p ΔAIC

Continuous MM2 19.3 1.5×10−7 -30.2

Continuous MM3 16.9 8.3×10−7 -26.6

Continuous MM4 ∞ Not defined -31.1

638

Appendix 1 Table 2. Values of F-test, the associated p-value (p) and the ΔAIC when the discrete MM4
model is compared with continuous MM2, MM3 and MM4 model.
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Appendix 2642

The MM5 model used to generate the in silico data643

In MM5, localized potential origins were distributed with a uniform density � = 1 kb−1 and
Ndom domains of size ldom were randomly positioned along a genome of length L = 105 kb.
As in previous works, we assumed that at the start to S phase N0 limiting factors were

available for origin firing and their number, N (t), increased during the cours of S phase as
N (t) = N0 + Jt, and that each factor was sequestrated by new forks upon origin activation
and released and made available again for origin firing upon coalescence of converging

forks. Forks progressed at a constant velocity v = 0.5 kb.min−1. The probability of origin
firing by encounter with a limiting factor was higher inside the domains (P0 + Pdom) than
outside them (P0). In addition, origins outside but not inside the domains had a non-null
probability Pinℎib of being inhibited. Two local effects were allowed to act within a distance
dfork from active forks: P0 was enhanced by Pfork and origin inhibition was relieved with a
probability Pdeinℎib. We simulated 300 complete S phases using the 10 parameter values
listed in Appendix 2, Table 1, and extracted snapshots at 8%, 19% and 53% global replicated
fractions. Each snapshot was considered as an independent sample and for each of them:

i) the genome was randomly cut following the molecule length distribution presented in

Figure 6, ii) the data were reshaped as described in material and methods to account for
the finite experimental resolution and iii) the distributions of I (f ), replicated fraction of
single fibres, global fork density, eye-to-eye distances, gap lengths and eye lengths were

determined.

644

645

646

647

648
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650
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659

660

661

662

Parameter Value

N0 107

J (s−1) 29

P0 0.11

Pinℎib 0.96

Pfork 0.28

d(kb) 94.91

Ndom 196

ldom 192.39

Pdeinℎib 0.06

Pdom 0.73

663

Appendix 2 Table 1. Values of MM5’s parameters. These values are chosen arbitrarly664665

Fitting the in silico data by MM4 model666

By independently fitting the simulated profiles of each global replicated fraction, we implicitly

assume that samples could originate from separated experiments, hence MM4 parameters

values are possibly different for each global replicated fraction. This allows us to accurately

reproduce observations from each sample (Appendix2 Figure 1, Figure 2 and Figure 3).
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671

Appendix 2 Figure 1. Modeling 8% global replicated fraction simulated data with discrete MM4 model.
Open circles are simulated data and the red dashed line is the fit. GoFglobal = 0.96

672

673674

675

Appendix 2 Figure 2. Modeling 19% global replicated fraction simulated data with discrete MM4 model.
Open circles are simulated data and the red dashed line is the fit. GoFglobal = 0.97

676
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679

Appendix 2 Figure 3. Modeling 53% global replicated fraction simulated data with discrete MM4 model.
Open circles are simulated data and the red dashed line is the fit. GoFglobal = 0.82

680

681682

Reduction of MM5 to MM4683

In the MM5 model origins fire globally with two origin firing probabilities (P0 and P0 +
Pdom) eventually increased by a local origin firing probability (Pfork) close to an active fork,
and the genome is divided into domains that either support or escape some inhibitory

probability of firing (assumed to represent inhibition by the intra-S checkpoint). As the

position of these domains is not identical between repeated simulations, we can reduce

their description by specifying a fraction � (� = Ndomldom
L

) of the genome where origins escape

checkpoint inhibition. In these domains, the global origin firing probabilityPin =
1
2

(

P0 + Pdom
)

,

with the
1
2
pre-factor being due to normalization considerations. The local probability of

origin firing (close to a fork) inside a domain is P in
local =

1
2

(

P0 + Pdom + Pfork
)

. Outside these

domains, the global probability of origin firing is modulated by the probability of origin

inhibition Pout =
1
2
P0

(

1 − Pinℎib
)

