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A hannel ow DNS database at Re

�

= 590 is used to assess the validity of modelling

the redistribution term in the Reynolds stress transport equations by ellipti relaxation.

The model assumptions are found to be globally onsistent with the data. However, the

orrelation funtion between the utuating veloity and the Laplaian of the pressure

gradient, whih enters the integral equation of the redistribution term, is shown to be

anisotropi. It is elongated in the streamwise diretion and strongly asymmetri in the

diretion normal to the wall, in ontrast to the isotropi, exponential model representation

used in the original ellipti relaxation model. This disrepany is the main ause for the

slight ampli�ation of the energy redistribution in the log layer as predited by the ellipti

relaxation equation. New formulations of the model are proposed in order to orret this

spurious behaviour, by aounting for the rapid variations of the length sale and the

asymmetrial shape of the orrelation funtion. These formulations do not rely on the

use of wall eho orretion terms to damp the redistribution. The belief that the damping

is due to the so alled \wall eho" e�et is alled into question through the present DNS

analysis.

1. Introdution

In seond moment losures, one of the most important and diÆult tasks is to model

the pressure gradient{veloity orrelation in the Reynolds stress transport equations.

Indeed, sine the prodution does not need any modelling at this losure level, partiular

attention must be foused on this orrelation term and on the dissipation. In a hannel

ow (e.g. Mansour, Kim & Moin 1988) the pressure gradient{veloity orrelation, whose

e�et is mainly to redistribute the energy among the Reynolds stresses (hene alled the

\redistribution term"), is the only soure term in the budgets of the wall-normal and

spanwise Reynolds stresses; it balanes the prodution in the shear stress budget.

Sine the pioneering works of Chou (1945) and Rotta (1951), the loal approah, whih

algebraially relates the unlosed redistribution term to the Reynolds stress anisotropy,

mean strain, and mean vortiity tensors, has been popular in the turbulene modelling

ommunity. All standard models are based on this approah. The redistribution term is
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written in an integral form and split into three parts, the rapid, slow and surfae parts.

The slow part, whih does not involve any mean ow quantity, is modelled in terms of

the Reynolds stress anisotropy. The rapid part is expressed in terms of produts between

mean veloity gradients and a fourth-order tensor, based on the assumption that the

mean veloity gradient is loally onstant. This quasi-homogeneous approah has been

the starting point of almost all seond moment losure models. In most of them, linear

ones in partiular, (e.g. Rotta 1951; Naot, Shavit & Wolfshtein 1973; Launder, Reee &

Rodi 1975) and even fully nonlinear ones (e.g. Fu, Launder & Tselepidakis 1987), the

surfae part is negleted or modelled by wall eho terms, as suggested by Gibson &

Launder (1978). In others, the inuene of the solid boundary is aounted for through

variable oeÆients, leading to quasi-linear models, suh as that of Speziale, Sarkar &

Gatski (1991). In the reent model of Craft & Launder (1996), the nonlinear formulation

diretly inludes wall indued e�ets.

However, the validity of the quasi-homogeneous approximation used for the rapid part

is questionable. It assumes that the mean veloity gradient varies suÆiently slowly to

allow it to be taken outside the integral, whih is not the ase in strongly inhomogeneous

turbulene. Bradshaw, Mansour & Piomelli (1987) used the hannel ow DNS of Mansour

et al. (1988) to show that this hypothesis is orret down to y

+

= 40, but totally invalid

below this value. Another weakness of the quasi-homogeneous approah is the loss of the

non-loal harater of the redistribution term. The integral equation for the latter, whih

involves two-point orrelations between veloities and Laplaian of the pressure gradient,

shows that it atually depends on the mean ow and the turbulene state at all points of

the domain. Kim (1989) showed that in a hannel, exept in the very near-wall region,

the redistribution term takes ontributions from all the domain, inluding the opposite

wall. Furthermore, a number of theoretial studies (e.g. Hunt & Graham 1978) as well as

diret numerial simulations (Perot & Moin 1993) showed that the strutures of the ow,

and the assoiated length sales, are strongly a�eted by the presene of a solid boundary

even in the absene of mean shear, beause of the bloking e�et whih is non-loal. In

partiular, the two-point orrelations of the wall-normal veloity are, as shown by Hunt

et al. (1989), inuened near the wall by the image eddies. These non-loal e�ets make

the redistribution term diÆult, if not impossible, to model in terms of loal variables.

Furthermore, the quasi-homogeneous models annot in general be integrated down to

solid boundaries without introduing orretions, suh as damping funtions (there are

exeptions, suh as the Craft & Launder 1996 model). Damping funtions are not univer-

sal, sine they are derived by �tting experimental or DNS results with little theoretial

justi�ation.

In order to avoid suh problems, Durbin (1991;1993) introdued a novel approah.

He proposed to model diretly the two-point orrelation in the integral equation of the

redistribution term, using an isotropi, exponential funtion. A onvolution produt is

obtained, whih an be inverted to give the so-alled ellipti relaxation approah. The

redistribution term is no longer given by an algebrai relation, but rather by a dif-

ferential equation. The non-loal harater is preserved through the ellipti operator

(1� L

2

r

2

), and the model an be integrated down to the wall. A notable feature of this

approah is that the soure term of the ellipti relaxation equation an be given by any

quasi-homogeneous model. Hene, it enables the derivation of models valid down to solid

boundaries, from the quasi-homogeneous models ited above, whih have been tested

over a wide range of di�erent ows. Even though some intuitive assumptions have been

made, Durbin's model is based on a theoretial approah, leading to the hope that it is

somewhat universal, unlike damping funtions.

The ellipti relaxation model has led to very enouraging results, espeially as applied
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to the v

2

{f (or k � "� v

2

) model, whih is a version of the full Reynolds stress model

redued to three transport equations. Suessful preditions inlude, but are not limited

to, ows with adverse pressure gradient and around blu� bodies (Durbin 1995), three

dimensional boundary layers (Parneix, Durbin & Behnia 1998), aerodynamis (Lien,

Durbin & Parneix 1997), and heat transfer (Behnia, Parneix & Durbin 1998; Maneau,

Parneix & Laurene 2000).

Despite the remarkable suess, rooms for improving the ellipti relaxation model ex-

ist. Many of the underlying model assumptions, introdued intuitively, have not been

validated by either experiments or DNS. The objetive of the present study is to evalu-

ate these assumptions through the analysis of a hannel ow DNS database, and to �nd

ways to improve the theoretial basis and performane of the model. The main issues to

be examined inlude the validity of the two-point orrelation approximation employed

by Durbin (1991), the validity of the length sale used in the ellipti operator, and the

unsatisfatory behaviour of the model in the logarithmi layer. A full explanation of these

issues is given in x 2 and x 3. In x 4, the results of the DNS analysis are disussed. It is

found that the ellipti relaxation model is globally onsistent with the simulation data,

and that the orrelation length sale is adequately modelled by the turbulent length sale

bounded near the wall by the Kolmogorov length sale. However, the orrelation funtion

between the utuating veloity and the Laplaian of the pressure gradient is strongly

anisotropi and inhomogeneous. Its approximation by an isotropi, exponential funtion

is responsible for the spurious ampli�ation of the energy redistribution in the log layer,

as predited by the model. It is further disovered that the so alled \wall eho" e�et

inreases the redistribution of energy, ontrary to the general belief. The physial in-

sights gained through the DNS study are used, in x 5, to develop new formulations of the

model that retify the erroneous logarithmi-layer behaviour. This is ahieved by taking

into aount the inuene of strong inhomogeneity and anisotropy on the redistribution

term, using a spatially variable length sale and an asymmetri model of the orrelation

funtion. Unlike some previous ad ho formulations, the new formulations emphasize a

systemati, sienti� approah to turbulene modelling, guided by the DNS data. Finally,

x 6 summarizes the major �ndings and aomplishments of this work.

2. Theoretial bakground

2.1. Integral equation of the redistribution term

The pressure gradient{veloity orrelation entering the Reynolds stress transport equa-

tions is

��

�

ij

= �u

i

�p

�x

j

� u

j

�p

�x

i

; (2.1)

where � is the density, p is the utuating pressure and u

i

are the utuating veloity

omponents. The overline indiates ensemble average. Traditionally, this term is split into

pressure{strain orrelation and pressure di�usion. However, sine this splitting is non-

unique (Lumley 1975) and inonsistent with the Navier{Stokes equations in the limit of

two-dimensional turbulene (Speziale 1985), it appears more appropriate to model the

pressure gradient{veloity orrelation as a whole. Sine the pressure di�usion is negligible

in the main part of the ow, �

�

ij

an be regarded as the energy redistribution between

the omponents of the Reynolds stress, exept in the near-wall region, where it balanes

the di�erene between dissipation and moleular di�usion.

The gradient of the pressure utuation is the solution of the Poisson equation obtained
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from the divergene of the utuating part of the Navier{Stokes equations,

r

2

�p

�x

k

= ��

�

�x

k

�

2

�U

i

�x

j

�u

j

�x

i

+

�u

i

�x

j

�u

j

�x

i

�

�u

i

�x

j

�u

j

�x

i

�

: (2.2)

Following Kim (1989), it will be assumed that the ontribution from the inhomogeneous

boundary ondition, or the \Stokes part", is negligible. Aordingly, �p=�x

k

approxi-

mately satis�es a homogeneous Neumann boundary ondition.

