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A 
hannel 
ow DNS database at Re

�

= 590 is used to assess the validity of modelling

the redistribution term in the Reynolds stress transport equations by ellipti
 relaxation.

The model assumptions are found to be globally 
onsistent with the data. However, the


orrelation fun
tion between the 
u
tuating velo
ity and the Lapla
ian of the pressure

gradient, whi
h enters the integral equation of the redistribution term, is shown to be

anisotropi
. It is elongated in the streamwise dire
tion and strongly asymmetri
 in the

dire
tion normal to the wall, in 
ontrast to the isotropi
, exponential model representation

used in the original ellipti
 relaxation model. This dis
repan
y is the main 
ause for the

slight ampli�
ation of the energy redistribution in the log layer as predi
ted by the ellipti


relaxation equation. New formulations of the model are proposed in order to 
orre
t this

spurious behaviour, by a

ounting for the rapid variations of the length s
ale and the

asymmetri
al shape of the 
orrelation fun
tion. These formulations do not rely on the

use of wall e
ho 
orre
tion terms to damp the redistribution. The belief that the damping

is due to the so 
alled \wall e
ho" e�e
t is 
alled into question through the present DNS

analysis.

1. Introdu
tion

In se
ond moment 
losures, one of the most important and diÆ
ult tasks is to model

the pressure gradient{velo
ity 
orrelation in the Reynolds stress transport equations.

Indeed, sin
e the produ
tion does not need any modelling at this 
losure level, parti
ular

attention must be fo
used on this 
orrelation term and on the dissipation. In a 
hannel


ow (e.g. Mansour, Kim & Moin 1988) the pressure gradient{velo
ity 
orrelation, whose

e�e
t is mainly to redistribute the energy among the Reynolds stresses (hen
e 
alled the

\redistribution term"), is the only sour
e term in the budgets of the wall-normal and

spanwise Reynolds stresses; it balan
es the produ
tion in the shear stress budget.

Sin
e the pioneering works of Chou (1945) and Rotta (1951), the lo
al approa
h, whi
h

algebrai
ally relates the un
losed redistribution term to the Reynolds stress anisotropy,

mean strain, and mean vorti
ity tensors, has been popular in the turbulen
e modelling


ommunity. All standard models are based on this approa
h. The redistribution term is
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written in an integral form and split into three parts, the rapid, slow and surfa
e parts.

The slow part, whi
h does not involve any mean 
ow quantity, is modelled in terms of

the Reynolds stress anisotropy. The rapid part is expressed in terms of produ
ts between

mean velo
ity gradients and a fourth-order tensor, based on the assumption that the

mean velo
ity gradient is lo
ally 
onstant. This quasi-homogeneous approa
h has been

the starting point of almost all se
ond moment 
losure models. In most of them, linear

ones in parti
ular, (e.g. Rotta 1951; Naot, Shavit & Wolfshtein 1973; Launder, Ree
e &

Rodi 1975) and even fully nonlinear ones (e.g. Fu, Launder & Tselepidakis 1987), the

surfa
e part is negle
ted or modelled by wall e
ho terms, as suggested by Gibson &

Launder (1978). In others, the in
uen
e of the solid boundary is a

ounted for through

variable 
oeÆ
ients, leading to quasi-linear models, su
h as that of Speziale, Sarkar &

Gatski (1991). In the re
ent model of Craft & Launder (1996), the nonlinear formulation

dire
tly in
ludes wall indu
ed e�e
ts.

However, the validity of the quasi-homogeneous approximation used for the rapid part

is questionable. It assumes that the mean velo
ity gradient varies suÆ
iently slowly to

allow it to be taken outside the integral, whi
h is not the 
ase in strongly inhomogeneous

turbulen
e. Bradshaw, Mansour & Piomelli (1987) used the 
hannel 
ow DNS of Mansour

et al. (1988) to show that this hypothesis is 
orre
t down to y

+

= 40, but totally invalid

below this value. Another weakness of the quasi-homogeneous approa
h is the loss of the

non-lo
al 
hara
ter of the redistribution term. The integral equation for the latter, whi
h

involves two-point 
orrelations between velo
ities and Lapla
ian of the pressure gradient,

shows that it a
tually depends on the mean 
ow and the turbulen
e state at all points of

the domain. Kim (1989) showed that in a 
hannel, ex
ept in the very near-wall region,

the redistribution term takes 
ontributions from all the domain, in
luding the opposite

wall. Furthermore, a number of theoreti
al studies (e.g. Hunt & Graham 1978) as well as

dire
t numeri
al simulations (Perot & Moin 1993) showed that the stru
tures of the 
ow,

and the asso
iated length s
ales, are strongly a�e
ted by the presen
e of a solid boundary

even in the absen
e of mean shear, be
ause of the blo
king e�e
t whi
h is non-lo
al. In

parti
ular, the two-point 
orrelations of the wall-normal velo
ity are, as shown by Hunt

et al. (1989), in
uen
ed near the wall by the image eddies. These non-lo
al e�e
ts make

the redistribution term diÆ
ult, if not impossible, to model in terms of lo
al variables.

Furthermore, the quasi-homogeneous models 
annot in general be integrated down to

solid boundaries without introdu
ing 
orre
tions, su
h as damping fun
tions (there are

ex
eptions, su
h as the Craft & Launder 1996 model). Damping fun
tions are not univer-

sal, sin
e they are derived by �tting experimental or DNS results with little theoreti
al

justi�
ation.

In order to avoid su
h problems, Durbin (1991;1993) introdu
ed a novel approa
h.

He proposed to model dire
tly the two-point 
orrelation in the integral equation of the

redistribution term, using an isotropi
, exponential fun
tion. A 
onvolution produ
t is

obtained, whi
h 
an be inverted to give the so-
alled ellipti
 relaxation approa
h. The

redistribution term is no longer given by an algebrai
 relation, but rather by a dif-

ferential equation. The non-lo
al 
hara
ter is preserved through the ellipti
 operator

(1� L

2

r

2

), and the model 
an be integrated down to the wall. A notable feature of this

approa
h is that the sour
e term of the ellipti
 relaxation equation 
an be given by any

quasi-homogeneous model. Hen
e, it enables the derivation of models valid down to solid

boundaries, from the quasi-homogeneous models 
ited above, whi
h have been tested

over a wide range of di�erent 
ows. Even though some intuitive assumptions have been

made, Durbin's model is based on a theoreti
al approa
h, leading to the hope that it is

somewhat universal, unlike damping fun
tions.

The ellipti
 relaxation model has led to very en
ouraging results, espe
ially as applied
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to the v

2

{f (or k � "� v

2

) model, whi
h is a version of the full Reynolds stress model

redu
ed to three transport equations. Su

essful predi
tions in
lude, but are not limited

to, 
ows with adverse pressure gradient and around blu� bodies (Durbin 1995), three

dimensional boundary layers (Parneix, Durbin & Behnia 1998), aerodynami
s (Lien,

Durbin & Parneix 1997), and heat transfer (Behnia, Parneix & Durbin 1998; Man
eau,

Parneix & Lauren
e 2000).

Despite the remarkable su

ess, rooms for improving the ellipti
 relaxation model ex-

ist. Many of the underlying model assumptions, introdu
ed intuitively, have not been

validated by either experiments or DNS. The obje
tive of the present study is to evalu-

ate these assumptions through the analysis of a 
hannel 
ow DNS database, and to �nd

ways to improve the theoreti
al basis and performan
e of the model. The main issues to

be examined in
lude the validity of the two-point 
orrelation approximation employed

by Durbin (1991), the validity of the length s
ale used in the ellipti
 operator, and the

unsatisfa
tory behaviour of the model in the logarithmi
 layer. A full explanation of these

issues is given in x 2 and x 3. In x 4, the results of the DNS analysis are dis
ussed. It is

found that the ellipti
 relaxation model is globally 
onsistent with the simulation data,

and that the 
orrelation length s
ale is adequately modelled by the turbulent length s
ale

bounded near the wall by the Kolmogorov length s
ale. However, the 
orrelation fun
tion

between the 
u
tuating velo
ity and the Lapla
ian of the pressure gradient is strongly

anisotropi
 and inhomogeneous. Its approximation by an isotropi
, exponential fun
tion

is responsible for the spurious ampli�
ation of the energy redistribution in the log layer,

as predi
ted by the model. It is further dis
overed that the so 
alled \wall e
ho" e�e
t

in
reases the redistribution of energy, 
ontrary to the general belief. The physi
al in-

sights gained through the DNS study are used, in x 5, to develop new formulations of the

model that re
tify the erroneous logarithmi
-layer behaviour. This is a
hieved by taking

into a

ount the in
uen
e of strong inhomogeneity and anisotropy on the redistribution

term, using a spatially variable length s
ale and an asymmetri
 model of the 
orrelation

fun
tion. Unlike some previous ad ho
 formulations, the new formulations emphasize a

systemati
, s
ienti�
 approa
h to turbulen
e modelling, guided by the DNS data. Finally,

x 6 summarizes the major �ndings and a

omplishments of this work.

2. Theoreti
al ba
kground

2.1. Integral equation of the redistribution term

The pressure gradient{velo
ity 
orrelation entering the Reynolds stress transport equa-

tions is

��

�

ij

= �u

i

�p

�x

j

� u

j

�p

�x

i

; (2.1)

where � is the density, p is the 
u
tuating pressure and u

i

are the 
u
tuating velo
ity


omponents. The overline indi
ates ensemble average. Traditionally, this term is split into

pressure{strain 
orrelation and pressure di�usion. However, sin
e this splitting is non-

unique (Lumley 1975) and in
onsistent with the Navier{Stokes equations in the limit of

two-dimensional turbulen
e (Speziale 1985), it appears more appropriate to model the

pressure gradient{velo
ity 
orrelation as a whole. Sin
e the pressure di�usion is negligible

in the main part of the 
ow, �

�

ij


an be regarded as the energy redistribution between

the 
omponents of the Reynolds stress, ex
ept in the near-wall region, where it balan
es

the di�eren
e between dissipation and mole
ular di�usion.

The gradient of the pressure 
u
tuation is the solution of the Poisson equation obtained
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from the divergen
e of the 
u
tuating part of the Navier{Stokes equations,

r

2

�p

�x

k

= ��

�

�x

k

�

2

�U

i

�x

j

�u

j

�x

i

+

�u

i

�x

j

�u

j

�x

i

�

�u

i

�x

j

�u

j

�x

i

�

: (2.2)

Following Kim (1989), it will be assumed that the 
ontribution from the inhomogeneous

boundary 
ondition, or the \Stokes part", is negligible. A

ordingly, �p=�x

k

approxi-

mately satis�es a homogeneous Neumann boundary 
ondition.

