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machine learning techniques, such as Support Vector Machine [7], logistic regression [8], decision
trees [9], k-Nearest Neighbor, Random Forest [10], or discriminant analysis [11]. They mainly differ
according to their feature extraction and classification approaches. A large variety of features are used,
including spatio-temporal analysis [12], spectral–temporal analysis [13], wavelet decomposition [2],
spectrogram [14,15], Hilbert transform [16], neural networks [17], Hurst exponent [18], quadratic
linear–parabolic model [19], and statistical descriptors such as statistical modeling [20], signal fuzzy
entropy [21], and fractal dimension [22]. The reader is referred to [23] for a recent state-of-the-art on
methods for seizure detection in EEG.

Spike-and-wave discharge (SWD) is a generalized EEG discharge pattern, where the waveform
has a regular and symmetric morphology. This morphology can be mathematically described by
a Morlet wavelet transform, generating a time–frequency representation of the EEG signal [24–27].
The spike component of an SWD is associated with neuronal firing and the wave component is
associated with neuronal inhibition or hyperpolarization of neurons [28]. SWD is widely used in
mice studies [2,14,29,30]; inversely, the literature reports very limited human applications. Mice
have a predisposition for generalized SWD at 7–12 Hz [15]. Typically, they have spontaneous
absence-seizure-like events, but, the presence of an intact cortex, thalamus, and their interconnections
are necessary to record their signals [31,32]. Rodent models are usually used to study the
neurobiological mechanisms underlying SWD in humans. However, studies in humans and rodents
differ in the way SWD is assessed and, more importantly, rodents and humans show substantial
biological differences. Thus, more human studies are necessary to fully understand this phenomena.
This paper fits in this general aim by studying SWD in human.

Some recent works have been proposed to estimate SWD patterns in humans using machine
learning techniques. They rely on different models and features, including 1-NN with t-location-scale
distribution [20], decision-trees with cross-correlation coupled with decision trees [9], and Bayesian
classifiers with the Walsh transformation [33]. Table 1 lists some more methods. Other existing methods
implement signal analysis techniques, such as Hilbert–Huang transform to analyze time–frequency
energy distribution [34], complex network of neuronal oscillators to model SWD [35], analyzing
statistical features such as variance, the sum of wave amplitudes, slope of the wave [36], or topographic
cluster analysis based on connectivity, entropy, frequency, power, and spike amplitude [37]. For a
biological dynamic explanation of features and mechanisms generating SWD in the brain see [38].

Table 1. Some state-of-the-art methods for the spike-and-wave discharge (SWD) estimation in
electroencephalography (EEG) signals in humans, compared in terms of classification techniques,
features, and reported performance.Abbreviations are as follows: high Specificity, rule in (SpPIn),
According to the frequency and magnitude weighted average (WA), According to an estimated
threshold (AET).

Method Features Classifier Accuracy in % Ref.

Generalized Gaussian distribution
(GGD)

GGD parameters, variance and median
from time–frequency Morlet decomposition 10-NN 92 our

Kendall’s Tau-b Coefficient Kendall’s Tau-b coefficient significance SpPIn 94 [39]
Ramanujan Filter Bank (RFB) Spectrum from RFB Empirical >80 [40]
t-location-scale distribution (TLS) TLS parameters 1-NN 100 [20]
Cross-correlation Correlation coefficient Decision trees 97 [9]
Walsh transformation (WT) First and second orden from WT Bayesian >70 [33]
Hilbert–Huang transform Intrinsic mode functions energy WA - [34]
Cross-correlation Wavelet spectrum correlation AET 100 [41]

This paper presents a new SWD patient-specific detection method based on the statistical modeling
of the continuous Morlet wavelet coefficients. Precisely, we fit the generalized Gaussian distribution to
these coefficients and estimate the corresponding parameters. These parameters are used as features in
a 10-NN classifier. Training and testing of the learning model use different EEG datasets.

The remainder of the paper is structured as follows. Section 2 presents the EEG database,
and the proposed methodology, where we explain the continuous Morlet wavelet transformation,
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the generalized Gaussian distribution (GGD) statistical model, and the k-NN classifier. Experimental
results using the scale parameter from the GGD and the variance and median from the continuous
wavelet coefficients are reported in Section 3, flowed by discussion in Section 4. Conclusions, remarks,
and perspectives are presented in Section 5.

2. Materials and Methods

This section presents our statistical model-based method to detect spike-and-wave discharges
(SWD) in EEG signals. It is computationally very efficient, suitable for real-time implementation,
allowing on-line spike-and-wave detection. First, we describe the dataset used for experimentation,
then we present the different processing steps.