. In the same manner the local probability of origin firing

is modulated by the action of intra-S checkpoint and the local cancellation of inhibition

process P out
local =

1
2

(

P0 + Pfork
) [

1 + Pinℎib
(

Pdeinℎib − 1
)]

. Local probabilities of origin firing only

influence origins over a distance dfork downstream of a fork. The MM4 model contains a
unique local probability of origin firing, that corresponds to the average value of the two

local probabilities of origin firing, Plocal = �P in
local + (1 − �)P

out
local. Therefore, by considering the

essential ingredients of the MM5 model, we combined the parameters of the model to

retrieve the parameters of MM4 (Table 2).
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MM4 equivalence with MM5

N0 N0

J (s−1) J
� Ndomldom

L
Pin

1
2

(

P0 + Pdom
)

Plocal
1
2

(

P0 + Pfork
) [

1 + (1 − �)Pinℎib
(

Pdeinℎib − 1
)]

+ �Pdom
Pout

1
2
P0

(

1 − Pinℎib
)

d (kb) d

702

Appendix 2 Table 2. Reducing MM5 to MM4.703704

The values of these parameters can be compared directly to parameters of MM4 model
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obtained from the fitting of the simulated data for each sample (Table 3). To assess if
the difference between the expected and the inferred value of a parameter is statistically

significant we calculate t = (expected value−inferred value)2
error2

, for t ≥ 1 the difference is statistically
significant otherwise it is not. The values of parameters changed as the global replicated

fraction increased (Appendix 2, Table 3). To assess the level of significance of these variations
we calculated �2 = (parameter1−parameter2)2

error21+error
2
2

coefficient between the values of the same parameter

obtained for different global replicated fraction. If �2 < 1 the difference between the two
values was not statistically significant otherwise it was significant. Appendix 2, Figure 4
shows that the differences of predicted parameters values among the 3 considered samples

were not statistically significant, as was expected.

705

706

707

708

709

710

711

712

713

714

715

MM4 Input 8% 19% 53%

N0 107 83.86 ± 32 (t < 1) 125 ± 29 (t < 1) 129 ± 26 (t < 1)
J (s−1) 29 43.6 ± 46 (t < 1) 17 ± 9 (t < 1) 27 ± 3.4 (t < 1)
� 0.38 0.25 ± 0.2 (t < 1) 0.35 ± 0.16 (t < 1) 0.42 ± 0.1 (t < 1)
Pin 0.42 0.4 ± 0.2 (t < 1) 0.41 ± 0.17 (t < 1) 0.5 ± 0.2 (t < 1)
Plocal 0.22 0.23 ± 0.09 (t < 1) 0.17 ± 0.05 (t < 1) 0.23 ± 0.04 (t < 1)
Pout (× 10−3) 2.2 1.1 ± 1 (t < 1) 1.9 ± 1 (t < 1) 2.3 ± 1 (t < 1)
d (kb) 94.91. 135 ± 86 (t < 1) 119 ± 57 (t < 1) 51 ± 32 (t < 1)

716

Appendix 2 Table 3. Comparison between the expected and inferred values of MM4 parameters.717718

All t < 1 and �2 < 1 (Appendix 2, Figure 4), meaning the constancy of parameters values
for all three samples. Therefore, we conclude that the optimization procedure was able to

circumscribe the expected parameters values in an accurate manner for each sample. It

should be noted that we choose a very conservative criterion to assess if two parameters

are different or not. The conditions of �2 = 1 or t = 1 are equivalent to a confidence level
of � = 10−7 in the case of a two sided and one sided t statistics. In other words, with our
criterion the probability to find that the values of two parameters are different by chance is

smaller than 10−7.
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727

Appendix 2 Figure 4. The values of each MM4 model parameter were compared pair-wise between
samples with different global replicated fraction. The statistical significance of their difference was

assessed by �2 test and represented as a binary heat map where not statistically significant differences
are couloured in white and statistically significant difference are coloured in blue. The number in each

box is the �2 coefficient.
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The ability of the fitting procedure i) to circumscribe the values of MM4 model parameters

close to the expected ones (Appendix 2, Table 3) and ii ) to retrieve the constancy of these
parameter’s values as the global degree of replication increases (Appendix 2, Figure 4)
demonstrates the adequacy of our fitting strategy to recover the dynamic of DNA replication

during S phase in the framework of MM4 model by setting the null hypothesis as : the

values of MM4 parameters do not change as S phase progresses. Therefore, rejection of this

hypothesis for a considered parameter means its variation during S phase.
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Appendix 3741