Using the Green fun
tion G




of the domain, the solution of (2.2) takes the form

�p

�x

k

(x) =

Z




r

2

�p

�x

k

(x

0

)G




(x;x

0

) dV (x

0

); (2.3)

where x and x

0

denote position ve
tors, and dV the elementary volume. The integral

equation of the redistribution term 
an be derived from (2.1) and (2.3):

��

�

ij

(x) =

Z




	

ij

(x;x

0

)G




(x;x

0

) dV (x

0

); (2.4)

where 	

ij

(x;x

0

) denotes the two-point 
orrelation between the velo
ity and the Lapla
ian

of the pressure gradient:

	

ij

(x;x

0

) = �u

i

(x)r

2

�p

�x

j

(x

0

)� u

j

(x)r

2

�p

�x

i

(x

0

): (2.5)

2.2. The ellipti
 relaxation equation

In (2.4), the two-point 
orrelations between the velo
ity and the Lapla
ian of the pressure

gradient need to be modelled. Durbin (1991) de�ned a 
orrelation fun
tion

	

ij

(x;x

0

) = 	

ij

(x

0

;x

0

)f(x;x

0

); (2.6)

and modelled it by

f(x;x

0

) = exp

�

�

r

L

�

; (2.7)

where r = kx

0

� xk and L is the 
orrelation length s
ale. This approximation is the


orner-stone of the ellipti
 relaxation model and the validity of (2.7) is the main 
on
ern

of this paper.

In a free spa
e, using the model (2.7), the redistribution term 
an be written as

��

�

ij

(x) = �

Z




	

ij

(x

0

;x

0

)

exp

�

�

r

L

�

4�r

| {z }

E(r)

dV (x

0

): (2.8)

In this form, �

�

ij

appears as a 
onvolution produ
t between 	

ij

and E(r), whi
h is the

free-spa
e Green fun
tion asso
iated with the operator �r

2

+ 1=L

2

. Due to (2.6), the

one-point 
orrelation in the integrand is expressed as a fun
tion of x

0

. If it were expressed

as a fun
tion of x, the one-point 
orrelation 
ould have been taken outside the integral in

(2.8), and the non-lo
al e�e
t would have been lost or entirely re
ast into f(x;x

0

), whi
h

would then be more diÆ
ult to model. The 
onvolution integral (2.8) 
an be inverted,

yielding the ellipti
 relaxation equation:

�

�

ij

� L

2

r

2

�

�

ij

= �

L

2

�

(u

i

r

2

�p

�x

j

+ u

j

r

2

�p

�x

i

): (2.9)

In homogeneous situations, the se
ond term on the left hand side of this equation van-
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ishes. Therefore, Durbin (1991) proposed to repla
e the right hand side by any quasi-

homogeneous model �

h

ij

, whi
h leads to the model

�

�

ij

� L

2

r

2

�

�

ij

= �

h

ij

: (2.10)

This method provides a simple way of extending quasi-homogeneous models down to solid

boundaries, when appropriate boundary 
onditions for �

�

ij

are applied (Durbin 1993).

3. Presentation of the DNS assessment

3.1. Issues to examine

The ellipti
 relaxation approa
h is mainly based on the assumption that the 
orrelation

fun
tion f(x;x

0

), de�ned by (2.6), 
an be modelled by an exponential fun
tion. This

approximation was introdu
ed by Durbin (1991) on an intuitive basis, in order to preserve

the non-lo
al e�e
t on the redistribution term. However, its validity has never been


he
ked before, and the shape of 	

ij

(x;x

0

) needs to be investigated. The DNS database

of the 
hannel 
ow at Re

�

= 590 (Moser, Kim & Mansour, 1999) will be used for this

purpose.

Another aim of this work is to evaluate the 
orrelation length s
ale involved in the

model (2.7) for the 
orrelation fun
tion f(x;x

0

). If the turbulent length s
ale were used

in the whole 
ow, sin
e it goes to zero at solid boundaries, the ellipti
 operator L

2

r

2

would vanish at the wall, introdu
ing a singularity in the di�erential equation. Therefore,

Durbin (1991) proposed using the standard turbulent length s
ale in the main part of

the 
ow, and the Kolmogorov length s
ale in the vi
inity of the wall, i.e.,

L = C

L

max

 

C

�

�

3=4

"

1=4

;

k

3=2

"

!

: (3.1)

It is of interest to evaluate pre
isely the 
orrelation length s
ale from the DNS data, in

order to assess the validity of (3.1).

The ultimate obje
tive of this work is to �nd ways to improve the model. As pointed

out by Wizman et al. (1996), the ellipti
 operator does not behave entirely 
orre
tly in

the logarithmi
 layer. Suppose, for instan
e, that the Isotropisation of Produ
tion model

(Naot, Shavit & Wolfshtein 1973; Launder, Ree
e & Rodi 1975), denoted hen
eforth as

IP model, and the Rotta (1951) model are used as the rapid and slow parts of the sour
e

term �

h

ij

in (2.10). The redistribution term is then given by

�

�

ij

� L

2

r

2

�

�

ij

= �C

1

"

k

�

u

i

u

j

�

2

3

kÆ

ij

�

� C

2

�

P

ij

�

2

3

PÆ

ij

�

; (3.2)

where P

ij

= �u

i

u

k

�U

j

=�x

k

� u

j

u

k

�U

i

=�x

k

and P =

1

2

P

ii

. In the logarithmi
 layer, the

Reynolds stresses are 
onstant, and the produ
tion and the dissipation behave as y

�1

.

Thus, the right hand side in (3.2) behaves as y

�1

, and the redistribution term is then given

by �

�

ij

� 1:51�

h

ij

. This result shows that the ellipti
 operator leads to an ampli�
ation of

the redistribution. Note that the same ampli�
ation o

urs with any model for �

h

ij

.

The overestimation of the energy redistribution by the Rotta & IP model in the log-

arithmi
 layer has led a number of modellers to introdu
e wall e
ho type terms, follow-

ing Gibson & Launder (1978). It would be desirable for the ellipti
 relaxation equation

to 
ompensate for this short
oming. Some models, su
h as the Speziale, Sarkar & Gatski

(1991) model, or Craft & Launder (1996) model, 
orre
tly reprodu
e the redistribution

in the logarithmi
 layer. In this 
ase, it would be preferable that the ellipti
 relaxation

model be neutral, produ
ing neither ampli�
ation nor redu
tion of the redistribution.
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Based on the above 
onsiderations, Wizman et al. (1996) proposed two new formula-

tions of the ellipti
 relaxation equation. First, they introdu
ed a neutral formulation by

taking L

2

in (2.10) inside the Lapla
ian operator:

�

�

ij

�r

2

�

L

2

�

�

ij

�

= �

h

ij

: (3.3)

Se
ondly, for models that overestimate the redistribution, they proposed

�

�

ij

� L

2

r �

�

1

L

2

r

�

L

2

�

�

ij

�

�

= �

h

ij

; (3.4)

whi
h exhibits the expe
ted damping. Lauren
e & Durbin (1994) and Durbin & Lauren
e

(1996) suggested two other neutral formulations, given by

�

�

ij

�r �

�

L

2

r�

�

ij

�

= �

h

ij

; (3.5)

and

�

�

ij

� Lr

2

�

L�

�

ij

�

= �

h

ij

: (3.6)

These new formulations have been derived empiri
ally and su�er form a la
k of jus-

ti�
ations, as emphasized by the authors themselves. This work aims, through a DNS

analysis, to provide a more solid basis for deriving su
h modi�
ations to the model. The


entral idea is that the 
orrelation fun
tion f(x;x

0

) 
annot be represented by a sim-

ple exponential fun
tion, 
ontrary to what was assumed by Durbin (1991). Indeed, the

presen
e of the wall indu
es a blo
king e�e
t, leading to not only an elongation of the

turbulent stru
tures, but also an asymmetry in the dire
tion normal to the wall. Flu
-

tuating quantities are 
orrelated over a shorter distan
e in the dire
tion toward the wall

than away from it. There is plenty of experimental eviden
e (Hanjali�
 & Launder 1972;

Sabot 1976) of this feature in two-point 
orrelations between 
omponents of the 
u
tu-

ating velo
ity, and one 
an reasonably dedu
e that the two-point 
orrelations between

the 
u
tuating velo
ity and the Lapla
ian of the pressure gradient behave in a similar

manner. The use of the symmetri
al 
orrelation fun
tion (2.7) leads to overweighting

the region between the point and the wall, whi
h may be the reason for the spurious

behaviour of the ellipti
 relaxation equation in the logarithmi
 layer. This issue will be

explored in the present DNS analysis, in order to understand how modi�
ations to the

ellipti
 relaxation model, su
h as those proposed by Wizman et al. (1996), Lauren
e &

Durbin (1994) and Durbin & Lauren
e (1996), 
an be derived.

3.2. Channel 
ow database and post-pro
essing

The 
orrelation fun
tion f(x;x

0

) involves the Lapla
ian of the pressure gradient, whi
h


ontains three spatial derivatives. Therefore, a very a

urate DNS database is needed.

The 
hannel 
ow simulation at Re

�

= 590 performed by Moser et al. (1999) was 
hosen

be
ause of its numeri
al a

ura
y, the large number of available statisti
al samples, and

the relatively high Reynolds number. This 
ow was 
omputed on a grid of 384� 257� 384

points in streamwise (x), wall-normal (y) and spanwise (z) dire
tions, respe
tively. The


omputational domain is 2�h, 2h and �h in x, y and z, where h denotes the 
hannel half-

width. The simulation 
ode is based on a spe
tral method for spatial derivatives (Fourier

series in x and z, and Cheby
hev polynomials in y), and a semi-impli
it s
heme for time

integration. For statisti
al averaging, a total of 75 �elds (restart �les) are available, in

addition to the spatial averaging in x- and z-dire
tions.

The two-point 
orrelations between the 
u
tuating velo
ities and the Lapla
ian of the

pressure gradient are needed for evaluating the 
orrelation fun
tion f(x;x

0

). First, the
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Lapla
ian of the total pressure is evaluated from the velo
ity �eld,

r

2

ep = ��

�eu

i

�x

j

�eu

j

�x

i

; (3.7)

where the tilde denotes total quantities, using the same Fourier/Cheby
hev spe
tral

method as for the DNS. The gradient of this quantity is 
al
ulated using Fourier spe
tral

derivatives in x and z, and fourth order �nite di�eren
es in y. The one-point and two-

point 
orrelations between this gradient and the total velo
ity 
omponents are then


al
ulated, and 
orresponding mean quantities are �nally subtra
ted out in order to

obtain 
orrelations between 
u
tuating quantities. The post-pro
essing 
omputations

are very time 
onsuming, sin
e they involve 
al
ulations of two-point 
orrelations and

averaging over 75 restart �les and x{z planes. As a pra
ti
al matter, 
al
ulations are

performed at 7 representative y-lo
ations only, for separations restri
ted to x{y, x{z and

y{z planes.