2.1. Database

A standard 10/20 EEG system was used at the Foundation for the Fight against Pediatric
Neurological Disease (FLENI) to acquire long-term 256 Hz EEG signal, from 12 human patients.
The following 22-channels were used: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, O2, Oz, FT10 and FT9. See [39] for more details. The acquired signals had a different waveform
and duration.

All EEG signals were labeled by a neurologist from FLENI to indicate the onset and duration of
the epilepticform. Based on these annotations, we extracted 212 short epochs (1-min average duration)
focusing on the spike-and-wave waveform. As such, a database with the 212 monopolar signal epochs
was created, with 106 SWD signals and 106 non-SWD signals. Each SWD signal has been restricted to a
narrow frequency band between 1–3 Hz. Figure 1 shows an example of a typical SWD signal. Visually,
one can observe that SWD patterns exhibit characteristic morphology; whereas non-SWD signals have
normal waveform.

Six patients with twenty (20) signals each were used for training our predictive model (Section 2.2).
This multiplicity of signals from the same patient has been decided to enforce learning-patient specific
patterns. A set of 96 signals from the other six patients were used for testing.
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Figure 1. (a) A sample SWD signal and the Morlet wavelet. Note that the scales are different.
(b) Example of 6 channels of one monopolar raw EEG, with SWD patterns in all channels.

2.2. Methodology

The proposed method is composed of four stages. The first stage divides every EEG
signal epoch, X ∈ RN×M with M channels and N time instants, into two-second segments per
channel, with one-second overlap across a rectangular sliding window. Please note that M is
fixed to 22, whereas N varies for different epochs (with an average duration of 60 s giving about
N = 256 ∗ 60 = 15, 360 samples). This will give [N/60] segments per channel. The second stage
consists of applying Morlet decomposition to create separate time–frequency representations for
each segment X t ∈ RN×1. The purpose of this decomposition is to evaluate the energy distribution
throughout the SWD frequency band (1–3 Hz). In the third stage, the statistical distribution of
the wavelet coefficients from each segment is represented using a zero-mean generalized Gaussian
distribution (GGD). A maximum likelihood method is used to estimate the GGD parameters, scale (ς)
and shape (τ) [4,42–44]. This statistical modeling stage gives M× [N/60] pairs of scale (ς) and shape (τ)
parameters, achieving a very strong dimension reduction. As we demonstrate it in the experimentation
section, the scale parameter ς was found statistically characteristic of the SWD waveform, and it is
proposed as a feature to detect such patterns [4,44]. Using a single parameter to classify patterns
is too strict and misses the natural variability in the data. For this reason, we compute two other
statistical parameters, namely the variance (σ2) and the median (x̃) from the wavelet coefficients of
each segment. The data from one EEG epoch reduces therefore to three parameters, {ς, σ2, x̃}, giving a
high dimension reduction while offering a flexible representation space to discriminate patterns while
accounting for natural variability. Please note, in total, we will have M× [N/60] ∗ 3 parameters for
any EEG signal epoch. Finally, a classification model has been trained to detect SWD patterns, using
the three features parameters. The proposed methodology is summarized in Figure 2. The following
sections describe each stage.
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2.2.2. Generalized Gaussian Distribution

The generalized Gaussian distribution (GGD) is a flexible statistical model often used in science
and engineering to represent data. We propose to represent the distribution of the Morlet wavelet
coefficients (Ct) using the GGD [47]. The probability density function (PDF) of the GGD is given by
the expression

fGGD(x; ς, τ) =
τ

2ςΓ(τ−1)
exp

(
−
∣∣∣∣ xς
∣∣∣∣τ) (5)

where ς ∈ R+ is a scale parameter, τ ∈ R+ is a shape parameter, and Γ (·) is the Gamma function.
Fitting equation (5) to the data Ct is performed using the maximum likelihood estimators Θ1

Ct
:

Θ1
Ct

= [ςt, τt]
T = arg max

[ς,τ]T
fGGD(Ct; ς, τ) (6)

For more details about the estimation of the GGD parameters, we refer the reader to our previous
work [4,42–44,48].

2.2.3. Feature Parameters

Through the previously-described stages, data from every signal epoch, M × N samples,
is reduced to the matrix of parameters (or features) ΘCt , composed of M× [N/60] rows, with three
columns consisting of our data, reduced to the matrix of parameters (or features) ΘCt , composed of
the scale parameter from the GGD, the variance and the median of the Morlet wavelet coefficients.