Using the Green funtion G




of the domain, the solution of (2.2) takes the form

�p

�x

k

(x) =

Z




r

2

�p

�x

k

(x

0

)G




(x;x

0

) dV (x

0

); (2.3)

where x and x

0

denote position vetors, and dV the elementary volume. The integral

equation of the redistribution term an be derived from (2.1) and (2.3):

��

�

ij

(x) =

Z




	

ij

(x;x

0

)G




(x;x

0

) dV (x

0

); (2.4)

where 	

ij

(x;x

0

) denotes the two-point orrelation between the veloity and the Laplaian

of the pressure gradient:

	

ij

(x;x

0

) = �u

i

(x)r

2

�p

�x

j

(x

0

)� u

j

(x)r

2

�p

�x

i

(x

0

): (2.5)

2.2. The ellipti relaxation equation

In (2.4), the two-point orrelations between the veloity and the Laplaian of the pressure

gradient need to be modelled. Durbin (1991) de�ned a orrelation funtion

	

ij

(x;x

0

) = 	

ij

(x

0

;x

0

)f(x;x

0

); (2.6)

and modelled it by

f(x;x

0

) = exp

�

�

r

L

�

; (2.7)

where r = kx

0

� xk and L is the orrelation length sale. This approximation is the

orner-stone of the ellipti relaxation model and the validity of (2.7) is the main onern

of this paper.

In a free spae, using the model (2.7), the redistribution term an be written as

��

�

ij

(x) = �

Z




	

ij

(x

0

;x

0

)

exp

�

�

r

L

�

4�r

| {z }

E(r)

dV (x

0

): (2.8)

In this form, �

�

ij

appears as a onvolution produt between 	

ij

and E(r), whih is the

free-spae Green funtion assoiated with the operator �r

2

+ 1=L

2

. Due to (2.6), the

one-point orrelation in the integrand is expressed as a funtion of x

0

. If it were expressed

as a funtion of x, the one-point orrelation ould have been taken outside the integral in

(2.8), and the non-loal e�et would have been lost or entirely reast into f(x;x

0

), whih

would then be more diÆult to model. The onvolution integral (2.8) an be inverted,

yielding the ellipti relaxation equation:

�

�

ij

� L

2

r

2

�

�

ij

= �

L

2

�

(u

i

r

2

�p

�x

j

+ u

j

r

2

�p

�x

i

): (2.9)

In homogeneous situations, the seond term on the left hand side of this equation van-
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ishes. Therefore, Durbin (1991) proposed to replae the right hand side by any quasi-

homogeneous model �

h

ij

, whih leads to the model

�

�

ij

� L

2

r

2

�

�

ij

= �

h

ij

: (2.10)

This method provides a simple way of extending quasi-homogeneous models down to solid

boundaries, when appropriate boundary onditions for �

�

ij

are applied (Durbin 1993).

3. Presentation of the DNS assessment

3.1. Issues to examine

The ellipti relaxation approah is mainly based on the assumption that the orrelation

funtion f(x;x

0

), de�ned by (2.6), an be modelled by an exponential funtion. This

approximation was introdued by Durbin (1991) on an intuitive basis, in order to preserve

the non-loal e�et on the redistribution term. However, its validity has never been

heked before, and the shape of 	

ij

(x;x

0

) needs to be investigated. The DNS database

of the hannel ow at Re

�

= 590 (Moser, Kim & Mansour, 1999) will be used for this

purpose.

Another aim of this work is to evaluate the orrelation length sale involved in the

model (2.7) for the orrelation funtion f(x;x

0

). If the turbulent length sale were used

in the whole ow, sine it goes to zero at solid boundaries, the ellipti operator L

2

r

2

would vanish at the wall, introduing a singularity in the di�erential equation. Therefore,

Durbin (1991) proposed using the standard turbulent length sale in the main part of

the ow, and the Kolmogorov length sale in the viinity of the wall, i.e.,

L = C

L

max

 

C

�

�

3=4

"

1=4

;

k

3=2

"

!

: (3.1)

It is of interest to evaluate preisely the orrelation length sale from the DNS data, in

order to assess the validity of (3.1).

The ultimate objetive of this work is to �nd ways to improve the model. As pointed

out by Wizman et al. (1996), the ellipti operator does not behave entirely orretly in

the logarithmi layer. Suppose, for instane, that the Isotropisation of Prodution model

(Naot, Shavit & Wolfshtein 1973; Launder, Reee & Rodi 1975), denoted heneforth as

IP model, and the Rotta (1951) model are used as the rapid and slow parts of the soure

term �

h

ij

in (2.10). The redistribution term is then given by

�

�

ij

� L

2

r

2

�

�

ij

= �C

1

"

k

�

u

i

u

j

�

2

3

kÆ

ij

�

� C

2

�

P

ij

�

2

3

PÆ

ij

�

; (3.2)

where P

ij

= �u

i

u

k

�U

j

=�x

k

� u

j

u

k

�U

i

=�x

k

and P =

1

2

P

ii

. In the logarithmi layer, the

Reynolds stresses are onstant, and the prodution and the dissipation behave as y

�1

.

Thus, the right hand side in (3.2) behaves as y

�1

, and the redistribution term is then given

by �

�

ij

� 1:51�

h

ij

. This result shows that the ellipti operator leads to an ampli�ation of

the redistribution. Note that the same ampli�ation ours with any model for �

h

ij

.

The overestimation of the energy redistribution by the Rotta & IP model in the log-

arithmi layer has led a number of modellers to introdue wall eho type terms, follow-

ing Gibson & Launder (1978). It would be desirable for the ellipti relaxation equation

to ompensate for this shortoming. Some models, suh as the Speziale, Sarkar & Gatski

(1991) model, or Craft & Launder (1996) model, orretly reprodue the redistribution

in the logarithmi layer. In this ase, it would be preferable that the ellipti relaxation

model be neutral, produing neither ampli�ation nor redution of the redistribution.
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Based on the above onsiderations, Wizman et al. (1996) proposed two new formula-

tions of the ellipti relaxation equation. First, they introdued a neutral formulation by

taking L

2

in (2.10) inside the Laplaian operator:

�

�

ij

�r

2

�

L

2

�

�

ij

�

= �

h

ij

: (3.3)

Seondly, for models that overestimate the redistribution, they proposed

�

�

ij

� L

2

r �

�

1

L

2

r

�

L

2

�

�

ij

�

�

= �

h

ij

; (3.4)

whih exhibits the expeted damping. Laurene & Durbin (1994) and Durbin & Laurene

(1996) suggested two other neutral formulations, given by

�

�

ij

�r �

�

L

2

r�

�

ij

�

= �

h

ij

; (3.5)

and

�

�

ij

� Lr

2

�

L�

�

ij

�

= �

h

ij

: (3.6)

These new formulations have been derived empirially and su�er form a lak of jus-

ti�ations, as emphasized by the authors themselves. This work aims, through a DNS

analysis, to provide a more solid basis for deriving suh modi�ations to the model. The

entral idea is that the orrelation funtion f(x;x

0

) annot be represented by a sim-

ple exponential funtion, ontrary to what was assumed by Durbin (1991). Indeed, the

presene of the wall indues a bloking e�et, leading to not only an elongation of the

turbulent strutures, but also an asymmetry in the diretion normal to the wall. Flu-

tuating quantities are orrelated over a shorter distane in the diretion toward the wall

than away from it. There is plenty of experimental evidene (Hanjali� & Launder 1972;

Sabot 1976) of this feature in two-point orrelations between omponents of the utu-

ating veloity, and one an reasonably dedue that the two-point orrelations between

the utuating veloity and the Laplaian of the pressure gradient behave in a similar

manner. The use of the symmetrial orrelation funtion (2.7) leads to overweighting

the region between the point and the wall, whih may be the reason for the spurious

behaviour of the ellipti relaxation equation in the logarithmi layer. This issue will be

explored in the present DNS analysis, in order to understand how modi�ations to the

ellipti relaxation model, suh as those proposed by Wizman et al. (1996), Laurene &

Durbin (1994) and Durbin & Laurene (1996), an be derived.

3.2. Channel ow database and post-proessing

The orrelation funtion f(x;x

0

) involves the Laplaian of the pressure gradient, whih

ontains three spatial derivatives. Therefore, a very aurate DNS database is needed.

The hannel ow simulation at Re

�

= 590 performed by Moser et al. (1999) was hosen

beause of its numerial auray, the large number of available statistial samples, and

the relatively high Reynolds number. This ow was omputed on a grid of 384� 257� 384

points in streamwise (x), wall-normal (y) and spanwise (z) diretions, respetively. The

omputational domain is 2�h, 2h and �h in x, y and z, where h denotes the hannel half-

width. The simulation ode is based on a spetral method for spatial derivatives (Fourier

series in x and z, and Chebyhev polynomials in y), and a semi-impliit sheme for time

integration. For statistial averaging, a total of 75 �elds (restart �les) are available, in

addition to the spatial averaging in x- and z-diretions.

The two-point orrelations between the utuating veloities and the Laplaian of the

pressure gradient are needed for evaluating the orrelation funtion f(x;x

0

). First, the
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Laplaian of the total pressure is evaluated from the veloity �eld,

r

2

ep = ��

�eu

i

�x

j

�eu

j

�x

i

; (3.7)

where the tilde denotes total quantities, using the same Fourier/Chebyhev spetral

method as for the DNS. The gradient of this quantity is alulated using Fourier spetral

derivatives in x and z, and fourth order �nite di�erenes in y. The one-point and two-

point orrelations between this gradient and the total veloity omponents are then

alulated, and orresponding mean quantities are �nally subtrated out in order to

obtain orrelations between utuating quantities. The post-proessing omputations

are very time onsuming, sine they involve alulations of two-point orrelations and

averaging over 75 restart �les and x{z planes. As a pratial matter, alulations are

performed at 7 representative y-loations only, for separations restrited to x{y, x{z and

y{z planes.