4. Results and dis
ussion

4.1. The wall e
ho

The wall e
ho 
on
ept originates from the form of the integral equation of the redistri-

bution term in a semi-in�nite spa
e bounded by an in�nite plane (
 = IR� IR

+

� IR). In

this domain, it 
an easily be shown that the Green fun
tion is

G

IR�IR

+

�IR

(x;x

0

) = �

1

4�r

�

1

4�r

�

; (4.1)

where r

�

= kx

0

�

� xk, x

0

�

being the image of x

0

in the plane y = 0. The image term

is due to the homogeneous Neumann boundary 
ondition. Thus, at ea
h point of the

domain, the pressure 
u
tuation is the sum of the 
u
tuations generated by the velo
ity

�eld and its re
e
tion in the wall, whi
h is 
alled wall e
ho by analogy with a
ousti
s.

This e
ho is instantaneous, sin
e the 
uid is 
onsidered as in
ompressible.

Sin
e the paper of Launder, Ree
e & Rodi (1975), it has been widely a

epted in

the turbulen
e 
ommunity that this wall e
ho is responsible for the redu
tion of the

amplitude of the energy redistribution between 
omponents of the Reynolds stress. In

se
ond moment 
losures, wall e
ho terms are frequently in
orporated to a

ount for this

phenomenon, as proposed by Gibson & Launder (1978). These terms have proven to be

e�e
tive for simple 
ows but are often not well de�ned in 
omplex geometries.

The 
on
lusion that wall e
ho redu
es redistribution is, however, in
orre
t. Sin
e the

image term in the Green fun
tion appears with the same sign as the prin
ipal term, it

a
tually indu
es an ampli�
ation of the redistribution.

In the 
ase of a 
hannel (
 = IR� [0; 1℄� IR), the Green fun
tion is easily derived after

taking Fourier transform in homogeneous dire
tions. However, working in the spe
tral

spa
e is not relevant in the present study. In order to examine the problem of the wall

e
ho e�e
t in a 
hannel, an approximate Green fun
tion is needed.

It 
an be shown (
f. appendix A) that the simplest approximation to the Green fun
-

tion whi
h is valid down to the wall and a

ommodates the boundary 
onditions is

G




(x;x

0

) � H(x;x

0

), with

H(x;x

0

0

) = �

1

4�kx

0

�1

� xk

�

1

4�kx

0

0

� xk

�

1

4�kx

0

1

� xk

; (4.2)

where x

0

�1

and x

0

1

are the images of x

0

0

in the walls lo
ated at y = 0 and y = 1,

respe
tively.
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k
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Figure 1. Comparison of the three terms in the integrand of (4.3) at y

+

= 30 for separations

in y-dire
tion. (a) Integrand of �

�

11

; (b) Integrand of �

�

22

. prin
ipal term (n = 0);

image term due to the wall at y

+

= 0 (n = �1); image term due to the wall at y

+

= 1180

(n = 1). The verti
al 
oordinate is arbitrarily normalized su
h that the maximum of n = �1

term is 1.

With this approximation, the redistribution term (2.4) 
an be written as

��

�

ij

(x) = �

1

4�

Z




	

ij

(x;x

0

0

)

�

1

kx

0

�1

� xk

+

1

kx

0

0

� xk

+

1

kx

0

1

� xk

�

dV (x

0

0

):

(4.3)

The three terms in the integrand, 
al
ulated from the DNS database, are shown in

�gure 1, for the 
omponents �

�

11

and �

�

22

. The solid line, representing the prin
ipal term,

has been trun
ated be
ause it goes to in�nity at y

0

� y = 0. It 
an be seen that the image

term arising from the far wall at y

+

= 1180 is negligible, but not the term due to the near

wall at y

+

= 0. The exa
t weight of ea
h term has not been evaluated, sin
e it involves

integral of two-point 
orrelations over separations in all dire
tions, whi
h have not been


al
ulated. Nevertheless, following Bradshaw (1973), the amplitude of ea
h term 
an be

roughly estimated: the two-point 
orrelation 
an be approximated by a 
onstant inside

a sphere of radius L, and zero outside of it. If L=y and y=2h are both small, (4.3) yields

��

�

ij

(x) = �

L

2

2

	

ij

(x;x)

�

L

3y

+ 1 +

L

6h

�

: (4.4)

This result shows that, if the length s
ale is L = �y, the ratio of the image term (n = �1)

to the prin
ipal term is approximately 14 %. For the se
ond image term (n = 1), the ratio

is 0:07y=h, whi
h is approximately 0:4 % at y

+

= 30. Thus, the �rst image term 
annot

be negle
ted, as long as the length s
ale is of the order of �y. Note that, 
ontrary to

Bradshaw (1973), who 
on
luded that the presen
e of the wall 
hanges the redistribution

term by �0:14, we 
an aÆrm that the sign is positive, i.e., the wall e
ho a
tually in
reases

the redistribution. Indeed, it 
an be seen in �gure 1 that the 
ontribution of the image

terms to the integral is of the same sign as that of the prin
ipal term. The weight of the

negative ex
ursions of the �rst image term is far too small to 
hange the sign of the total


ontribution of this term.

Thus, an interesting and important 
on
lusion 
an be drawn. The a
tual wall e
ho leads

to an ampli�
ation of the redistribution, 
ontrary to the 
ommon belief. The Gibson &

Launder (1978) type terms, whi
h have been found useful in reprodu
ing the strong

anisotropy near walls, have the 
orre
t damping e�e
t, but for the wrong reason. This

damping 
annot be tra
ed to the wall e
ho e�e
t, i.e., the appearan
e of an image term

in the Green fun
tion. Rather, it is 
aused by the damping of the two-point 
orrelation
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itself, due to the modi�
ation of the turbulen
e by the wall, as a 
onsequen
e of the non-

lo
al nature of the redistribution term in the strongly inhomogeneous boundary layer.

The su

ess of Gibson & Launder (1978) type terms lies in the introdu
tion of non-lo
al

e�e
ts through the expli
it referen
e to the wall-distan
e, and we believe the more re
ent

attempts to repla
e these terms by highly nonlinear models is not the best route to

follow. Non-lo
al models, su
h as the ellipti
 relaxation model, appears more suitable for

a

ounting for the in
uen
e of the wall on the turbulen
e.

4.2. Asymmetry in y-dire
tion

In this se
tion the shape of the 
orrelation fun
tion de�ned by (2.6) is evaluated. One

problem that arises is that this fun
tion should depend on the 
omponent (i; j). Indeed,

a di�erent 
orrelation fun
tion 
an be evaluated for ea
h 
omponent of �

�

ij

by

f(x;x

0

) =

u

�

(x)r

2

�p

�x

�

(x

0

) + u

�

(x)r

2

�p

�x

�

(x

0

)

u

�

(x

0

)r

2

�p

�x

�

(x

0

) + u

�

(x

0

)r

2

�p

�x

�

(x

0

)

; (4.5)

without summation over Greek indi
es. Thus, it is impossible to derive a model for f

whi
h mat
hes all the DNS results.

In fa
t, the most general relation between two-point 
orrelation and one-point 
orre-

lation tensors, if they are assumed to be linearly 
onne
ted, is

	

ij

(x;x

0

) = f

ijkl

(x;x

0

)	

kl

(x

0

;x

0

): (4.6)

In this relation, the fourth order tensor f

ijkl

involves 81 
oeÆ
ients, but their number


an be dramati
ally redu
ed by using symmetry properties, as shown by Naot, Shavit &

Wolfshtein (1973). However, this type of relation remains too 
ompli
ated for the purpose

of a

ounting for the non-lo
al e�e
t. Therefore, a simple s
alar 
orrelation fun
tion is

used, keeping in mind that it 
an only represent approximately the non-lo
al e�e
t. The

following results must be interpreted in this sense.

The 
orrelation fun
tions evaluated from (4.5) are shown in �gure 2. The 
orrelation

fun
tions in �gures 2(a) and 2(b) 
orrespond respe
tively to �

�

11

and �

�

22

. Some features

whi
h 
an be seen in this �gures are rather favourable to the ellipti
 relaxation model:

�rst, the 
orrelation fun
tions exhibit sharp peaks, whi
h is 
onsistent with the use of an

exponential fun
tion to model it; se
ondly, the 
orrelation lengths for both 
omponents

11 and 22 evolve in a similar way when the �xed lo
ation moves away from the wall.

However, some other features do not agree with the simple model assumptions. First,

the peaks in �gure 2(a) are mu
h broader than these in �gure 2(b), indi
ating that the


orrelation length s
ale is not the same for all the 
omponents. Se
ondly, the 
orrelation

fun
tion exhibits negative ex
ursions, at lo
ations 
lose to the wall for the 11 
ompo-

nent, and everywhere in the 
hannel for the 22 
omponent. These features, whi
h are

very similar to those observed in the two-point velo
ity 
orrelations in boundary layer

experiments (Grant 1958; Favre, Gaviglio & Dumas 1957; 1958), 
all into question the

modelling of the 
orrelation fun
tion by a simple exponential fun
tion. Nevertheless, as

emphasized previously, the model does not intend to represent exa
tly the two-point 
or-

relations, but only to globally a

ount for the non-lo
al e�e
t. Moreover, it will be shown

in the following se
tions that the 
orrelation length s
ale, evaluated as the half-width of

the peak of the 
orrelation fun
tion, is very similar to the integral s
ale. This indi
ates

that the negative ex
ursions do not 
ontribute signi�
antly to the integral, and thus do

not strongly in
uen
e the redistribution term.

The main feature whi
h arises from these �gures is that the 
orrelation fun
tions do
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Figure 2. Shape of the 
orrelation fun
tion 
al
ulated from the DNS database at 7 di�erent

y-lo
ations: y

+

= 4; y

+

= 14; y

+

= 30; y

+

= 80; y

+

= 150; y

+

= 400; y

+

= 590. Separations

in the x- and z-dire
tions are zero. f(x;x

0

) is evaluated from (4.5) with: (a) � = � = 1; (b)

� = � = 2. For 
larity, 
urves have been trun
ated at large separations.

not have symmetri
al shapes. It 
an also be seen that the maxima of the peaks do

not generally o

ur at zero separation. As it is de�ned, the 
orrelation fun
tion is not

restri
ted to be smaller than one. Values greater than one 
an o

ur if the amplitude

(rms value) of the 
u
tuating velo
ity varies rapidly with distan
e to the wall.