Fitting the experimental profiles byMM4model : Unchallenged S phase742

We fitted independently the measured profiles for each global replicated fraction by discrete

MM4 model. The fits of observations from 8% global replicated fraction are presented

in Appendix 1Figure 8 and those of 19% and 53% are presented Appendix 3 Figure 1 and
Figure 2 respectively. In Appendix 3 Table 1 we give the value of the fitted parameters. The
reliability of observed differences among inferred MM4 parameters are assessed statistically

by using �2 coefficient as defined in Appendix 2 (Appendix 3 Figure 3)

743

744

745

746

747

748

749

Appendix 3 Figure 1. Modeling measured sample with 19% global replicated fraction with the discrete
MM4 model. Open circles are simulated data and the red dashed line is the fit. GoFglobal = 0.96
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Appendix 3 Figure 2. Modeling measured sample with 53% global replicated fraction with the discrete
MM4 model. Open circles are simulated data and the red dashed line is the fit. GoFglobal = 0.90
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757

Appendix 3 Figure 3. The values of each MM4 model parameter were compared pair-wise between
samples with different global replicated fraction. The statistical significance of their difference was

assessed by �2 test and represented as a binary heat map where the white colour represents no
statistically significant difference and the blue colour represents statistically significant difference. The

number in each box is the �2 coefficient.
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Fitting the experimental profiles by MM4 model : Chk1 inhibited S
phase

764

765

We fitted with the discrete MM4 model a sample that had spent in the presence of UCN-01

the same time interval in S phase as the control sample with 8% global replicated fraction.

The global replicated fraction of the of the UCN-01 sample was 22%. The fits are presented

in Appendix 3 Figure 4 and the obtained parameters values are given in Appendix 3 Table 1.
The reliability of observed differences among inferred MM4 parameters between controls

and Chk1 inhibited sample are assessed statistically by using �2 coefficient as defined in
Appendix 2 (Appendix 3 Figure 5)
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Appendix 3 Figure 4. Modeling a measured sample with 22% global replicated fraction in presence of
UCN-01with discrete MM4 model. Open circles are simulated data and the red dashed line is the fit.

GoFglobal = 0.85
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Appendix 3 Figure 5. a. Comparing samples that have spent the same time interval in S phase. b.
Comparing samples that have similar global replication fractions. The values of each MM4 model

parameter were compared pair-wise between samples with different global replicated fraction. The

statistical significance of their difference was assessed by �2 test and represented as a binary heat map
where the white colour represents no statistically significant difference and the blue colour represents

statistically significant difference. The number in each box is the �2 coefficient.
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MM4 unchallenged: 8% unchallenged: 19% unchallenged: 53% UCN-01: 22%

N0 1064 ± 135 1043 ± 116 1002 ± 106 1006 ±102
J (s−1) 601 ± 198 1026 ± 196 404 ± 151 1467 ± 89
� 0.25 ± 0.06 0.43 ± 0.04 0.39 ± 0.05 0.56 ± 0.032
Pin 0.41 ± 0.07 0.34 ± 0.07 0.32 ± 0.07 0.42 ± 0.07
Plocal 0.43 ± 0.06 0.43 ± 0.06 0.52 ± 0.06 0.38 ± 0.06
Pout 0.09± 0.02 0.17 ± 0.04 0.15 ± 0.03 0.23 ± 0.04
d (kb) 143.8 ± 36.3 91.5 ± 25.6 56.1 ± 23.6 119.3 ± 29.3

786

Appendix 3 Table 1. Values and the corresponding errors of MM4 parameters for the best fit of each
sample and each condition.
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