4. Results and disussion

4.1. The wall eho

The wall eho onept originates from the form of the integral equation of the redistri-

bution term in a semi-in�nite spae bounded by an in�nite plane (
 = IR� IR

+

� IR). In

this domain, it an easily be shown that the Green funtion is

G

IR�IR

+

�IR

(x;x

0

) = �

1

4�r

�

1

4�r

�

; (4.1)

where r

�

= kx

0

�

� xk, x

0

�

being the image of x

0

in the plane y = 0. The image term

is due to the homogeneous Neumann boundary ondition. Thus, at eah point of the

domain, the pressure utuation is the sum of the utuations generated by the veloity

�eld and its reetion in the wall, whih is alled wall eho by analogy with aoustis.

This eho is instantaneous, sine the uid is onsidered as inompressible.

Sine the paper of Launder, Reee & Rodi (1975), it has been widely aepted in

the turbulene ommunity that this wall eho is responsible for the redution of the

amplitude of the energy redistribution between omponents of the Reynolds stress. In

seond moment losures, wall eho terms are frequently inorporated to aount for this

phenomenon, as proposed by Gibson & Launder (1978). These terms have proven to be

e�etive for simple ows but are often not well de�ned in omplex geometries.

The onlusion that wall eho redues redistribution is, however, inorret. Sine the

image term in the Green funtion appears with the same sign as the prinipal term, it

atually indues an ampli�ation of the redistribution.

In the ase of a hannel (
 = IR� [0; 1℄� IR), the Green funtion is easily derived after

taking Fourier transform in homogeneous diretions. However, working in the spetral

spae is not relevant in the present study. In order to examine the problem of the wall

eho e�et in a hannel, an approximate Green funtion is needed.

It an be shown (f. appendix A) that the simplest approximation to the Green fun-

tion whih is valid down to the wall and aommodates the boundary onditions is

G




(x;x

0

) � H(x;x

0

), with

H(x;x

0

0

) = �

1

4�kx

0

�1

� xk

�

1

4�kx

0

0

� xk

�

1

4�kx

0

1

� xk

; (4.2)

where x

0

�1

and x

0

1

are the images of x

0

0

in the walls loated at y = 0 and y = 1,

respetively.
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Figure 1. Comparison of the three terms in the integrand of (4.3) at y

+

= 30 for separations

in y-diretion. (a) Integrand of �

�

11

; (b) Integrand of �

�

22

. prinipal term (n = 0);

image term due to the wall at y

+

= 0 (n = �1); image term due to the wall at y

+

= 1180

(n = 1). The vertial oordinate is arbitrarily normalized suh that the maximum of n = �1

term is 1.

With this approximation, the redistribution term (2.4) an be written as

��

�

ij

(x) = �

1

4�

Z




	

ij

(x;x

0

0

)

�

1

kx

0

�1

� xk

+

1

kx

0

0

� xk

+

1

kx

0

1

� xk

�

dV (x

0

0

):

(4.3)

The three terms in the integrand, alulated from the DNS database, are shown in

�gure 1, for the omponents �

�

11

and �

�

22

. The solid line, representing the prinipal term,

has been trunated beause it goes to in�nity at y

0

� y = 0. It an be seen that the image

term arising from the far wall at y

+

= 1180 is negligible, but not the term due to the near

wall at y

+

= 0. The exat weight of eah term has not been evaluated, sine it involves

integral of two-point orrelations over separations in all diretions, whih have not been

alulated. Nevertheless, following Bradshaw (1973), the amplitude of eah term an be

roughly estimated: the two-point orrelation an be approximated by a onstant inside

a sphere of radius L, and zero outside of it. If L=y and y=2h are both small, (4.3) yields

��

�

ij

(x) = �

L

2

2

	

ij

(x;x)

�

L

3y

+ 1 +

L

6h

�

: (4.4)

This result shows that, if the length sale is L = �y, the ratio of the image term (n = �1)

to the prinipal term is approximately 14 %. For the seond image term (n = 1), the ratio

is 0:07y=h, whih is approximately 0:4 % at y

+

= 30. Thus, the �rst image term annot

be negleted, as long as the length sale is of the order of �y. Note that, ontrary to

Bradshaw (1973), who onluded that the presene of the wall hanges the redistribution

term by �0:14, we an aÆrm that the sign is positive, i.e., the wall eho atually inreases

the redistribution. Indeed, it an be seen in �gure 1 that the ontribution of the image

terms to the integral is of the same sign as that of the prinipal term. The weight of the

negative exursions of the �rst image term is far too small to hange the sign of the total

ontribution of this term.

Thus, an interesting and important onlusion an be drawn. The atual wall eho leads

to an ampli�ation of the redistribution, ontrary to the ommon belief. The Gibson &

Launder (1978) type terms, whih have been found useful in reproduing the strong

anisotropy near walls, have the orret damping e�et, but for the wrong reason. This

damping annot be traed to the wall eho e�et, i.e., the appearane of an image term

in the Green funtion. Rather, it is aused by the damping of the two-point orrelation
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itself, due to the modi�ation of the turbulene by the wall, as a onsequene of the non-

loal nature of the redistribution term in the strongly inhomogeneous boundary layer.

The suess of Gibson & Launder (1978) type terms lies in the introdution of non-loal

e�ets through the expliit referene to the wall-distane, and we believe the more reent

attempts to replae these terms by highly nonlinear models is not the best route to

follow. Non-loal models, suh as the ellipti relaxation model, appears more suitable for

aounting for the inuene of the wall on the turbulene.

4.2. Asymmetry in y-diretion

In this setion the shape of the orrelation funtion de�ned by (2.6) is evaluated. One

problem that arises is that this funtion should depend on the omponent (i; j). Indeed,

a di�erent orrelation funtion an be evaluated for eah omponent of �

�

ij

by

f(x;x

0

) =

u

�

(x)r

2

�p

�x

�

(x

0

) + u

�

(x)r

2

�p

�x

�

(x

0

)

u

�

(x

0

)r

2

�p

�x

�

(x

0

) + u

�

(x

0

)r

2

�p

�x

�

(x

0

)

; (4.5)

without summation over Greek indies. Thus, it is impossible to derive a model for f

whih mathes all the DNS results.

In fat, the most general relation between two-point orrelation and one-point orre-

lation tensors, if they are assumed to be linearly onneted, is

	

ij

(x;x

0

) = f

ijkl

(x;x

0

)	

kl

(x

0

;x

0

): (4.6)

In this relation, the fourth order tensor f

ijkl

involves 81 oeÆients, but their number

an be dramatially redued by using symmetry properties, as shown by Naot, Shavit &

Wolfshtein (1973). However, this type of relation remains too ompliated for the purpose

of aounting for the non-loal e�et. Therefore, a simple salar orrelation funtion is

used, keeping in mind that it an only represent approximately the non-loal e�et. The

following results must be interpreted in this sense.

The orrelation funtions evaluated from (4.5) are shown in �gure 2. The orrelation

funtions in �gures 2(a) and 2(b) orrespond respetively to �

�

11

and �

�

22

. Some features

whih an be seen in this �gures are rather favourable to the ellipti relaxation model:

�rst, the orrelation funtions exhibit sharp peaks, whih is onsistent with the use of an

exponential funtion to model it; seondly, the orrelation lengths for both omponents

11 and 22 evolve in a similar way when the �xed loation moves away from the wall.

However, some other features do not agree with the simple model assumptions. First,

the peaks in �gure 2(a) are muh broader than these in �gure 2(b), indiating that the

orrelation length sale is not the same for all the omponents. Seondly, the orrelation

funtion exhibits negative exursions, at loations lose to the wall for the 11 ompo-

nent, and everywhere in the hannel for the 22 omponent. These features, whih are

very similar to those observed in the two-point veloity orrelations in boundary layer

experiments (Grant 1958; Favre, Gaviglio & Dumas 1957; 1958), all into question the

modelling of the orrelation funtion by a simple exponential funtion. Nevertheless, as

emphasized previously, the model does not intend to represent exatly the two-point or-

relations, but only to globally aount for the non-loal e�et. Moreover, it will be shown

in the following setions that the orrelation length sale, evaluated as the half-width of

the peak of the orrelation funtion, is very similar to the integral sale. This indiates

that the negative exursions do not ontribute signi�antly to the integral, and thus do

not strongly inuene the redistribution term.

The main feature whih arises from these �gures is that the orrelation funtions do
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Figure 2. Shape of the orrelation funtion alulated from the DNS database at 7 di�erent

y-loations: y

+

= 4; y

+

= 14; y

+

= 30; y

+

= 80; y

+

= 150; y

+

= 400; y

+

= 590. Separations

in the x- and z-diretions are zero. f(x;x

0

) is evaluated from (4.5) with: (a) � = � = 1; (b)

� = � = 2. For larity, urves have been trunated at large separations.

not have symmetrial shapes. It an also be seen that the maxima of the peaks do

not generally our at zero separation. As it is de�ned, the orrelation funtion is not

restrited to be smaller than one. Values greater than one an our if the amplitude

(rms value) of the utuating veloity varies rapidly with distane to the wall.

The main impliation of this asymmetrial shape is that the points x

0

loated between

the �xed point x and the wall ontribute less to the integral than points x

0

toward the

ore of the ow. Hene, modelling the orrelation funtion by a symmetrial exponential

funtion leads to overweighting the points toward the wall, thus inreasing the value

of the integral (a formal proof of this an be found in Appendix B). This problem is

illustrated by �gure 3, for the 22 omponent. The orrelation funtions alulated from

the DNS using (4.5), as well as from two models, are shown in �gure 3(a). The �rst

one is the original model, i.e., a simple exponential funtion, whereas the seond takes

into aount the gradient of the length sale in order to reprodue the previously noted

asymmetry. In �gure 3(b), two-point orrelations obtained by multiplying the one-point

orrelation from the DNS by the modelled orrelation funtion are shown. It an be seen

that, with the original model, points toward the wall are overweighted, whereas with the

orreted model, the two-point orrelations are muh better reprodued in this region.