The main impli
ation of this asymmetri
al shape is that the points x

0

lo
ated between

the �xed point x and the wall 
ontribute less to the integral than points x

0

toward the


ore of the 
ow. Hen
e, modelling the 
orrelation fun
tion by a symmetri
al exponential

fun
tion leads to overweighting the points toward the wall, thus in
reasing the value

of the integral (a formal proof of this 
an be found in Appendix B). This problem is

illustrated by �gure 3, for the 22 
omponent. The 
orrelation fun
tions 
al
ulated from

the DNS using (4.5), as well as from two models, are shown in �gure 3(a). The �rst

one is the original model, i.e., a simple exponential fun
tion, whereas the se
ond takes

into a

ount the gradient of the length s
ale in order to reprodu
e the previously noted

asymmetry. In �gure 3(b), two-point 
orrelations obtained by multiplying the one-point


orrelation from the DNS by the modelled 
orrelation fun
tion are shown. It 
an be seen

that, with the original model, points toward the wall are overweighted, whereas with the


orre
ted model, the two-point 
orrelations are mu
h better reprodu
ed in this region.

The overweighting of the two-point 
orrelation for separations in the dire
tion of the

wall is thought to be at the origin of the erroneous ampli�
ation of the redistribution in

the logarithmi
 layer noted in x 3.1. As shown in �gure 3(b), introdu
ing a dependen
e

on the gradient of the length s
ale in the model to a

ount for the asymmetry of the


orrelation fun
tion 
orre
ts this de�
ien
y. It will be shown, in x 5.2, that a new formu-

lation of the ellipti
 relaxation fun
tion 
an be derived from this extended model and, in

x 5.3, that this formulation over
omes the short
omings of the original one.
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Figure 3. Two-point 
orrelation 	

DNS

22

(x;x

0

) at y

+

= 80 obtained using two di�erent 
orrelation

fun
tions. (a) Correlation fun
tion: 3 f

DNS

(x;x

0

); original model f

1

(x;x

0

) = exp(�r=L);

asymmetri
al model f

2

(x;x

0

) = exp (�r=(L+ (x

0

� x) � rL)). (b) 2 One-point 
orre-

lation 	

DNS

22

(x

0

;x

0

); Æ Two-point 
orrelation 	

DNS

22

(x;x

0

) (=	

DNS

22

(x

0

;x

0

)f

DNS

(x;x

0

));

Two-point 
orrelation given by the original model 	

22

(x;x

0

) = 	

DNS

22

(x

0

;x

0

)f

1

(x;x

0

);

Two-point 
orrelation given by the asymmetri
al model 	

22

(x;x

0

) = 	

DNS

22

(x

0

;x

0

)f

2

(x;x

0

).

4.3. Anisotropy

The asymmetry in the dire
tion normal to the wall, whi
h has been emphasized in the

previous se
tion, is not the only anisotropy. The purpose of this se
tion is to point out

that the 
orrelation fun
tion does not possess the same shape for separations in the

three prin
ipal dire
tions. This anisotropy is visible in �gures 4 and 5, for 
orrelation

fun
tions 
orresponding to �

�

11

and �

�

22

, respe
tively. At lo
ations very 
lose to the wall

(�gures 4a,b and 5a,b), the 
orrelation fun
tion is strongly elongated in the streamwise

dire
tion, in parti
ular for the 22-
omponent (�gure 5a,b). This is mainly due to the fa
t

that, in the y-dire
tion, the 
orrelation length s
ale is 
onstrained by the presen
e of the

wall (wall-blo
king e�e
t). In �gures 4 and 5, it 
an be noted that f goes to in�nity at

the wall. For instan
e, for the 22-
omponent, f behaves as y

0�2

when x

0

approa
hes the

wall. This is a 
onsequen
e of its de�nition (4.5): the two-point 
orrelation only 
ontains

u

2

(y), whi
h is 
onstant with respe
t to y

0

, whereas the one-point 
orrelation involves

u

2

(y

0

), whi
h behaves as y

02

.

Away from the wall, the 
orrelation fun
tion be
omes in
reasingly isotropi
 (�gures 4
{

f and 5
{f ). In the 
enter of the 
hannel, it is 
ompletely isotropi
 for the 11-
omponent

(�gure 4g), but still slightly elongated in the streamwise dire
tion for the 22-
omponent

(�gure 5g). These features are also 
onspi
uous in �gures 6{11. In the �gures (a), (b)

and (
), the shapes of the 
orrelation fun
tions are shown for separations in x{y, x{z

and y{z planes, respe
tively. The iso-
orrelation 
ontours in these planes are shown in

the �gures (d). The elongation of the 
orrelation fun
tion, whi
h is 
onsistent with the

well-known elongation of turbulent stru
tures near the wall, 
learly appears in �gures 6
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Figure 4. Shape of the 
orrelation fun
tion de�ned by (4.5) with � = � = 1, evaluated from the

DNS data, in the 3 prin
ipal dire
tions, at 7 di�erent y-lo
ations. (a) y

+

= 4; (b) y

+

= 14; (
)

y

+

= 30; (d) y

+

= 80; (e) y

+

= 150; (f ) y

+

= 400; (g) y

+

= 590. Separations: x-dire
tion

(�y = �z = 0); y-dire
tion (�x = �z = 0); z-dire
tion (�x = �y = 0).
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Figure 5. Same as �gure 4 for � = � = 2.
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Figure 6. Shape of the 
orrelation fun
tion de�ned by (4.5) with � = � = 1 at y

+

= 14. (a) Sep-

aration in x{y plane; (b) Separation in x{z plane; (
) Separation in y{z plane; (d) Iso-
orrelation


ontours in these three planes (21 
ontours from 1 to �1 are plotted).
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Figure 7. Same as �gure 6 with � = � = 2 at y
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= 14.
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+

= 30.
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Figure 10. Same as �gure 6 with � = � = 1 at y
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= 150.
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Figure 12. Length s
ales 
hara
terizing the 
orrelation fun
tion 
orresponding to �

�

22

evaluated

from the 
urves in �gure 5. (a) Comparison of the length s
ales in y-dire
tion:� Left length s
ale

L

�e

2

; � Right length s
ale L

e

2

; 3 Central length s
ale L =

1

2

(L

�e

2

+ L

e

2

). (b) Comparison of

the 
entral length s
ales in the prin
ipal dire
tions: Æ x-dire
tion; 3 y-dire
tion; 2 z-dire
tion.

and 7, in parti
ular for the 22-
omponent. It gradually de
reases when the �xed point x

moves away from the wall (�gures 8 and 9). Further away from the wall (�gures 10 and

11), the elongation in streamwise dire
tion is almost totally removed, but the asymmetry

in y-dire
tion, emphasized in x 4.2, is visible.

The model does not a

ount for the elongation in streamwise dire
tion, sin
e it uses a

fun
tion of r, whi
h does not distinguish di�erent dire
tions. This short
oming 
annot be

responsible for the spurious ampli�
ation of the redistribution in the logarithmi
 layer,

pointed out in x 3.1, sin
e in the 
ase of a 
hannel 
ow, the non-lo
al e�e
t does not

a
t in the homogeneous dire
tions x and z. Nevertheless, in more 
omplex 
ows, this

feature of the 
orrelation fun
tion 
an be
ome signi�
ant. In x 5.1, a new formulation of

the ellipti
 relaxation equation will be proposed, allowing the introdu
tion of di�erent

length s
ales in ea
h dire
tions, thus taking into a

ount the anisotropy of the turbulent

stru
tures.

4.4. Length s
ales

It is noted that the fun
tion exp (�r=L) takes the value 1=e for r = L. Hen
e, the 
or-

relation length s
ale 
an be de�ned by the separation at whi
h the 
orrelation fun
tion

takes this value. Notwithstanding its simpli
ity, this method provides an evaluation of a

length s
ale L

m

, de�ned impli
itly by

f(x;x+ L

m

m) =

1

e

; (4.7)

in ea
h dire
tion m, in
luding the inhomogeneous dire
tion. The drawba
k is that this

de�nition only enables the 
hara
terization of the shape of the fun
tion at moderate

separations and 
annot a

ount for more 
omplex features, su
h as negative ex
ursions.

Figure 12 shows the di�erent length s
ales evaluated with this method from the


orrelation fun
tions 
orresponding to �

�

22

, depi
ted in �gure 5. In �gure 12(a), three

length s
ales in the y-dire
tion are 
ompared: the left length s
ale, de�ned by (4.7) with

m = �e

2

(e

1

,e

2

and e

3

being the basis ve
tors in streamwise, wall-normal and span-

wise dire
tions, respe
tively); the right length s
ale, de�ned by (4.7) with m = e

2

, and

the 
entral length s
ale, whi
h is the algebrai
 mean of the two previous ones, i.e., the

half-width of the 
orrelation fun
tion. It 
an be noted that the asymmetry, already em-

phasized in x 4.2, is rather strong in the main part of the 
ow. Ex
ept for the pe
uliar
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Figure 13. Comparison of the di�erent length s
ale de�nitions for the �

�

22


omponent, evaluated

from the DNS data: 2 Correlation length s
ale L (
entral length s
ale in �gure 12a), de�ned

as the half-width of the 
orrelation fun
tion; Æ Æ Integral length s
ale L

int

de�ned by (4.10)

with i = j = 2; Turbulent length s
ale used in the model L

T

= C

L

k

3=2

"

�1

(C

L

= 0:045);

Kolmogorov length s
ale used near the wall in the model L

K

= C

�

C

L

�

3=4

"

�1=4

(C

�

= 80).

behaviour at y

+

= 14, the asymmetry in
reases 
ontinuously with distan
e from the wall

until it rea
hes a maximum, and then de
reases in the vi
inity of the 
entre. Note that

the 
orrelation fun
tion should be symmetri
al at the 
entre if the data were perfe
tly

statisti
ally 
onverged (the data have not been arti�
ially symmetrized).

In �gure 12(b), the 
entral length s
ale in the y-dire
tion, already plotted in �g-

ure 12(a), is 
ompared to the length s
ales in the x- and z-dire
tions. This 
omparison

provides a quantitative evaluation of the anisotropy of the 
orrelation fun
tion, seen in

�gures 4{11, and shows that the anisotropy of �

�

22

is very important everywhere in the

domain. The three length s
ales show qualitatively the same variation a
ross the 
hannel,

ex
ept below y

+

= 50, where the streamwise length s
ale exhibits a sharp spike, 
orre-

sponding to the strong elongation of the iso-
orrelation 
ontours emphasized in x 4.3.