ΘCt = [ςt, σ2
t , x̃t]. (7)

Using this representation, the next stage consists of training a k-nearest neighbors classifier to
detect SWD patterns. Please, recall that we have 212 signal epochs in our database. All went through
the preceding dimension reduction process. A set of 120 of those (from six patients) served for training
and the remaining 96 (from the six other patients) were used for testing.
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Figure 3. Illustration of the variation of time-scale for Morlet continuous wavelet (a) for SWD with
fc = 1.2308 Hz, and (b) for non-SWD with fc = 0.8125. Note that, the energy distribution pattern is
different when comparing SWD and non-SWD.

2.2.4. k-Nearest Neighbors Classification

Using the feature vector ΘCt , consider a classification into two possible classes c = 0 (non-SWD)
and c = 1 (SWD). The probability of classifying a sample in one of the two classes is given by

ρ (ΘCt |c = 0) = 1
N0

∑n∈class 0N
(

ΘCt |Θ
n
Ct

, σ2 I
)

= 1
N0(2πσ2)

D/2 ∑n∈class 0 exp−

(
ΘCt

−Θn
Ct

)2

2σ2

(8)

ρ (ΘCt |c = 1) = 1
N1

∑n∈class 1N
(

ΘCt |Θ
n
Ct

, σ2 I
)

= 1
N1(2πσ2)

D/2 ∑n∈class 1 exp−

(
ΘCt

−Θn
Ct

)2

2σ2 ,
(9)

where D is the dimension of the sammple ΘCt , N0 and N1 are the numbers of training samples
from class 0 and class 1, respectively; and σ2 is the variance. Using the Bayes rule to classify a new
observation Θ∗Ct

, we obtain the following equation

ρ
(
c = 0|Θ∗Ct

)
=

ρ
(
Θ∗Ct
|c = 0

)
ρ (c = 0)

ρ
(
Θ∗Ct
|c = 0

)
ρ (c = 0) + ρ

(
Θ∗Ct
|c = 1

)
ρ (c = 1)

(10)

The maximum likelihood gives ρ(c = 0) = N0/(N0 + N1), and ρ(c = 1) = N1/(N0 + N1). Substituting
in Equation (10), we obtain the probability ρ

(
c = 0|Θ∗Ct

)
. The expression for ρ

(
c = 1|Θ∗Ct

)
can be
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derived in a similar manner. To determine which class is most likely, the ratio between the two
expressions is evaluated

ρ
(
c = 0|Θ∗Ct

)
ρ
(
c = 1|Θ∗Ct

) =
ρ
(
Θ∗Ct
|c = 0

)
ρ (c = 0)

ρ
(
Θ∗Ct
|c = 1

)
ρ (c = 1)

(11)

If the ratio is greater than one, Θ∗Ct
is classified as c = 0, otherwise it is classified as c = 1. It

is important to note that in the case where σ2 is very small in (11), then both the numerator and
denominator will be dominated by the term for which the sample Θ

n0
Ct

in class-0 or Θ
n1
Ct

in class-1 are
closest to the point Θ∗Ct

, such that

ρ
(

c=0|Θ∗Ct

)
ρ
(

c=1|Θ∗Ct

) = exp
−

(
Θ∗Ct

−Θ
n0
Ct

)2

2σ2 ρ(c=0)/N0

exp
−

(
Θ∗Ct

−Θ
n1
Ct

)2

2σ2 ρ(c=1)/N1

= exp
−

(
Θ∗Ct

−Θ
n0
Ct

)2

2σ2

exp
−

(
Θ∗Ct

−Θ
n1
Ct

)2

2σ2

(12)

On the limit σ2 → 0, Θ∗Ct
is classified as class 0 if Θ∗Ct

has a point in the class 0 data which is closer
than the closest point in the class 1 data. The nearest neighbor method is therefore recovered as the
limiting case of a probabilistic generative model. The parameter k is chosen based on

√
N, where N

is the number of samples in the training dataset. We refer the reader to [49,50] for a comprehensive
treatment of the mathematical properties of k-nearest neighbors classifier.

3. Results

The annotated database introduced in Section 2.1 was used to compute the feature vector
[ςt, σ2

t , x̃t] ∈ R3, based on the statistical model of the coefficients of the continuous Morlet wavelet.
The resulting features were used for off-line training the k-nearest neighbor classifier. With the
212 samples, k was set to 10 giving a 10−nearest neighbor.

Tables 2–4 show the statistical mean, standard deviation, variance and bounds values from the
feature vector. One can note that, sigma (ςt), variance (σ2

t ), and median (x̃t) are larger for SWD that
for non-SWD. Therefore, despite the overlapping statistical bounds, a threshold can be determined to
detect SWD patterns.