The overweighting of the two-point orrelation for separations in the diretion of the

wall is thought to be at the origin of the erroneous ampli�ation of the redistribution in

the logarithmi layer noted in x 3.1. As shown in �gure 3(b), introduing a dependene

on the gradient of the length sale in the model to aount for the asymmetry of the

orrelation funtion orrets this de�ieny. It will be shown, in x 5.2, that a new formu-

lation of the ellipti relaxation funtion an be derived from this extended model and, in

x 5.3, that this formulation overomes the shortomings of the original one.
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Figure 3. Two-point orrelation 	

DNS

22

(x;x

0

) at y

+

= 80 obtained using two di�erent orrelation

funtions. (a) Correlation funtion: 3 f

DNS

(x;x

0

); original model f

1

(x;x

0

) = exp(�r=L);

asymmetrial model f

2

(x;x

0

) = exp (�r=(L+ (x

0

� x) � rL)). (b) 2 One-point orre-

lation 	

DNS

22

(x

0

;x

0

); Æ Two-point orrelation 	

DNS

22

(x;x

0

) (=	

DNS

22

(x

0

;x

0

)f

DNS

(x;x

0

));

Two-point orrelation given by the original model 	

22

(x;x

0

) = 	

DNS

22

(x

0

;x

0

)f

1

(x;x

0

);

Two-point orrelation given by the asymmetrial model 	

22

(x;x

0

) = 	

DNS

22

(x

0

;x

0

)f

2

(x;x

0

).

4.3. Anisotropy

The asymmetry in the diretion normal to the wall, whih has been emphasized in the

previous setion, is not the only anisotropy. The purpose of this setion is to point out

that the orrelation funtion does not possess the same shape for separations in the

three prinipal diretions. This anisotropy is visible in �gures 4 and 5, for orrelation

funtions orresponding to �

�

11

and �

�

22

, respetively. At loations very lose to the wall

(�gures 4a,b and 5a,b), the orrelation funtion is strongly elongated in the streamwise

diretion, in partiular for the 22-omponent (�gure 5a,b). This is mainly due to the fat

that, in the y-diretion, the orrelation length sale is onstrained by the presene of the

wall (wall-bloking e�et). In �gures 4 and 5, it an be noted that f goes to in�nity at

the wall. For instane, for the 22-omponent, f behaves as y

0�2

when x

0

approahes the

wall. This is a onsequene of its de�nition (4.5): the two-point orrelation only ontains

u

2

(y), whih is onstant with respet to y

0

, whereas the one-point orrelation involves

u

2

(y

0

), whih behaves as y

02

.

Away from the wall, the orrelation funtion beomes inreasingly isotropi (�gures 4{

f and 5{f ). In the enter of the hannel, it is ompletely isotropi for the 11-omponent

(�gure 4g), but still slightly elongated in the streamwise diretion for the 22-omponent

(�gure 5g). These features are also onspiuous in �gures 6{11. In the �gures (a), (b)

and (), the shapes of the orrelation funtions are shown for separations in x{y, x{z

and y{z planes, respetively. The iso-orrelation ontours in these planes are shown in

the �gures (d). The elongation of the orrelation funtion, whih is onsistent with the

well-known elongation of turbulent strutures near the wall, learly appears in �gures 6
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Figure 4. Shape of the orrelation funtion de�ned by (4.5) with � = � = 1, evaluated from the

DNS data, in the 3 prinipal diretions, at 7 di�erent y-loations. (a) y

+

= 4; (b) y

+

= 14; ()

y

+

= 30; (d) y

+

= 80; (e) y

+

= 150; (f ) y

+

= 400; (g) y

+

= 590. Separations: x-diretion

(�y = �z = 0); y-diretion (�x = �z = 0); z-diretion (�x = �y = 0).
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Figure 7. Same as �gure 6 with � = � = 2 at y

+

= 14.



14 R. Maneau, M. Wang and D. Laurene

-100

-50

0

50

100

-20
0

20
40

    0

  0.5

    1

(a)

�x

�y

f

(

x

;

x

0

)
-100

-50

0

50

100

-50

0

50

    0

  0.5

    1

(b)

�x

�z

f

(

x

;

x

0

)

-50

0

50

-20
0

20
40

    0

  0.5

    1

(c)

�y

�z

f

(

x

;

x

0

)

-100 -50 0 50 100

-30

-20

-10

0

10

20

30

40

50

-60

-40

-20

0

20

40

60

(d)

�x

�y

�z

Figure 8. Same as �gure 6 with � = � = 1 at y
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= 30.
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Figure 10. Same as �gure 6 with � = � = 1 at y

+

= 150.
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Figure 12. Length sales haraterizing the orrelation funtion orresponding to �

�

22

evaluated

from the urves in �gure 5. (a) Comparison of the length sales in y-diretion:� Left length sale

L

�e

2

; � Right length sale L

e

2

; 3 Central length sale L =

1

2

(L

�e

2

+ L

e

2

). (b) Comparison of

the entral length sales in the prinipal diretions: Æ x-diretion; 3 y-diretion; 2 z-diretion.

and 7, in partiular for the 22-omponent. It gradually dereases when the �xed point x

moves away from the wall (�gures 8 and 9). Further away from the wall (�gures 10 and

11), the elongation in streamwise diretion is almost totally removed, but the asymmetry

in y-diretion, emphasized in x 4.2, is visible.

The model does not aount for the elongation in streamwise diretion, sine it uses a

funtion of r, whih does not distinguish di�erent diretions. This shortoming annot be

responsible for the spurious ampli�ation of the redistribution in the logarithmi layer,

pointed out in x 3.1, sine in the ase of a hannel ow, the non-loal e�et does not

at in the homogeneous diretions x and z. Nevertheless, in more omplex ows, this

feature of the orrelation funtion an beome signi�ant. In x 5.1, a new formulation of

the ellipti relaxation equation will be proposed, allowing the introdution of di�erent

length sales in eah diretions, thus taking into aount the anisotropy of the turbulent

strutures.

4.4. Length sales

It is noted that the funtion exp (�r=L) takes the value 1=e for r = L. Hene, the or-

relation length sale an be de�ned by the separation at whih the orrelation funtion

takes this value. Notwithstanding its simpliity, this method provides an evaluation of a

length sale L

m

, de�ned impliitly by

f(x;x+ L

m

m) =

1

e

; (4.7)

in eah diretion m, inluding the inhomogeneous diretion. The drawbak is that this

de�nition only enables the haraterization of the shape of the funtion at moderate

separations and annot aount for more omplex features, suh as negative exursions.

Figure 12 shows the di�erent length sales evaluated with this method from the

orrelation funtions orresponding to �

�

22

, depited in �gure 5. In �gure 12(a), three

length sales in the y-diretion are ompared: the left length sale, de�ned by (4.7) with

m = �e

2

(e

1

,e

2

and e

3

being the basis vetors in streamwise, wall-normal and span-

wise diretions, respetively); the right length sale, de�ned by (4.7) with m = e

2

, and

the entral length sale, whih is the algebrai mean of the two previous ones, i.e., the

half-width of the orrelation funtion. It an be noted that the asymmetry, already em-

phasized in x 4.2, is rather strong in the main part of the ow. Exept for the peuliar
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Figure 13. Comparison of the di�erent length sale de�nitions for the �

�

22

omponent, evaluated

from the DNS data: 2 Correlation length sale L (entral length sale in �gure 12a), de�ned

as the half-width of the orrelation funtion; Æ Æ Integral length sale L

int

de�ned by (4.10)

with i = j = 2; Turbulent length sale used in the model L

T

= C

L

k

3=2

"

�1

(C

L

= 0:045);

Kolmogorov length sale used near the wall in the model L

K

= C

�

C

L

�

3=4

"

�1=4

(C

�

= 80).

behaviour at y

+

= 14, the asymmetry inreases ontinuously with distane from the wall

until it reahes a maximum, and then dereases in the viinity of the entre. Note that

the orrelation funtion should be symmetrial at the entre if the data were perfetly

statistially onverged (the data have not been arti�ially symmetrized).

In �gure 12(b), the entral length sale in the y-diretion, already plotted in �g-

ure 12(a), is ompared to the length sales in the x- and z-diretions. This omparison

provides a quantitative evaluation of the anisotropy of the orrelation funtion, seen in

�gures 4{11, and shows that the anisotropy of �

�

22

is very important everywhere in the

domain. The three length sales show qualitatively the same variation aross the hannel,

exept below y

+

= 50, where the streamwise length sale exhibits a sharp spike, orre-

sponding to the strong elongation of the iso-orrelation ontours emphasized in x 4.3.

Figure 13 shows a omparison between the orrelation length sale, de�ned as the

half-width of the orrelation funtion (the entral length sale in �gures 12a,b), and

the integral length sale L

int

. In order to de�ne the latter, let us introdue the standard

orrelation funtion F (f., for instane, Monin & Yaglom 1975) to be used in the integral

equation (2.4):

	

ij

(x;x

0

) = 	

ij

(x;x)F(x;x

0

); (4.8)

where, ontrary to (2.6), the one-point orrelation is expressed in x. The one-point or-

relation an then be taken outside the integral, whih gives

��

�

ij

(x) = 	

ij

(x;x)

Z




F(x;x

0

)H(x;x

0

) dV (x

0

): (4.9)
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This formulation suggests the de�nition of the integral length sale

L

2

int

(x) =

�

�

�

�

Z




F(x;x

0

)H(x;x

0

) dV (x

0

)

�

�

�

�

=

�

�

�

�

��

�

ij

(x)

	

ij

(x;x)

�

�

�

�

; (4.10)

plotted in �gure 13. Also plotted are the length sales used in Durbin's model (3.1),

namely the Kolmogorov length sale L

K

, whih is ative in the viinity of the wall, and

the turbulent length sale L

T

.