Figure 13 shows a 
omparison between the 
orrelation length s
ale, de�ned as the

half-width of the 
orrelation fun
tion (the 
entral length s
ale in �gures 12a,b), and

the integral length s
ale L

int

. In order to de�ne the latter, let us introdu
e the standard


orrelation fun
tion F (
f., for instan
e, Monin & Yaglom 1975) to be used in the integral

equation (2.4):

	

ij

(x;x

0

) = 	

ij

(x;x)F(x;x

0

); (4.8)

where, 
ontrary to (2.6), the one-point 
orrelation is expressed in x. The one-point 
or-

relation 
an then be taken outside the integral, whi
h gives

��

�

ij

(x) = 	

ij

(x;x)

Z




F(x;x

0

)H(x;x

0

) dV (x

0

): (4.9)
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This formulation suggests the de�nition of the integral length s
ale

L

2

int

(x) =

�

�

�

�

Z




F(x;x

0

)H(x;x

0

) dV (x

0

)

�

�

�

�

=

�

�

�

�

��

�

ij

(x)

	

ij

(x;x)

�

�

�

�

; (4.10)

plotted in �gure 13. Also plotted are the length s
ales used in Durbin's model (3.1),

namely the Kolmogorov length s
ale L

K

, whi
h is a
tive in the vi
inity of the wall, and

the turbulent length s
ale L

T

.

The �rst important feature to be noted is that the 
orrelation length s
ale is very


lose to the integral length s
ale in the main part of the 
ow, whi
h leads to a very

important 
on
lusion: the most signi�
ant 
ontribution of the 
orrelation fun
tion to

the integral (4.10) is given by its values at moderate separations. Integral properties of

the 
orrelation fun
tion are thus mainly due to the shape near the peak. The 
omplex

features of the 
orrelation fun
tion demonstrated in �gures 2 and 4{11, in parti
ular the

negative ex
ursions, appear to have no signi�
ant in
uen
e. The redistribution term �

�

ij

,

whi
h is given by the integral of the two-point 
orrelation, 
an be expe
ted to depend

only on the shape of the 
orrelation fun
tion at moderate separations. Therefore, the use

of a simple model fun
tion, su
h as the exponential fun
tion (2.7), seems to be totally

justi�ed by �gure 13. However, as mentioned in x 4.2, the asymmetry in the y-dire
tion

is missed by the model (2.7), whi
h leads, as shown in Appendix B, to the erroneous

ampli�
ation of the redistribution in the logarithmi
 layer noted in x 3.1. The model

must be modi�ed, as shown in �gure 3, to a

ount for this asymmetry, as well as for the

anisotropy emphasized in x 4.3. This issue will be dis
ussed in the following se
tions.

In the vi
inity of the wall, the 
orrelation length s
ale L and the integral length s
ale

L

int

do not have similar behaviours: L approa
hes a value of 6, whereas L

int

de
reases

rapidly toward the wall. This behaviour justi�es the use of a lower bound in the model

(3.1). The two length s
ales L

T

and L

K

, used in this model, are also plotted in �gure 13.

The turbulent length s
ale L

T

provides a very satisfa
tory representation of the integral

length s
ale throughout the 
ow, ex
ept near the 
entre of the 
hannel. It should be

noted that in this region, both �

�

ij

and 	

ij

are small, and the evaluated integral s
ale is


ontaminated by numeri
al errors. Hen
e, the strong de
rease of L

int

beyond y

+

= 500 is

probably not physi
al. The 
urve has been trun
ated at y

+

� 550 to improve the 
larity

of the �gure. Sin
e in the main part of the 
ow, the integral length s
ale L

int

and the


orrelation length s
ale L are very 
lose to ea
h other, the model L

T

represents very

satisfa
torily the 
orrelation length s
ale down to y

+

� 100. Below this point, �gure 13

shows that the Kolmogorov length s
ale L

K

must be used. The point where L

T

be
omes

smaller than L

K

when moving toward the wall is approximately lo
ated where L and L

int

diverge. The lo
ation of this point depends on the 
oeÆ
ient C

�

; in �gure 13, the original


oeÆ
ient C

�

= 80, 
hosen to give the experimental value of the 
orrelation length s
ale

at the wall (Durbin & Lauren
e 1996), has been used. In order to 
ompare the shape

of the modelled length s
ale against the data, the 
oeÆ
ient C

L

has been set to 0:045

in this �gure. The fa
t that the length-s
ale shapes are very similar is an a posteriori

justi�
ation for the use of the formulation L = max(L

K

; L

T

) in Durbin's model.

The above results have addressed some important issues about the ellipti
 relaxation

method. In parti
ular, they justify the use of a model for the 
orrelation fun
tion whi
h

does not a

ount for the negative ex
ursions. They also 
on�rm the ne
essity of bounding

the length s
ale near the wall by the Kolmogorov length s
ale. However, it was shown in

x 4.2 and 4.3 that modelling the 
orrelation fun
tion by a simple isotropi
 exponential

fun
tion is too 
rude an approximation. This is at the origin of the spurious behaviour

in the logarithmi
 layer. In the following se
tions, reformulations of the model will be

proposed and their behaviour analyzed.
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Figure 14. E�e
t of the spa
e transformation on the 
orrelation fun
tion: (a) Correlation

fun
tion in the original spa
e 
 (same as �gure 2b); (b) Correlation fun
tion after transformation

of y

+

-axis. See �gure 2 for additional 
aption.

5. Reformulation of the model

5.1. Corre
tion of the inversion error

The ellipti
 relaxation equation is derived from the integral equation of the redistribution

term (2.4), whi
h is transformed into (2.8) by using the model (2.7). Equation (2.8) 
an

be inverted to give the ellipti
 relaxation equation if the integral is a 
onvolution produ
t,

i.e., if the fun
tion denoted E(r) truly depends only on r, or at most on the separation

x

0

� x. This is, however, not the 
ase, sin
e the length s
ale depends on the lo
ation.

This inversion is valid only if the length s
ale 
an be 
onsidered lo
ally 
onstant, whi
h

implies that krLk is mu
h smaller than unity. Sin
e the 
oeÆ
ient C

L

is 
hosen su
h

that krLk = � = 0:41 in the logarithmi
 region, the length s
ale 
annot be 
onsidered

as a 
onstant. If (2.9) is meant to be equivalent to (2.8), an inversion error is introdu
ed.

In order to avoid this inversion error, it is ne
essary to treat the variation of L. A


oordinate transformation x 7! �(x) 
an be introdu
ed, su
h that in the transformed

spa
e the length s
ale is roughly a 
onstant, and the boundaries of the domain are

preserved: �(
) = 
. In a 
hannel, it is simply given impli
itly by d�

2

=L

�

= dy=L(y),

i.e., by the integral

�

2

(y) =

Z

y

0

L

�

L(y

0

)

dy

0

; (5.1)

where L

�

is a 
onstant, 
hosen su
h that the domain is globally preserved:

L

�

= 2h

 

Z

2h

0

dy

0

L(y

0

)

!

�1

: (5.2)

Other dire
tions 
an either be kept un
hanged (�

1

(x) = x and �

3

(x) = z) or be trans-

formed a

ording to the previously noted anisotropy. An example of su
h a transforma-

tion in a 2-dimensional domain is given in appendix C.
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Figure 14 shows how the shape of the 
orrelation fun
tion 
orresponding to �

�

22

is mod-

i�ed by �. It 
an be seen that, after the transformation, the 
orrelation length s
ale is


onstant a
ross the 
hannel. It 
an also be seen that the transformation almost 
ompletely

removes the asymmetry in the y-dire
tion. Note that, in this �gure, the transformation

of the 
orrelation is plotted, instead of the 
orrelation between transformed quantities

(the spa
e transformation and the evaluation of the two-point 
orrelations are not 
om-

mutable). This approximation is used only in this �gure to illustrate the e�e
t of � on

the length s
ale, but not in the subsequent analysis.

Let us de�ne the fun
tions: �

i

= �p=�x

i

Æ �

�1

, w

i

= u

i

Æ�

�1

and �

ij

= �

�

ij

Æ�

�1

,

where Æ denotes the fun
tion 
omposition: f Æ g(x) = f(g(x)). Note that these fun
tions

are de�ned on the same domain 
 as the original quantities �p=�x

i

, u

i

and �

�

ij

, sin
e �

maps 
 to itself. Additionally, let g

i

be the Lapla
ian of �

i

, i.e.,

g

i

=

�

2

�

i

�x

k

�x

k

: (5.3)

The same method as in x 2 
an be applied to derive a new form of the ellipti
 relaxation

equation. First, one 
an assume that a homogeneous Neumann boundary 
ondition 
an

be applied to �

k

, so that it satis�es the following integral equation (see appendix C for

details in a 1-dimensional 
ase):

�

k

(x) =

Z




g

k

(x

0

)G




(x;x

0

) dV (x

0

): (5.4)

In this expression, G




is the same as in (2.3), sin
e the Green fun
tion only depends on

the domain. �

ij

then satis�es

��

ij

(x) =

Z




�

ij

(x;x

0

)G




(x;x

0

)dV (x

0

); (5.5)

where �

ij

(x;x

0

) = �w

j

(x)g

i

(x

0

)� w

i

(x)g

j

(x

0

).

In a free spa
e, (5.5) redu
es to

��

ij

(x) = �

Z




�

ij

(x;x

0

)

dV (x

0

)

4�r

: (5.6)

The two-point 
orrelations 
an then be modelled by

�

ij

(x;x

0

) = �

ij

(x

0

;x

0

) exp

�

�

r

L

�

�

; (5.7)

leading to

��

ij

(x) = �

Z




�

ij

(x

0

;x

0

)

exp

�

�

r

L

�

�

4�r

dV (x

0

): (5.8)

Equation (5.8) is similar to (2.8), the main di�eren
e being that the length s
ale L

�

is

now truly a 
onstant. Thus, (5.8) is a 
onvolution integral, whi
h 
an be inverted without

introdu
ing an inversion error:

�

ij

(x)� L

2

�

�

2

�

ij

�x

k

�x

k

(x) = �

L

2

�

�

�

ij

(x;x): (5.9)

Introdu
ing the Ja
obian matrix of the inverse transformation, A =r�

�1

, the equation
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satis�ed by �

�

ij

is

�

�

ij

� L

2

�

A

kl

A

ml

�

2

�

�

ij

�x

k

�x

m

� L

2

�

A

ml

�A

kl

�x

m

��

�

ij

�x

k

= �

h

ij

: (5.10)

In this equation, as in x 2.2, the right hand side has been repla
ed by a quasi-homogeneous

model, noting that in homogeneous situations, (5.10) redu
es to

�

�

ij

= �

h

ij

: (5.11)

Now, a matrix of length s
ales 
an be introdu
ed by de�ning A

ij

= L

ij

=L

�

, whi
h yields

a new form of the ellipti
 relaxation equation:

�

�

ij

� L

kl

L

ml

�

2

�

�

ij

�x

k

�x

m

� L

ml

�L

kl

�x

m

��

�

ij

�x

k

= �

h

ij

: (5.12)

This new formulation is more 
ompli
ated than the original one, but allows for length

s
ale anisotropy, whi
h has been found to be very signi�
ant in x 4. As will be shown in

x 5.3, it does not exhibit the same spurious behaviour in the logarithmi
 layer.