Table 2. Mean, standard deviation, variance and bound values for sigma parameter (ς) for class 0
(non-spike-and-wave) and class 1 (spike-and-wave).

Mean std Variance Bounds

Class 0 293 267.8017 71,718 [12, 1275]
Class 1 542 406.2597 165,047 [31, 1811]

Table 3. Mean, standard deviation, variance and bound values for the variance
(
σ2

t
)

for class 0
(non-spike-and-wave) and class 1 (spike-and-wave).

Mean std Variance Bounds

Class 0 1.446 × 106 4.235 × 106 1.794 × 1013 [9.46 × 102, 3.162 × 107]
Class 1 4.32 × 106 7.892 × 106 6.228 × 1013 [2.715 × 103, 4.321 × 107]
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results with real data from a hospital achieved 9 % sensitivity (true positive rate), 87% specificity (true
negative rate), and 92% accuracy. Based on our rule to choose k, the value was

√
212 ≈ 14, but we found

a better performance by choosing empirically k = 10 . Techniques used in this study are widely known
in the scientific community, but they have never before been put together to detect patient-specific
epileptiform patterns in EEG. Our main contribution lies in the type of features proposed to detect
spike-and-wave patterns and its application to human data. From a technical point of view, the GGD
scale parameter depends on the shape parameter, see Equation (5) and Tables 2–4. They can therefore
not be used together as features. Using only the scale parameter would restrict the representation
space leading to pour representation of natural variability in the data. We, therefore, augmented the
representation space by considering the variance and the median of wavelet coefficients. This choice
has proven pertinent to discriminating SWD patterns from non-SWD.

The data collection protocol consisted of a neurologist selecting ten SWD patterns for each
patient to be part of the training database. Our hypothesis was that using multiple signal patterns
from individual patients improves the classification. This enhances learning patient-specific patterns,
leading to precise detection of epileptiform patterns compared to previous work [39].

The collected dataset was previously used with other methods (see Table 5). We can see that the
proposed method doesn’t provide significantly more precise results. However, it has the advantage
of analyzing the EEG signal in the time-frequency domain, where previous methods were based
on temporal waveform characterization. On the other hand, the assumption that the data has a
generalized Gaussian distribution allows a strong dimension reduction, leading to low computational
solutions relying on rigorous statistical properties.

Table 5. Results form other methods applied to the same dataset in percent (%), in terms of TPR = True
Positives Rate or Sensitivity; TNR = True Negative Rate or Specificity; FPR = False positive Rate; ACC =
Accuracy: and high Specificity, rule in (SpPIn). Training and testing have different numbers of patients
due to different research settings.

Method Features Classifier TPR TNR ACC Training Testing Ref.

GGD
GGD parameters, variance and
median from time-frequency
Morlet wavelet decomposition

10-NN 95 87 92 212 96 Actual

Kendall’s Tau-b
Coefficient

Kendall’s Tau-b coefficient
significance in time domain SpPIn - 94 94 300 300 [39]

TLS TLS parameters in time domain 1-NN 100 100 100 192 46 [20]

Cross-correlation Correlation coefficient in time
domain Decision trees 86 98 97 96 46 [9]

5. Conclusions

This paper presented a new model-based classification method to detect spike-and-wave events
in long-term EEG signals in humans. The proposed method is based on the scale parameter of the
generalized Gaussian distribution augmented with the variance and the median of the continuous
Morlet wavelet coefficients from EEG data and a k-nearest neighbors classification technique.

The performance of the method was evaluated by training the model with an annotated real
dataset containing 212 signal recordings consisting of spike-and-wave and non-spike-and-wave events.
The classification performance was assessed by utilizing 96 segments and achieved 95% sensitivity
(true positive rate), 87% specificity (true negative rate), and 92% accuracy. These results set the path
to potentially new research to study the causes underlying the so-called absence epilepsy in long-term
EEG recordings.

In addition to its performance, the proposed method can be implemented in online epilepsy care
applications. However, due to the high dynamics of the EEG epileptic signals, some waveform might
be incomplete (with part of the signal missing due to artifacts). Our method is not able to detect such
situations, as confirmed by physicians using visual inspection [39]. Future work will focus on other
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epileptic waveform patterns as well as on the extensive evaluation of the proposed approach and its
comparison with other methods from the literature both in humans and rodents. Other techniques,
such as visual data analysis with t-distributed stochastic neighbor embedding [51] and deep learning
variational autoencoders [52] will be considered. For future clinical research, an on-line user interface
will be implemented with different functionalities such as automatic SWD detection and SWD pattern
counts for each brain region.
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