The �rst important feature to be noted is that the orrelation length sale is very

lose to the integral length sale in the main part of the ow, whih leads to a very

important onlusion: the most signi�ant ontribution of the orrelation funtion to

the integral (4.10) is given by its values at moderate separations. Integral properties of

the orrelation funtion are thus mainly due to the shape near the peak. The omplex

features of the orrelation funtion demonstrated in �gures 2 and 4{11, in partiular the

negative exursions, appear to have no signi�ant inuene. The redistribution term �

�

ij

,

whih is given by the integral of the two-point orrelation, an be expeted to depend

only on the shape of the orrelation funtion at moderate separations. Therefore, the use

of a simple model funtion, suh as the exponential funtion (2.7), seems to be totally

justi�ed by �gure 13. However, as mentioned in x 4.2, the asymmetry in the y-diretion

is missed by the model (2.7), whih leads, as shown in Appendix B, to the erroneous

ampli�ation of the redistribution in the logarithmi layer noted in x 3.1. The model

must be modi�ed, as shown in �gure 3, to aount for this asymmetry, as well as for the

anisotropy emphasized in x 4.3. This issue will be disussed in the following setions.

In the viinity of the wall, the orrelation length sale L and the integral length sale

L

int

do not have similar behaviours: L approahes a value of 6, whereas L

int

dereases

rapidly toward the wall. This behaviour justi�es the use of a lower bound in the model

(3.1). The two length sales L

T

and L

K

, used in this model, are also plotted in �gure 13.

The turbulent length sale L

T

provides a very satisfatory representation of the integral

length sale throughout the ow, exept near the entre of the hannel. It should be

noted that in this region, both �

�

ij

and 	

ij

are small, and the evaluated integral sale is

ontaminated by numerial errors. Hene, the strong derease of L

int

beyond y

+

= 500 is

probably not physial. The urve has been trunated at y

+

� 550 to improve the larity

of the �gure. Sine in the main part of the ow, the integral length sale L

int

and the

orrelation length sale L are very lose to eah other, the model L

T

represents very

satisfatorily the orrelation length sale down to y

+

� 100. Below this point, �gure 13

shows that the Kolmogorov length sale L

K

must be used. The point where L

T

beomes

smaller than L

K

when moving toward the wall is approximately loated where L and L

int

diverge. The loation of this point depends on the oeÆient C

�

; in �gure 13, the original

oeÆient C

�

= 80, hosen to give the experimental value of the orrelation length sale

at the wall (Durbin & Laurene 1996), has been used. In order to ompare the shape

of the modelled length sale against the data, the oeÆient C

L

has been set to 0:045

in this �gure. The fat that the length-sale shapes are very similar is an a posteriori

justi�ation for the use of the formulation L = max(L

K

; L

T

) in Durbin's model.

The above results have addressed some important issues about the ellipti relaxation

method. In partiular, they justify the use of a model for the orrelation funtion whih

does not aount for the negative exursions. They also on�rm the neessity of bounding

the length sale near the wall by the Kolmogorov length sale. However, it was shown in

x 4.2 and 4.3 that modelling the orrelation funtion by a simple isotropi exponential

funtion is too rude an approximation. This is at the origin of the spurious behaviour

in the logarithmi layer. In the following setions, reformulations of the model will be

proposed and their behaviour analyzed.
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Figure 14. E�et of the spae transformation on the orrelation funtion: (a) Correlation

funtion in the original spae 
 (same as �gure 2b); (b) Correlation funtion after transformation

of y

+

-axis. See �gure 2 for additional aption.

5. Reformulation of the model

5.1. Corretion of the inversion error

The ellipti relaxation equation is derived from the integral equation of the redistribution

term (2.4), whih is transformed into (2.8) by using the model (2.7). Equation (2.8) an

be inverted to give the ellipti relaxation equation if the integral is a onvolution produt,

i.e., if the funtion denoted E(r) truly depends only on r, or at most on the separation

x

0

� x. This is, however, not the ase, sine the length sale depends on the loation.

This inversion is valid only if the length sale an be onsidered loally onstant, whih

implies that krLk is muh smaller than unity. Sine the oeÆient C

L

is hosen suh

that krLk = � = 0:41 in the logarithmi region, the length sale annot be onsidered

as a onstant. If (2.9) is meant to be equivalent to (2.8), an inversion error is introdued.

In order to avoid this inversion error, it is neessary to treat the variation of L. A

oordinate transformation x 7! �(x) an be introdued, suh that in the transformed

spae the length sale is roughly a onstant, and the boundaries of the domain are

preserved: �(
) = 
. In a hannel, it is simply given impliitly by d�

2

=L

�

= dy=L(y),

i.e., by the integral

�

2

(y) =

Z

y

0

L

�

L(y

0

)

dy

0

; (5.1)

where L

�

is a onstant, hosen suh that the domain is globally preserved:

L

�

= 2h

 

Z

2h

0

dy

0

L(y

0

)

!

�1

: (5.2)

Other diretions an either be kept unhanged (�

1

(x) = x and �

3

(x) = z) or be trans-

formed aording to the previously noted anisotropy. An example of suh a transforma-

tion in a 2-dimensional domain is given in appendix C.
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Figure 14 shows how the shape of the orrelation funtion orresponding to �

�

22

is mod-

i�ed by �. It an be seen that, after the transformation, the orrelation length sale is

onstant aross the hannel. It an also be seen that the transformation almost ompletely

removes the asymmetry in the y-diretion. Note that, in this �gure, the transformation

of the orrelation is plotted, instead of the orrelation between transformed quantities

(the spae transformation and the evaluation of the two-point orrelations are not om-

mutable). This approximation is used only in this �gure to illustrate the e�et of � on

the length sale, but not in the subsequent analysis.

Let us de�ne the funtions: �

i

= �p=�x

i

Æ �

�1

, w

i

= u

i

Æ�

�1

and �

ij

= �

�

ij

Æ�

�1

,

where Æ denotes the funtion omposition: f Æ g(x) = f(g(x)). Note that these funtions

are de�ned on the same domain 
 as the original quantities �p=�x

i

, u

i

and �

�

ij

, sine �

maps 
 to itself. Additionally, let g

i

be the Laplaian of �

i

, i.e.,

g

i

=

�

2

�

i

�x

k

�x

k

: (5.3)

The same method as in x 2 an be applied to derive a new form of the ellipti relaxation

equation. First, one an assume that a homogeneous Neumann boundary ondition an

be applied to �

k

, so that it satis�es the following integral equation (see appendix C for

details in a 1-dimensional ase):

�

k

(x) =

Z




g

k

(x

0

)G




(x;x

0

) dV (x

0

): (5.4)

In this expression, G




is the same as in (2.3), sine the Green funtion only depends on

the domain. �

ij

then satis�es

��

ij

(x) =

Z




�

ij

(x;x

0

)G




(x;x

0

)dV (x

0

); (5.5)

where �

ij

(x;x

0

) = �w

j

(x)g

i

(x

0

)� w

i

(x)g

j

(x

0

).

In a free spae, (5.5) redues to

��

ij

(x) = �

Z




�

ij

(x;x

0

)

dV (x

0

)

4�r

: (5.6)

The two-point orrelations an then be modelled by

�

ij

(x;x

0

) = �

ij

(x

0

;x

0

) exp

�

�

r

L

�

�

; (5.7)

leading to

��

ij

(x) = �

Z




�

ij

(x

0

;x

0

)

exp

�

�

r

L

�

�

4�r

dV (x

0

): (5.8)

Equation (5.8) is similar to (2.8), the main di�erene being that the length sale L

�

is

now truly a onstant. Thus, (5.8) is a onvolution integral, whih an be inverted without

introduing an inversion error:

�

ij

(x)� L

2

�

�

2

�

ij

�x

k

�x

k

(x) = �

L

2

�

�

�

ij

(x;x): (5.9)

Introduing the Jaobian matrix of the inverse transformation, A =r�

�1

, the equation
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satis�ed by �

�

ij

is

�

�

ij

� L

2

�

A

kl

A

ml

�

2

�

�

ij

�x

k

�x

m

� L

2

�

A

ml

�A

kl

�x

m

��

�

ij

�x

k

= �

h

ij

: (5.10)

In this equation, as in x 2.2, the right hand side has been replaed by a quasi-homogeneous

model, noting that in homogeneous situations, (5.10) redues to

�

�

ij

= �

h

ij

: (5.11)

Now, a matrix of length sales an be introdued by de�ning A

ij

= L

ij

=L

�

, whih yields

a new form of the ellipti relaxation equation:

�

�

ij

� L

kl

L

ml

�

2

�

�

ij

�x

k

�x

m

� L

ml

�L

kl

�x

m

��

�

ij

�x

k

= �

h

ij

: (5.12)

This new formulation is more ompliated than the original one, but allows for length

sale anisotropy, whih has been found to be very signi�ant in x 4. As will be shown in

x 5.3, it does not exhibit the same spurious behaviour in the logarithmi layer.

The remaining issue is the modelling of L

ij

. The most natural hoie is

L

ij

=

3

2

u

i

u

j

k

L; (5.13)

where L is given by the original model (3.1). Another possibility is simply

L

ij

= LÆ

ij

; (5.14)

whih neglets the anisotropy but redues signi�antly the omplexity of (5.12), whih

beomes

�

�

ij

� L

2

r

2

�

�

ij

� LrL �r�

�

ij

= �

h

ij

: (5.15)

This formulation only di�ers from the original one by the presene of the third term on

the left hand side. This term aounts for the variations of the length sale. Note that

(5.15) an be rewritten as

�

�

ij

� Lr � (Lr�

�

ij

) = �

h

ij

: (5.16)

This formulation is lose to those proposed by Wizman et al. (1996), Laurene & Durbin

(1994) and Durbin & Laurene (1996), but it will be demonstrated in x 5.3 that it still

exhibits an ampli�ation of the redistribution in the logarithmi layer.