The remaining issue is the modelling of L

ij

. The most natural 
hoi
e is

L

ij

=

3

2

u

i

u

j

k

L; (5.13)

where L is given by the original model (3.1). Another possibility is simply

L

ij

= LÆ

ij

; (5.14)

whi
h negle
ts the anisotropy but redu
es signi�
antly the 
omplexity of (5.12), whi
h

be
omes

�

�

ij

� L

2

r

2

�

�

ij

� LrL �r�

�

ij

= �

h

ij

: (5.15)

This formulation only di�ers from the original one by the presen
e of the third term on

the left hand side. This term a

ounts for the variations of the length s
ale. Note that

(5.15) 
an be rewritten as

�

�

ij

� Lr � (Lr�

�

ij

) = �

h

ij

: (5.16)

This formulation is 
lose to those proposed by Wizman et al. (1996), Lauren
e & Durbin

(1994) and Durbin & Lauren
e (1996), but it will be demonstrated in x 5.3 that it still

exhibits an ampli�
ation of the redistribution in the logarithmi
 layer.

5.2. Corre
tion to the model of the 
orrelation fun
tion

In x 4.2, it has been pointed out that the 
orrelation fun
tion is strongly asymmetri
 in

the dire
tion normal to the wall. Figure 3 shows that using the original model for the


orrelation fun
tion, the two-point 
orrelation between the �xed point x and the wall is

overestimated. This short
oming 
an be 
orre
ted by taking into a

ount the gradient

of the length s
ale, thus giving an asymmetri
 shape to the model for the 
orrelation

fun
tion:

f(x;x

0

) = exp

�

�r

L+ �(x

0

� x) � rL

�

; (5.17)

whi
h has been plotted for � = 1 in �gure 3.

Considering the term �(x

0

� x) � rL as a small 
orre
tion, a Taylor series expansion

of (5.17) leads to the expression

f(x;x

0

) � exp

�

�

r

L

�

�

1 + �

r

L

2

(x

0

� x) � rL

�

: (5.18)
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If (5.18) is 
ombined with (2.6) and (2.4), using the free-spa
e Green fun
tion, one obtains

��

�

ij

(x) = �

Z




	

ij

(x

0

;x

0

)

exp

�

�

r

L

�

4�r

dV (x

0

)

| {z }

��

�a

ij

�

Z




	

ij

(x

0

;x

0

)�

r

L

2

exp

�

�

r

L

�

4�r

(x

0

� x) � rL dV (x

0

)

| {z }

��

�b

ij

:

(5.19)

In this equation, the �rst term, �

�a

ij

, is exa
tly the redistribution term given by the

original model, and satis�es

�

�a

ij

� L

2

r

2

�

�a

ij

= �

L

2

�

g

ij

; (5.20)

where g

ij

(x) � 	

ij

(x;x). The se
ond term �

�b

ij


an be 
onsidered as a 
orre
tion term.

Using a Taylor series expansion of g

ij

(x

0

) in the vi
inity of the �xed point x, one obtains

��

�b

ij

(x) = �

Z




(x

0

� x) � rg

ij

�

r

L

2

(x

0

� x) � rL

exp

�

�

r

L

�

4�r

dV (x

0

); (5.21)

whi
h gives exa
tly, in a free spa
e,

��

�b

ij

= �8�L

3

rL � rg

ij

: (5.22)

Following Durbin (1991), the right hand side of (5.20) 
an be repla
ed by any quasi-

homogeneous model �

h

ij

, whi
h 
orresponds to modelling g

ij

by ���

h

ij

=L

2

. There are

then two possible ways to take into a

ount the 
orre
tion term in the model. First, in

(5.22), g

ij


an be approximated by ���

�a

ij

=L

2

, whi
h leads to

�

�a

ij

� L

2

r

2

�

�a

ij

= �

h

ij

; (5.23)

��

�b

ij

= 8�LrL � r�

�a

ij

� 16�(rL)

2

�

�a

ij

: (5.24)

Thus, (5.23) gives exa
tly the same solution as the original model, while (5.24) provides

an expli
it 
orre
tion (�

�

ij

= �

�a

ij

+ �

�b

ij

). The se
ond possibility is to take into a

ount

the 
orre
tion impli
itly:

(1 + 16�(rL)

2

)�

�

ij

� L

2

r

2

�

�

ij

� 8�LrL � r�

�

ij

= �

h

ij

: (5.25)

This impli
it formulation is probably preferable for stability reasons. In (5.25), the same

term LrL � r�

�

ij

as in (5.15) appears, but with the 
oeÆ
ient 8�. This shows that the

spa
e transformation introdu
ed in x 5.1 also 
orre
ts the asymmetry in the y-dire
tion,

as 
an be seen in �gure 14.

It is worth pointing out that the same type of 
orre
tion has been used by Launder &

Tselepidakis (1991), in order to take into a

ount the inhomogeneity of the 
ow near a

wall, and thus avoid the use of wall e
ho 
orre
tion terms. Usually, the rapid part of the

redistribution term is evaluated as the tensorial produ
t between a fourth order tensor

and the gradient of the mean velo
ity. Launder & Tselepidakis (1991) proposed to repla
e
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Equation Model 
 �

(2.10) D1 (Durbin 1991) -2 1.51

(3.3) W1 (Wizman et al. 1996) 0 1

(3.5) L1 (Lauren
e & Durbin 1994) 0 1

(3.6) D2 (Durbin & Lauren
e 1996) 0 1

(3.4) W2 (Wizman et al. 1996) 2 0.75

(5.15) M1 (this paper) -1 1.2

(5.12) M2 (this paper) �

9

4

�

u

1

u

2

2

=k

2

+ u

2

u

2

2

=k

2

�

1.06

(5.25) M3 (this paper) 2(12� � 1) 0{1.51

(5.29) GS (Gibson & Launder 1978) NA 0.67

(5.30) GR (Gibson & Launder 1978) NA 0.40

(5.26) LT (Launder & Tselepidakis 1991) NA 0.53

Table 1. Logarithmi
 layer analysis of the di�erent formulations of the ellipti
 relaxation

equation

the latter by an e�e
tive velo
ity gradient given by

�U

l

�x

m

�

�

�

�

e�

=

�U

l

�x

m

+ 


I

l

n

�l

n

�x

k

�

2

U

l

�x

k

�x

m

; (5.26)

where 


I

= 0:3, and l

n

= (k=")(u

p

u

q

n

p

n

q

)

1=2

is a s
alar length s
ale in the dire
tion of

outward normal to the wall. Thus, in (5.15), (5.25) and (5.26), by three di�erent reason-

ings, the same type of 
orre
tion, of the form LrL � rA, where A denotes either �

�

ij

or

�U

l

=�x

m

, has been introdu
ed in order to redu
e the energy redistribution between the


omponents of the Reynolds stress in the logarithmi
 layer. The e�e
t of the 
orre
tions

proposed in the present paper is investigated in the next se
tion.

5.3. Redistribution redu
tion in the logarithmi
 layer

In x 3.1, it has been shown that, irrespe
tive of the quasi-homogeneous model, the original

formulation gives an ampli�
ation of the redistribution in the logarithmi
 layer. In fa
t,

no matter what formulation of the ellipti
 relaxation equation is 
onsidered, the same

analysis leads to an expression of the form

�

�

ij

= ��

h

ij

; (5.27)

where

� =

1

1 + 
C

2

L

C

�3=2

�

�

2

; (5.28)

thus relating the redistribution term given by the ellipti
 relaxation model to its un-

derlying quasi-homogeneous model. This analysis is based on the logarithmi
 layer as-

sumptions: �

h

ij

= A

h

=y, k = u

�

2

=C

1=2

�

and " = u

3

�

=�y, where A

h

is a 
onstant and u

�

denotes the fri
tion velo
ity. In (5.27), �

�

ij

is not the exa
t solution of the di�erential

equation, but only a parti
ular solution in the logarithmi
 layer (no boundary 
ondi-

tions are 
onsidered). The ampli�
ation fa
tor � 
hara
terizes the e�e
t of the ellipti


relaxation equation in this region.

The 
oeÆ
ient 
 in (5.28) depends on the formulation of the ellipti
 relaxation equa-
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tion. It is given in table 1, along with an estimation of the ampli�
ation fa
tor �. The

length s
ale L used in the 
al
ulations is given by (3.1) for all the formulations. No

alternative de�nition of L is needed in the new formulations M1, M2 and M3, sin
e

they expli
itly involve the gradient of L to a

ount for inhomogeneity. The 
oeÆ
ient

C

L

is 
hosen su
h that the length s
ale is L = �y in the logarithmi
 layer: C

L

= C

3=4

�

.

In the 
ase of the fully anisotropi
 model M2, the anisotropies a

ij

= u

i

u

j

=k �

2

3

Æ

ij

in

the logarithmi
 layer are required, sin
e they enter the anisotropi
 length s
ale (5.13).

The following logarithmi
 layer values have been used: a

12

= �0:30; a

22

= �0:42. In the


ase of model M3, 
, and hen
e �, are fun
tions of the 
oeÆ
ient �. As � varies from 0

(original model D1) to 1, � varies from 1:51 to 0. Note that the expli
it version of M3,

given by (5.23) and (5.24), has the same behaviour as M3 to the �rst order.

It 
an be seen in the table that the new models M1, M2 and M3, whi
h are derived from

theoreti
al 
onsiderations, unlike the ad ho
 models W1, L1, D2 and W2, have various

behaviours. The �rst one, M1, whi
h attempts to limit the inversion error (x 5.1) but

does not a

ount for the anisotropy of the length s
ale, indu
es an ampli�
ation of the

redistribution. The fa
tor �

M1

is lower than �

D1

, sin
e the term �LrL � r�

�

ij

, whi
h

distinguishes M1 from D1, moves in the right dire
tion. However, it is not suÆ
iently

large to remove all the ampli�
ation due to the term L

2

r

2

�

�

ij

. When the length s
ale

anisotropy is taken into a

ount (M2), the ampli�
ation fa
tor falls to �

M2

= 1:06. Thus,

model M2 
an be referred to as a quasi-neutral model. In model M3, � 
an be 
hosen

to give any ampli�
ation fa
tor between 0 and 1:51. The presen
e of the 
oeÆ
ient �

enables adjustment of the weights of the terms �LrL � r�

�

ij

and (rL)

2

�

�

ij

. By 
hoosing

� =

1

12

, the model be
omes neutral (� = 1).