5.2. Corretion to the model of the orrelation funtion

In x 4.2, it has been pointed out that the orrelation funtion is strongly asymmetri in

the diretion normal to the wall. Figure 3 shows that using the original model for the

orrelation funtion, the two-point orrelation between the �xed point x and the wall is

overestimated. This shortoming an be orreted by taking into aount the gradient

of the length sale, thus giving an asymmetri shape to the model for the orrelation

funtion:

f(x;x

0

) = exp

�

�r

L+ �(x

0

� x) � rL

�

; (5.17)

whih has been plotted for � = 1 in �gure 3.

Considering the term �(x

0

� x) � rL as a small orretion, a Taylor series expansion

of (5.17) leads to the expression

f(x;x

0

) � exp

�

�

r

L

�

�

1 + �

r

L

2

(x

0

� x) � rL

�

: (5.18)
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If (5.18) is ombined with (2.6) and (2.4), using the free-spae Green funtion, one obtains

��

�

ij

(x) = �

Z




	

ij

(x

0

;x

0

)

exp

�

�

r

L

�

4�r

dV (x

0

)

| {z }

��

�a

ij

�

Z




	

ij

(x

0

;x

0

)�

r

L

2

exp

�

�

r

L

�

4�r

(x

0

� x) � rL dV (x

0

)

| {z }

��

�b

ij

:

(5.19)

In this equation, the �rst term, �

�a

ij

, is exatly the redistribution term given by the

original model, and satis�es

�

�a

ij

� L

2

r

2

�

�a

ij

= �

L

2

�

g

ij

; (5.20)

where g

ij

(x) � 	

ij

(x;x). The seond term �

�b

ij

an be onsidered as a orretion term.

Using a Taylor series expansion of g

ij

(x

0

) in the viinity of the �xed point x, one obtains

��

�b

ij

(x) = �

Z




(x

0

� x) � rg

ij

�

r

L

2

(x

0

� x) � rL

exp

�

�

r

L

�

4�r

dV (x

0

); (5.21)

whih gives exatly, in a free spae,

��

�b

ij

= �8�L

3

rL � rg

ij

: (5.22)

Following Durbin (1991), the right hand side of (5.20) an be replaed by any quasi-

homogeneous model �

h

ij

, whih orresponds to modelling g

ij

by ���

h

ij

=L

2

. There are

then two possible ways to take into aount the orretion term in the model. First, in

(5.22), g

ij

an be approximated by ���

�a

ij

=L

2

, whih leads to

�

�a

ij

� L

2

r

2

�

�a

ij

= �

h

ij

; (5.23)

��

�b

ij

= 8�LrL � r�

�a

ij

� 16�(rL)

2

�

�a

ij

: (5.24)

Thus, (5.23) gives exatly the same solution as the original model, while (5.24) provides

an expliit orretion (�

�

ij

= �

�a

ij

+ �

�b

ij

). The seond possibility is to take into aount

the orretion impliitly:

(1 + 16�(rL)

2

)�

�

ij

� L

2

r

2

�

�

ij

� 8�LrL � r�

�

ij

= �

h

ij

: (5.25)

This impliit formulation is probably preferable for stability reasons. In (5.25), the same

term LrL � r�

�

ij

as in (5.15) appears, but with the oeÆient 8�. This shows that the

spae transformation introdued in x 5.1 also orrets the asymmetry in the y-diretion,

as an be seen in �gure 14.

It is worth pointing out that the same type of orretion has been used by Launder &

Tselepidakis (1991), in order to take into aount the inhomogeneity of the ow near a

wall, and thus avoid the use of wall eho orretion terms. Usually, the rapid part of the

redistribution term is evaluated as the tensorial produt between a fourth order tensor

and the gradient of the mean veloity. Launder & Tselepidakis (1991) proposed to replae
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Equation Model  �

(2.10) D1 (Durbin 1991) -2 1.51

(3.3) W1 (Wizman et al. 1996) 0 1

(3.5) L1 (Laurene & Durbin 1994) 0 1

(3.6) D2 (Durbin & Laurene 1996) 0 1

(3.4) W2 (Wizman et al. 1996) 2 0.75

(5.15) M1 (this paper) -1 1.2

(5.12) M2 (this paper) �

9

4

�

u

1

u

2

2

=k

2

+ u

2

u

2

2

=k

2

�

1.06

(5.25) M3 (this paper) 2(12� � 1) 0{1.51

(5.29) GS (Gibson & Launder 1978) NA 0.67

(5.30) GR (Gibson & Launder 1978) NA 0.40

(5.26) LT (Launder & Tselepidakis 1991) NA 0.53

Table 1. Logarithmi layer analysis of the di�erent formulations of the ellipti relaxation

equation

the latter by an e�etive veloity gradient given by

�U

l

�x

m

�

�

�

�

e�

=

�U

l

�x

m

+ 

I

l

n

�l

n

�x

k

�

2

U

l

�x

k

�x

m

; (5.26)

where 

I

= 0:3, and l

n

= (k=")(u

p

u

q

n

p

n

q

)

1=2

is a salar length sale in the diretion of

outward normal to the wall. Thus, in (5.15), (5.25) and (5.26), by three di�erent reason-

ings, the same type of orretion, of the form LrL � rA, where A denotes either �

�

ij

or

�U

l

=�x

m

, has been introdued in order to redue the energy redistribution between the

omponents of the Reynolds stress in the logarithmi layer. The e�et of the orretions

proposed in the present paper is investigated in the next setion.

5.3. Redistribution redution in the logarithmi layer

In x 3.1, it has been shown that, irrespetive of the quasi-homogeneous model, the original

formulation gives an ampli�ation of the redistribution in the logarithmi layer. In fat,

no matter what formulation of the ellipti relaxation equation is onsidered, the same

analysis leads to an expression of the form

�

�

ij

= ��

h

ij

; (5.27)

where

� =

1

1 + C

2

L

C

�3=2

�

�

2

; (5.28)

thus relating the redistribution term given by the ellipti relaxation model to its un-

derlying quasi-homogeneous model. This analysis is based on the logarithmi layer as-

sumptions: �

h

ij

= A

h

=y, k = u

�

2

=C

1=2

�

and " = u

3

�

=�y, where A

h

is a onstant and u

�

denotes the frition veloity. In (5.27), �

�

ij

is not the exat solution of the di�erential

equation, but only a partiular solution in the logarithmi layer (no boundary ondi-

tions are onsidered). The ampli�ation fator � haraterizes the e�et of the ellipti

relaxation equation in this region.

The oeÆient  in (5.28) depends on the formulation of the ellipti relaxation equa-
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tion. It is given in table 1, along with an estimation of the ampli�ation fator �. The

length sale L used in the alulations is given by (3.1) for all the formulations. No

alternative de�nition of L is needed in the new formulations M1, M2 and M3, sine

they expliitly involve the gradient of L to aount for inhomogeneity. The oeÆient

C

L

is hosen suh that the length sale is L = �y in the logarithmi layer: C

L

= C

3=4

�

.

In the ase of the fully anisotropi model M2, the anisotropies a

ij

= u

i

u

j

=k �

2

3

Æ

ij

in

the logarithmi layer are required, sine they enter the anisotropi length sale (5.13).

The following logarithmi layer values have been used: a

12

= �0:30; a

22

= �0:42. In the

ase of model M3, , and hene �, are funtions of the oeÆient �. As � varies from 0

(original model D1) to 1, � varies from 1:51 to 0. Note that the expliit version of M3,

given by (5.23) and (5.24), has the same behaviour as M3 to the �rst order.

It an be seen in the table that the new models M1, M2 and M3, whih are derived from

theoretial onsiderations, unlike the ad ho models W1, L1, D2 and W2, have various

behaviours. The �rst one, M1, whih attempts to limit the inversion error (x 5.1) but

does not aount for the anisotropy of the length sale, indues an ampli�ation of the

redistribution. The fator �

M1

is lower than �

D1

, sine the term �LrL � r�

�

ij

, whih

distinguishes M1 from D1, moves in the right diretion. However, it is not suÆiently

large to remove all the ampli�ation due to the term L

2

r

2

�

�

ij

. When the length sale

anisotropy is taken into aount (M2), the ampli�ation fator falls to �

M2

= 1:06. Thus,

model M2 an be referred to as a quasi-neutral model. In model M3, � an be hosen

to give any ampli�ation fator between 0 and 1:51. The presene of the oeÆient �

enables adjustment of the weights of the terms �LrL � r�

�

ij

and (rL)

2

�

�

ij

. By hoosing

� =

1

12

, the model beomes neutral (� = 1).

The ampli�ation fators for the 22-omponents of the slow and rapid parts of the

Gibson & Launder (1978) model are shown in table 1 for omparison. The slow part of

the wall eho terms is given by

�

wS

ij

= C

0

1

"

k

�

u

k

u

m

n

k

n

m

Æ

ij

�

3

2

u

k

u

i

n

k

n

j

�

3

2

u

k

u

j

n

k

n

i

�

f

�

L

T

n

i

r

i

�

; (5.29)

where C

0

1

= 0:5. The rapid part is

�

wR

ij

= C

0

2

�

�

km

n

k

n

m

Æ

ij

�

3

2

�

ik

n

k

n

j

�

3

2

�

jk

n

k

n

i

�

f

�

L

T

n

i

r

i

�

; (5.30)

where C

0

2

= 0:3. The ampli�ation fator for the formulation (5.26) proposed by Laun-

der & Tselepidakis (1991), used with the linear IP model, is also shown.

This simple analysis of the logarithmi layer shows that modi�ations of the ellipti

relaxation equation an overome the de�ienies of the original model. The formulation

to be hosen depends on the quasi-homogeneous model used as the soure term. The

most natural hoie is to use a model whih predits orretly the redistribution in the

logarithmi layer, suh as the Speziale, Sarkar & Gatski (1991) model (see, e.g., Demuren

& Sarkar 1993; Had�zi� 1999; Maneau 1999), together with a neutral formulation of the

ellipti relaxation equation, M2 or M3 with � =

1

12

. Less elaborate models, suh as the

Rotta & IP model, whih overestimates the redistribution in the logarithmi layer, should

be used with a formulation like the M3 model, with a oeÆient � larger than

1

12

, without

any wall eho orretion terms.

Sine these new formulations of the ellipti relaxation equation have ampli�ation fa-

tors lose to those previously proposed by Wizman et al. (1996), Laurene & Durbin

(1994) and Durbin & Laurene (1996), they are expeted to give similar results in prati-
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al appliations. It was noted, in x 3.1, that the formulations W1, L1, D2 and W2 su�er

from a lak of justi�ation, and aordingly, the new formulations should be preferred.

Further a priori tests and atual omputations using the new formulation M3 have

been performed reently. The results, disussed in detail elsewhere (Maneau & Hanjali�

2000), demonstrate that an overall bene�t is obtained by using the modi�ed form of the

ellipti relaxation equation in a hannel ow. The a priori tests show that when the

Rotta & IP model is used as the soure term of the ellipti relaxation equation, the M3

model, with the oeÆient � hosen to obtain a redution of the redistribution in the

logarithmi layer, orrets the overestimation due to the Rotta & IP model as expeted.

The results are omparable to those obtained from the redistribution-reduing model

W2. If the SSG model (Speziale et al. 1991), whih orretly predits the redistribution

in the logarithmi layer, is used as the soure term, the M3 model gives results similar to

those from the neutral W1 model. Both models are shown to be preferable to the original

(D1) model.

Consequently, the optimal ombinations of the SSG model (as soure term) with the

neutral ellipti relaxation formulations W1 and M3, respetively, are implemented in a

Reynolds stress model and tested in full omputations of a hannel ow (Maneau &

Hanjali� 2000). The results given by the two forms W1 and M3 are nearly indistinguish-

able. The use of these neutral formulations improves, in the bu�er and logarithmi layers,

the predition of the mean veloity pro�le, whih is underpredited by the original ellipti

relaxation model. Moreover, the anisotropy, and in partiular the peak of u

2

, are better

aptured by these models.

Maneau & Hanjali� (2000) further show that, in the framework of the v

2

{f model

(Durbin 1991), the two neutral models (W1 and M3 with � =

1

12

) as well as a redistribu-

tion-reduing model (M3 with � =

1

6

) are apable of orreting the overestimation of the

mean veloity by the original formulation, without adversely a�eting the predition of

the turbulent kineti energy.

6. Conlusions

The ellipti relaxation method is a promising way to model orretly the redistribution

term down to solid boundaries. It an be expeted to be somewhat universal, sine it is

based on theoretial grounds. However, some of the modelling assumptions an be alled

into question, and the behaviour of the original model is not entirely satisfatory in the

logarithmi layer. The DNS database of a hannel ow at Re

�

= 590 (Moser et al. 1999)

has been analyzed in order to understand the reasons for this spurious behaviour and to

examine a number of open issues. Several onlusions an be drawn:

� The use of an exponential form to model the orrelation funtion between the veloity

and the Laplaian of the pressure gradient is onsistent with the data. In partiular,

the oinidene of the integral sale and the half width of the orrelation funtion for

moderate separations shows that the orrelation funtion shape for large separations does

not have a signi�ant inuene on the redistribution term.

� The presene of a solid boundary indues a strong anisotropy of the turbulent stru-

tures, and in partiular a signi�ant asymmetry in the wall-normal diretion. This feature

is not aounted for by the simple isotropi orrelation funtion used in Durbin's model.

This weakness is at the origin of the erroneous ampli�ation of the redistribution of

energy between the omponents of the Reynolds stress observed in the logarithmi layer.

� The modelling of the orrelation length sale by the turbulent length sale bounded

near the wall by the Kolmogorov length sale is well orroborated by the DNS data.

� The wall eho e�et, whih orresponds to the appearane of image terms in the
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Green funtion, inreases the redistribution of energy, ontrary to the ommon belief.

Aordingly, it annot be onsidered responsible for the observed damping in the loga-

rithmi layer.

This study shows that the ellipti relaxation model, �rst derived intuitively by Durbin

(1991), is based on assumptions relatively onsistent with the DNS database. Even though

the model is too simple to represent exatly the two-point orrelations involved in the

integral equation of the redistribution term, it reprodues the important non-loal e�et

whih annot be aounted for by any algebrai model.

Based on the physial insights gained through the present DNS analysis, modi�ations

of the model have been proposed in order to aount for the inhomogeneity and anisotropy

e�ets. The �rst modi�ation is based on the observation that the length sale in the

ellipti relaxation equation annot be onsidered loally as onstant. A new formulation

of this equation, whih aounts for this feature, inludes the e�et of the anisotropy of

turbulene through a rather ompliated tensorial expression. In the seond modi�ation,

an asymmetri orrelation funtion is introdued, by using the gradient of the length sale

to identify the diretion of inhomogeneity. This results in a seond new formulation of

the ellipti relaxation equation, involving fewer terms than the �rst one.

Both new formulations do not exhibit the same ampli�ation of the redistribution in

the logarithmi layer as the original one. The �rst one an be referred to as quasi-neutral

sine its ampli�ation fator is only � = 1:06, ompared to � = 1:51 for the original

formulation. The seond formulation an be neutral or exhibit a redution, depending on

the oeÆient � whih ontrols the sensitivity of the orrelation funtion to the length

sale gradient. Thus, either one of the formulations an be hosen, depending on the

quasi-homogeneous model used as the soure term and whether or not its behaviour

in the logarithmi layer needs orretion. The new formulations are similar to those

proposed by Wizman et al. (1996), Laurene & Durbin (1994) and Durbin & Laurene

(1996), but have the advantage of being based on rigorous theoretial grounds.

Further studies, inluding a priori tests and omputations in a hannel ow using

new formulations, have been onduted (Maneau & Hanjali� 2000). It has been shown

that modifying the ellipti operator aording to (5.25) indeed improves, in the logarith-

mi region, the mean veloity pro�le and the turbulent quantities predited by Durbin's

Reynolds stress model as well as by the v

2

{f model. In future studies, the new formula-

tions will be tested and alibrated in more anonial test ases, in order to be ultimately

appliable to omplex engineering ows.
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program. M. W. aknowledges support by the U.S. OÆe of Naval Researh under Grant
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Appendix A. Approximation of the Green funtion in a hannel

The purpose of this appendix is to derive an approximate Green funtion in a hannel

that is suÆient to preserve the orret features of the solution of a Neumann problem,

and in partiular its boundary onditions.

Let us onsider the hannel C

0

= IR� [0; 1℄� IR shown in �gure 15, bounded by two

in�nite planes P

0

and P

1

loated in y = 0 and y = 1, respetively. In this domain, the
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Figure 15. Sketh of the hannel C

0

= IR� [0; 1℄ � IR and its images C

�1

and C

1

problem to be solved is

8

<

:

r

2

f = g;

�f

�n

= 0 on �C

0

= P

0

[ P

1

;

(A 1)

where n is the outgoing unit vetor normal to the wall. The general solution of this

Neumann problem is given by

f(x) = �

Z

C

0

g(x

0

)

4�kx

0

� xk

dV (x

0

)�

Z

�C

0

f(x

0

)

�

�n

0

�

1

4�kx

0

� xk

�

dS(x

0

): (A 2)

If the Green funtion of the hannel, whih satis�es the Neumann boundary ondition

on P

0

and P

1

, is used, the surfae integral vanishes, leading to

f(x) =

Z

C

0

g(x

0

)G

C

0

(x;x

0

) dV (x

0

): (A 3)

Unfortunately, no simple analytial expression of G

C

0

exists exept in the (k

x

; k

z

) wave-

number spae. Therefore, it is neessary to derive an approximated form of the Green

funtion in the physial spae.

We denote H(x;x

0

) as the approximate Green funtion whih renders the surfae term

in (A 2) negligibly small. Chou (1945) proposed to let H = G

IR

3

, the free-spae Green

funtion, but noted that it is only valid far from solid boundaries.

Let us onsider the image hannels C

�1

and C

1

shown in �gure (15), whih are sym-

metrial to C

0

with respet to P

0

and P

1

, respetively. The \even" extension ~g of g

an be de�ned by ~g(x

0

0

) = ~g(x

0

�1

) = ~g(x

0

1

) = g(x

0

0

) for eah point x

0

0

of the hannel

C

0

, where the points x

0

�1

and x

0

1

are symmetrial to x

0

0

with respet to P

0

and P

1

,

respetively.