The ampli�
ation fa
tors for the 22-
omponents of the slow and rapid parts of the

Gibson & Launder (1978) model are shown in table 1 for 
omparison. The slow part of

the wall e
ho terms is given by

�

wS

ij

= C

0

1

"

k

�

u

k

u

m

n

k

n

m

Æ

ij

�

3

2

u

k

u

i

n

k

n

j

�

3

2

u

k

u

j

n

k

n

i

�

f

�

L

T

n

i

r

i

�

; (5.29)

where C

0

1

= 0:5. The rapid part is

�

wR

ij

= C

0

2

�

�

km

n

k

n

m

Æ

ij

�

3

2

�

ik

n

k

n

j

�

3

2

�

jk

n

k

n

i

�

f

�

L

T

n

i

r

i

�

; (5.30)

where C

0

2

= 0:3. The ampli�
ation fa
tor for the formulation (5.26) proposed by Laun-

der & Tselepidakis (1991), used with the linear IP model, is also shown.

This simple analysis of the logarithmi
 layer shows that modi�
ations of the ellipti


relaxation equation 
an over
ome the de�
ien
ies of the original model. The formulation

to be 
hosen depends on the quasi-homogeneous model used as the sour
e term. The

most natural 
hoi
e is to use a model whi
h predi
ts 
orre
tly the redistribution in the

logarithmi
 layer, su
h as the Speziale, Sarkar & Gatski (1991) model (see, e.g., Demuren

& Sarkar 1993; Had�zi�
 1999; Man
eau 1999), together with a neutral formulation of the

ellipti
 relaxation equation, M2 or M3 with � =

1

12

. Less elaborate models, su
h as the

Rotta & IP model, whi
h overestimates the redistribution in the logarithmi
 layer, should

be used with a formulation like the M3 model, with a 
oeÆ
ient � larger than

1

12

, without

any wall e
ho 
orre
tion terms.

Sin
e these new formulations of the ellipti
 relaxation equation have ampli�
ation fa
-

tors 
lose to those previously proposed by Wizman et al. (1996), Lauren
e & Durbin

(1994) and Durbin & Lauren
e (1996), they are expe
ted to give similar results in pra
ti-
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al appli
ations. It was noted, in x 3.1, that the formulations W1, L1, D2 and W2 su�er

from a la
k of justi�
ation, and a

ordingly, the new formulations should be preferred.

Further a priori tests and a
tual 
omputations using the new formulation M3 have

been performed re
ently. The results, dis
ussed in detail elsewhere (Man
eau & Hanjali�


2000), demonstrate that an overall bene�t is obtained by using the modi�ed form of the

ellipti
 relaxation equation in a 
hannel 
ow. The a priori tests show that when the

Rotta & IP model is used as the sour
e term of the ellipti
 relaxation equation, the M3

model, with the 
oeÆ
ient � 
hosen to obtain a redu
tion of the redistribution in the

logarithmi
 layer, 
orre
ts the overestimation due to the Rotta & IP model as expe
ted.

The results are 
omparable to those obtained from the redistribution-redu
ing model

W2. If the SSG model (Speziale et al. 1991), whi
h 
orre
tly predi
ts the redistribution

in the logarithmi
 layer, is used as the sour
e term, the M3 model gives results similar to

those from the neutral W1 model. Both models are shown to be preferable to the original

(D1) model.

Consequently, the optimal 
ombinations of the SSG model (as sour
e term) with the

neutral ellipti
 relaxation formulations W1 and M3, respe
tively, are implemented in a

Reynolds stress model and tested in full 
omputations of a 
hannel 
ow (Man
eau &

Hanjali�
 2000). The results given by the two forms W1 and M3 are nearly indistinguish-

able. The use of these neutral formulations improves, in the bu�er and logarithmi
 layers,

the predi
tion of the mean velo
ity pro�le, whi
h is underpredi
ted by the original ellipti


relaxation model. Moreover, the anisotropy, and in parti
ular the peak of u

2

, are better


aptured by these models.

Man
eau & Hanjali�
 (2000) further show that, in the framework of the v

2

{f model

(Durbin 1991), the two neutral models (W1 and M3 with � =

1

12

) as well as a redistribu-

tion-redu
ing model (M3 with � =

1

6

) are 
apable of 
orre
ting the overestimation of the

mean velo
ity by the original formulation, without adversely a�e
ting the predi
tion of

the turbulent kineti
 energy.

6. Con
lusions

The ellipti
 relaxation method is a promising way to model 
orre
tly the redistribution

term down to solid boundaries. It 
an be expe
ted to be somewhat universal, sin
e it is

based on theoreti
al grounds. However, some of the modelling assumptions 
an be 
alled

into question, and the behaviour of the original model is not entirely satisfa
tory in the

logarithmi
 layer. The DNS database of a 
hannel 
ow at Re

�

= 590 (Moser et al. 1999)

has been analyzed in order to understand the reasons for this spurious behaviour and to

examine a number of open issues. Several 
on
lusions 
an be drawn:

� The use of an exponential form to model the 
orrelation fun
tion between the velo
ity

and the Lapla
ian of the pressure gradient is 
onsistent with the data. In parti
ular,

the 
oin
iden
e of the integral s
ale and the half width of the 
orrelation fun
tion for

moderate separations shows that the 
orrelation fun
tion shape for large separations does

not have a signi�
ant in
uen
e on the redistribution term.

� The presen
e of a solid boundary indu
es a strong anisotropy of the turbulent stru
-

tures, and in parti
ular a signi�
ant asymmetry in the wall-normal dire
tion. This feature

is not a

ounted for by the simple isotropi
 
orrelation fun
tion used in Durbin's model.

This weakness is at the origin of the erroneous ampli�
ation of the redistribution of

energy between the 
omponents of the Reynolds stress observed in the logarithmi
 layer.

� The modelling of the 
orrelation length s
ale by the turbulent length s
ale bounded

near the wall by the Kolmogorov length s
ale is well 
orroborated by the DNS data.

� The wall e
ho e�e
t, whi
h 
orresponds to the appearan
e of image terms in the
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Green fun
tion, in
reases the redistribution of energy, 
ontrary to the 
ommon belief.

A

ordingly, it 
annot be 
onsidered responsible for the observed damping in the loga-

rithmi
 layer.

This study shows that the ellipti
 relaxation model, �rst derived intuitively by Durbin

(1991), is based on assumptions relatively 
onsistent with the DNS database. Even though

the model is too simple to represent exa
tly the two-point 
orrelations involved in the

integral equation of the redistribution term, it reprodu
es the important non-lo
al e�e
t

whi
h 
annot be a

ounted for by any algebrai
 model.

Based on the physi
al insights gained through the present DNS analysis, modi�
ations

of the model have been proposed in order to a

ount for the inhomogeneity and anisotropy

e�e
ts. The �rst modi�
ation is based on the observation that the length s
ale in the

ellipti
 relaxation equation 
annot be 
onsidered lo
ally as 
onstant. A new formulation

of this equation, whi
h a

ounts for this feature, in
ludes the e�e
t of the anisotropy of

turbulen
e through a rather 
ompli
ated tensorial expression. In the se
ond modi�
ation,

an asymmetri
 
orrelation fun
tion is introdu
ed, by using the gradient of the length s
ale

to identify the dire
tion of inhomogeneity. This results in a se
ond new formulation of

the ellipti
 relaxation equation, involving fewer terms than the �rst one.

Both new formulations do not exhibit the same ampli�
ation of the redistribution in

the logarithmi
 layer as the original one. The �rst one 
an be referred to as quasi-neutral

sin
e its ampli�
ation fa
tor is only � = 1:06, 
ompared to � = 1:51 for the original

formulation. The se
ond formulation 
an be neutral or exhibit a redu
tion, depending on

the 
oeÆ
ient � whi
h 
ontrols the sensitivity of the 
orrelation fun
tion to the length

s
ale gradient. Thus, either one of the formulations 
an be 
hosen, depending on the

quasi-homogeneous model used as the sour
e term and whether or not its behaviour

in the logarithmi
 layer needs 
orre
tion. The new formulations are similar to those

proposed by Wizman et al. (1996), Lauren
e & Durbin (1994) and Durbin & Lauren
e

(1996), but have the advantage of being based on rigorous theoreti
al grounds.

Further studies, in
luding a priori tests and 
omputations in a 
hannel 
ow using

new formulations, have been 
ondu
ted (Man
eau & Hanjali�
 2000). It has been shown

that modifying the ellipti
 operator a

ording to (5.25) indeed improves, in the logarith-

mi
 region, the mean velo
ity pro�le and the turbulent quantities predi
ted by Durbin's

Reynolds stress model as well as by the v

2

{f model. In future studies, the new formula-

tions will be tested and 
alibrated in more 
anoni
al test 
ases, in order to be ultimately

appli
able to 
omplex engineering 
ows.
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Appendix A. Approximation of the Green fun
tion in a 
hannel

The purpose of this appendix is to derive an approximate Green fun
tion in a 
hannel

that is suÆ
ient to preserve the 
orre
t features of the solution of a Neumann problem,

and in parti
ular its boundary 
onditions.

Let us 
onsider the 
hannel C

0

= IR� [0; 1℄� IR shown in �gure 15, bounded by two

in�nite planes P

0

and P

1

lo
ated in y = 0 and y = 1, respe
tively. In this domain, the
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1

Figure 15. Sket
h of the 
hannel C

0

= IR� [0; 1℄ � IR and its images C

�1

and C

1

problem to be solved is

8

<

:

r

2

f = g;

�f

�n

= 0 on �C

0

= P

0

[ P

1

;

(A 1)

where n is the outgoing unit ve
tor normal to the wall. The general solution of this

Neumann problem is given by

f(x) = �

Z

C

0

g(x

0

)

4�kx

0

� xk

dV (x

0

)�

Z

�C

0

f(x

0

)

�

�n

0

�

1

4�kx

0

� xk

�

dS(x

0

): (A 2)

If the Green fun
tion of the 
hannel, whi
h satis�es the Neumann boundary 
ondition

on P

0

and P

1

, is used, the surfa
e integral vanishes, leading to

f(x) =

Z

C

0

g(x

0

)G

C

0

(x;x

0

) dV (x

0

): (A 3)

Unfortunately, no simple analyti
al expression of G

C

0

exists ex
ept in the (k

x

; k

z

) wave-

number spa
e. Therefore, it is ne
essary to derive an approximated form of the Green

fun
tion in the physi
al spa
e.