Then,

~

f , the extension of f , is a solution of a Neumann problem in C

�1

[ C

0

[ C

1

:

8

<

:

r

2

~

f = ~g;

�

~

f

�n

= 0 on P

�1

[ P

2

:

(A 4)
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The solution an be expressed as

~

f(x) = �

Z

C

�1

[C

0

[C

1

~g(x

0

)

4�kx

0

� xk

dV (x

0

)

�

Z

P

2

�

�y

0

�

1

4�kx

0

� xk

�

~

f(x

0

) dS(x

0

) +

Z

P

�1

�

�y

0

�

1

4�kx

0

� xk

�

~

f(x

0

) dS(x

0

):

(A 5)

By splitting the volume integral in (A 5) into integrals on C

�1

, C

0

and C

1

, adding and

subtrating surfae integrals on P

0

and P

1

and using the identities

~

f(x

0

�1

) =

~

f(x

0

1

) =

f(x

0

0

) and ~g(x

0

�1

) = ~g(x

0

1

) = g(x

0

0

), it an be easily shown that:

f(x) =

Z

C

0

g(x

0

0

)

�

�

1

4�kx

0

�1

� xk

�

1

4�kx

0

0

� xk

�

1

4�kx

0

1

� xk

�

| {z }

H(x;x

0

0

)

dV (x

0

0

)

+

Z

�C

0
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0

)

�
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�

�
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�

1

4�kx

0

0

� xk

�

1

4�kx
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1

� xk

�

dS(x

0

0

):

(A 6)

The surfae integral in this expression an now be negleted. Indeed, the derivative of

H(x;x

0

0

) is

�

�n

0

H(x;x

0

0

) = �

(x

0

�1

� x) � n

0

4�kx

0

�1

� xk

3

+

(x

0

0

� x) � n

0

4�kx

0

0

� xk

3

�

(x

0

1

� x) � n

0

4�kx

0

1

� xk

3

: (A 7)

On P

0

, sine x

0

�1

= x

0

0

, the sum of the �rst two terms is zero and the surfae integral

only involves the ontribution of the image x

0

1

. To estimate its magnitude, we hoose

a funtion f suh that f(x; 0; z) = f

0

�(x; z), where �(x; z) = 1 for x

2

+ z

2

6 R

2

and 0

elsewhere. The ontribution f

P

0

of the surfae integral on P

0

is

f

P

0

=

1

2

f

0

�

1�

2� y

(R

2

+ (2� y)

2

)

1=2

�

; (A 8)

whih takes the value

f

P

0

= f

0

�

1

2

�

1

(R

2

+ 2

2

)

1=2

�

(A 9)

at y = 0. This value an be very small, depending on R.

In the ase of the redistribution term, the two-point orrelation u

i

(x)�p=�x

j

(x

0

) +

u

j

(x)�p=�x

i

(x

0

) in the surfae term an be approximated by

�

u

i

(x)

�p

�x

j

(x) + u

j

(x)

�p

�x

i

(x)

�

�(x

0

� x; z

0

� z): (A 10)

The radius R de�ning � is the non-dimensional orrelation length sale L=2h, where h is

the half-width of the hannel. If the �

�

22

omponent is onsidered, the orrelation length

sale at the wall, evaluated from DNS data, is at most L

+

= 25 (in the streamwise

diretion), as an be seen in �gure 12. With this value, R � 0:02. The Taylor series

expansion with respet to R of the surfae ontribution f

P

0

= �

�

ij

P

0

, given by (A 9),

leads to

�

�

ij

P

0

�

L

2

64h

2

�

�

ij

� 3� 10

�5

�

�

ij

: (A 11)

This result shows that the present approximation of the Green funtion is muh better
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than G

IR

3

, whih gives a fator of 0:5. Moreover, the boundary ondition of f at the wall

will be muh more orretly imposed with this approximation.

One ould think that by the same argument, adding more and more image terms would

lead to the vanishing of the surfae integral and that the Green funtion of the hannel is

exatly the sum of an in�nity of image terms. Unfortunately, this sum is not onvergent

so the exat Green funtion annot be derived this way.

Appendix B. Consequene of symmetrizing the orrelation funtion

The purpose of this appendix is to provide a formal proof that the value of the inte-

gral (the redistribution term in our ase) is inreased when the orrelation funtion is

symmetrized.

Let us de�ne funtions g(x) (orresponding to 	(x;x) in this paper) and h(x;x

0

)

(f(x;x

0

)G




(x;x

0

) in this paper), and the integral

I(x) =

Z




g(x

0

)h(x;x

0

)dV (x

0

) (B 1)

whih orresponds to �

�

ij

(x). If x and z are the homogeneous diretions, h(x;x

0

) =

h(x

0

� x; y; y

0

; z

0

� z) and g(x) = g(y). The integral I(x) then redues to

I(y) =

Z

y

g(y

0

)H(y; y

0

)dy

0

; (B 2)

where H(y; y

0

) =

R

x

R

z

h(x

0

� x; y; y

0

; z

0

� z) dx

0

dz

0

.

Two assumptions, onsistent with the behaviour of the orrelation funtions in this

paper, are used in the following derivation: H(y; y

0

) dereases faster when y

0

< y than

when y

0

> y (H(y; y + s) > H(y; y � s) for s > 0), and g(y) dereases when y inreases.

Let us now de�ne H

�

(y; y

0

) by symmetrizing H(y; y

0

):

H

�

(y; y + s) =

H(y; y � s) +H(y; y + s)

2

(B 3)

for all s. The integral I

�

(y) is simply de�ned by replaing H(y; y

0

) by H

�

(y; y

0

) in (B2).

The objetive now is to show that I

�

(y)� I(y) > 0.

The funtion I

�

(y) an be split into its left and right parts:

I

�

(y) =

Z

s>0

[g(y � s)H

�

(y; y � s) + g(y + s)H

�

(y; y + s)℄ ds: (B 4)

Using the de�nition of H

�

(y; y

0

), this an be written as

I

�

(y) =

Z

s>0

[g(y � s) + g(y + s)℄

H(y; y � s) +H(y; y + s)

2

ds: (B 5)

On the other hand, I(y) an be split into left and right parts as well:

I(y) =

Z

s>0

[g(y � s)H(y; y � s) + g(y + s)H(y; y + s)℄ ds; (B 6)

and thus, a ombination of (B 5) and (B 6) yields:

I

�

(y)� I(y) =

1

2

Z

s>0

[g(y � s)� g(y + s)℄ [H(y; y + s)�H(y; y � s)℄ ds: (B 7)

Based on the assumptions about g(y) and H(y; y

0

) made earlier, both terms in the square

brakets are positives and, aordingly, I

�

(y)� I(y) > 0.
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Figure 16. Example of mapping a [0; 1℄� [0; 1℄ domain to itself. Lines drawn in �gure (b)

orrespond to those in �gure (a).

Thus, the replaement of the orrelation funtion by a symmetrial funtion inreases

the redistribution term.

Appendix C. Examples of spae transformations

The spae transformation used in x 5.1 is diÆult to visualize in omplex geometries.

Furthermore, it is not straightforward to understand its use to solve a di�erential equa-

tion, for instane a Neumann problem, in a 3-dimensional geometry. This appendix aims

to larify these issues, by examples in 1- or 2-dimensional domains.

Figure 16 shows an example of suh a transformation � in the domain [0; 1℄� [0; 1℄.

The transformation is de�ned by:

8

>

>

<

>

>

:

�

1

(x; y) = sin

1=2

h

�

2

(0:05 + 0:9y)x

i

= sin

1=2

h

�

2

(0:05 + 0:9y)

i

;

�

2

(x; y) = sin

2

h

�

2

(0:95� 0:9x)y

i

= sin

2

h

�

2

(0:95� 0:9x)

i

:

(C 1)

This example may appear quite ompliated, but it was hosen in suh a way that the

distortion of the domain is quite severe. This �gure shows that the boundaries of the

domain an be preserved even when no point of the domain is invariant, exept for the

orners.

However, the Green funtion of the domain [0; 1℄� [0; 1℄ an only be obtained by

applying a Fourier series expansion in one diretion, whih inreases signi�antly the

omplexity of the analyti development. Therefore, in the remainder of this appendix,

we will onsider the ase of a 1-dimensional Dirihlet problem:

8

>

>

>

<

>

>

>

:

r

2

f(x) = g(x) = x;

f(0) = 1;

f(1) = 0:

(C 2)

The Green funtion for the Dirihlet problem is

8

<

:

G(x; x

0

)=(x �1)x

0

for x

0

< x;

G(x; x

0

)=(x

0

�1)x for x < x

0

:

(C 3)
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The solution of (C 2) is then given by

f(x) =

Z

x

0

(x� 1)x

02

dx

0

+

Z

1

x

x(x

0

� 1)x

0

dx

0

+ 1� x; (C 4)

and, �nally,

f(x) =

x

3

6

�

7

6

x+ 1: (C 5)

The above is the diret way of solving (C 2) by means of the Green funtion (obviously

not the simplest way to solve this problem). The problem an also be solved by intro-

duing �rst a spae transformation �. For instane, let us onsider the transformation

� :

8

<

:

[0; 1℄ �! [0; 1℄

x 7�! x

1=2

:

(C 6)

and the funtions ' = f Æ �

�1

and � = �

2

'=�x

2

. Now, �, the Laplaian of ', an be

expressed as:

�(x) =

�

�

2

f

�x

2

Æ �

�1

��

��

�1

�x

�

2

+

�

�f

�x

Æ �

�1

��

�

2

�

�1

�x

2

�

; (C 7)

whih yields

�(x) = 5x

4

�

7

3

: (C 8)

The funtion ' is then the solution of the Dirihlet problem in [0; 1℄:

8

>

>

>

<

>

>

>

:

r

2

'(x) = �(x) = 5x

4

�

7

3

;

'(0) = 1;

'(1) = 0:

(C 9)

Sine the domain has been preserved, the Green funtion is the same, and the solution

of (C 9) is

'(x) =

Z

x

0

(x� 1)x

0

(5x

04

�

7

3

)dx

0

+

Z

1

x

x(x

0

� 1)(5x

04

�

7

3

)dx

0

+ 1� x; (C 10)

whih leads to

'(x) =

x

6

6

�

7

6

x

2

+ 1: (C 11)

Finally, one an return to the original spae using f = ' Æ �, whih yields (C 5) again.

This simple example shows how the funtions are transformed and how one an obtain

the same result by working in the transformed spae. In priniple, this method an be

extended to multi-dimensional spaes. In omplex geometries the method is obviously

still valid, but the Green funtion annot be determined analytially.
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