We denote H(x;x

0

) as the approximate Green fun
tion whi
h renders the surfa
e term

in (A 2) negligibly small. Chou (1945) proposed to let H = G

IR

3

, the free-spa
e Green

fun
tion, but noted that it is only valid far from solid boundaries.

Let us 
onsider the image 
hannels C

�1

and C

1

shown in �gure (15), whi
h are sym-

metri
al to C

0

with respe
t to P

0

and P

1

, respe
tively. The \even" extension ~g of g


an be de�ned by ~g(x

0

0

) = ~g(x

0

�1

) = ~g(x

0

1

) = g(x

0

0

) for ea
h point x

0

0

of the 
hannel

C

0

, where the points x

0

�1

and x

0

1

are symmetri
al to x

0

0

with respe
t to P

0

and P

1

,

respe
tively.

Then,

~

f , the extension of f , is a solution of a Neumann problem in C

�1

[ C

0

[ C

1

:

8

<

:

r

2

~

f = ~g;

�

~

f

�n

= 0 on P

�1

[ P

2

:

(A 4)
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The solution 
an be expressed as

~

f(x) = �

Z

C

�1

[C

0

[C

1

~g(x

0

)

4�kx

0

� xk

dV (x

0

)

�

Z

P

2

�

�y

0

�

1

4�kx

0

� xk

�

~

f(x

0

) dS(x

0

) +

Z

P

�1

�

�y

0

�

1

4�kx

0

� xk

�

~

f(x

0

) dS(x

0

):

(A 5)

By splitting the volume integral in (A 5) into integrals on C

�1

, C

0

and C

1

, adding and

subtra
ting surfa
e integrals on P

0

and P

1

and using the identities

~

f(x

0

�1

) =

~

f(x

0

1

) =

f(x

0

0

) and ~g(x

0

�1

) = ~g(x

0

1

) = g(x

0

0

), it 
an be easily shown that:

f(x) =

Z

C

0

g(x

0

0

)

�

�

1

4�kx

0

�1

� xk

�

1

4�kx

0

0

� xk

�

1

4�kx

0

1

� xk

�

| {z }

H(x;x

0

0

)

dV (x

0

0

)

+

Z

�C

0

f(x

0

0

)

�

�n

0

�

�

1

4�kx

0

�1

� xk

�

1

4�kx

0

0

� xk

�

1

4�kx

0

1

� xk

�

dS(x

0

0

):

(A 6)

The surfa
e integral in this expression 
an now be negle
ted. Indeed, the derivative of

H(x;x

0

0

) is

�

�n

0

H(x;x

0

0

) = �

(x

0

�1

� x) � n

0

4�kx

0

�1

� xk

3

+

(x

0

0

� x) � n

0

4�kx

0

0

� xk

3

�

(x

0

1

� x) � n

0

4�kx

0

1

� xk

3

: (A 7)

On P

0

, sin
e x

0

�1

= x

0

0

, the sum of the �rst two terms is zero and the surfa
e integral

only involves the 
ontribution of the image x

0

1

. To estimate its magnitude, we 
hoose

a fun
tion f su
h that f(x; 0; z) = f

0

�(x; z), where �(x; z) = 1 for x

2

+ z

2

6 R

2

and 0

elsewhere. The 
ontribution f

P

0

of the surfa
e integral on P

0

is

f

P

0

=

1

2

f

0

�

1�

2� y

(R

2

+ (2� y)

2

)

1=2

�

; (A 8)

whi
h takes the value

f

P

0

= f

0

�

1

2

�

1

(R

2

+ 2

2

)

1=2

�

(A 9)

at y = 0. This value 
an be very small, depending on R.

In the 
ase of the redistribution term, the two-point 
orrelation u

i

(x)�p=�x

j

(x

0

) +

u

j

(x)�p=�x

i

(x

0

) in the surfa
e term 
an be approximated by

�

u

i

(x)

�p

�x

j

(x) + u

j

(x)

�p

�x

i

(x)

�

�(x

0

� x; z

0

� z): (A 10)

The radius R de�ning � is the non-dimensional 
orrelation length s
ale L=2h, where h is

the half-width of the 
hannel. If the �

�

22


omponent is 
onsidered, the 
orrelation length

s
ale at the wall, evaluated from DNS data, is at most L

+

= 25 (in the streamwise

dire
tion), as 
an be seen in �gure 12. With this value, R � 0:02. The Taylor series

expansion with respe
t to R of the surfa
e 
ontribution f

P

0

= �

�

ij

P

0

, given by (A 9),

leads to

�

�

ij

P

0

�

L

2

64h

2

�

�

ij

� 3� 10

�5

�

�

ij

: (A 11)

This result shows that the present approximation of the Green fun
tion is mu
h better



Inhomogeneity and anisotropy e�e
ts on the redistribution term 29

than G

IR

3

, whi
h gives a fa
tor of 0:5. Moreover, the boundary 
ondition of f at the wall

will be mu
h more 
orre
tly imposed with this approximation.

One 
ould think that by the same argument, adding more and more image terms would

lead to the vanishing of the surfa
e integral and that the Green fun
tion of the 
hannel is

exa
tly the sum of an in�nity of image terms. Unfortunately, this sum is not 
onvergent

so the exa
t Green fun
tion 
annot be derived this way.

Appendix B. Consequen
e of symmetrizing the 
orrelation fun
tion

The purpose of this appendix is to provide a formal proof that the value of the inte-

gral (the redistribution term in our 
ase) is in
reased when the 
orrelation fun
tion is

symmetrized.

Let us de�ne fun
tions g(x) (
orresponding to 	(x;x) in this paper) and h(x;x

0

)

(f(x;x

0

)G




(x;x

0

) in this paper), and the integral

I(x) =

Z




g(x

0

)h(x;x

0

)dV (x

0

) (B 1)

whi
h 
orresponds to �

�

ij

(x). If x and z are the homogeneous dire
tions, h(x;x

0

) =

h(x

0

� x; y; y

0

; z

0

� z) and g(x) = g(y). The integral I(x) then redu
es to

I(y) =

Z

y

g(y

0

)H(y; y

0

)dy

0

; (B 2)

where H(y; y

0

) =

R

x

R

z

h(x

0

� x; y; y

0

; z

0

� z) dx

0

dz

0

.

Two assumptions, 
onsistent with the behaviour of the 
orrelation fun
tions in this

paper, are used in the following derivation: H(y; y

0

) de
reases faster when y

0

< y than

when y

0

> y (H(y; y + s) > H(y; y � s) for s > 0), and g(y) de
reases when y in
reases.

Let us now de�ne H

�

(y; y

0

) by symmetrizing H(y; y

0

):

H

�

(y; y + s) =

H(y; y � s) +H(y; y + s)

2

(B 3)

for all s. The integral I

�

(y) is simply de�ned by repla
ing H(y; y

0

) by H

�

(y; y

0

) in (B2).

The obje
tive now is to show that I

�

(y)� I(y) > 0.

The fun
tion I

�

(y) 
an be split into its left and right parts:

I

�

(y) =

Z

s>0

[g(y � s)H

�

(y; y � s) + g(y + s)H

�

(y; y + s)℄ ds: (B 4)

Using the de�nition of H

�

(y; y

0

), this 
an be written as

I

�

(y) =

Z

s>0

[g(y � s) + g(y + s)℄

H(y; y � s) +H(y; y + s)

2

ds: (B 5)

On the other hand, I(y) 
an be split into left and right parts as well:

I(y) =

Z

s>0

[g(y � s)H(y; y � s) + g(y + s)H(y; y + s)℄ ds; (B 6)

and thus, a 
ombination of (B 5) and (B 6) yields:

I

�

(y)� I(y) =

1

2

Z

s>0

[g(y � s)� g(y + s)℄ [H(y; y + s)�H(y; y � s)℄ ds: (B 7)

Based on the assumptions about g(y) and H(y; y

0

) made earlier, both terms in the square

bra
kets are positives and, a

ordingly, I

�

(y)� I(y) > 0.
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y

x

(a)

0 1

0

1

�(x; y)

������!

y

x

(b)

0 1

0

1

Figure 16. Example of mapping a [0; 1℄� [0; 1℄ domain to itself. Lines drawn in �gure (b)


orrespond to those in �gure (a).

Thus, the repla
ement of the 
orrelation fun
tion by a symmetri
al fun
tion in
reases

the redistribution term.

Appendix C. Examples of spa
e transformations

The spa
e transformation used in x 5.1 is diÆ
ult to visualize in 
omplex geometries.

Furthermore, it is not straightforward to understand its use to solve a di�erential equa-

tion, for instan
e a Neumann problem, in a 3-dimensional geometry. This appendix aims

to 
larify these issues, by examples in 1- or 2-dimensional domains.

Figure 16 shows an example of su
h a transformation � in the domain [0; 1℄� [0; 1℄.

The transformation is de�ned by:

8

>

>

<

>

>

:

�

1

(x; y) = sin

1=2

h

�

2

(0:05 + 0:9y)x

i

= sin

1=2

h

�

2

(0:05 + 0:9y)

i

;

�

2

(x; y) = sin

2

h

�

2

(0:95� 0:9x)y

i

= sin

2

h

�

2

(0:95� 0:9x)

i

:

(C 1)

This example may appear quite 
ompli
ated, but it was 
hosen in su
h a way that the

distortion of the domain is quite severe. This �gure shows that the boundaries of the

domain 
an be preserved even when no point of the domain is invariant, ex
ept for the


orners.

However, the Green fun
tion of the domain [0; 1℄� [0; 1℄ 
an only be obtained by

applying a Fourier series expansion in one dire
tion, whi
h in
reases signi�
antly the


omplexity of the analyti
 development. Therefore, in the remainder of this appendix,

we will 
onsider the 
ase of a 1-dimensional Diri
hlet problem:

8

>

>

>

<

>

>

>

:

r

2

f(x) = g(x) = x;

f(0) = 1;

f(1) = 0:

(C 2)

The Green fun
tion for the Diri
hlet problem is

8

<

:

G(x; x

0

)=(x �1)x

0

for x

0

< x;

G(x; x

0

)=(x

0

�1)x for x < x

0

:

(C 3)
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The solution of (C 2) is then given by

f(x) =

Z

x

0

(x� 1)x

02

dx

0

+

Z

1

x

x(x

0

� 1)x

0

dx

0

+ 1� x; (C 4)

and, �nally,

f(x) =

x

3

6

�

7

6

x+ 1: (C 5)

The above is the dire
t way of solving (C 2) by means of the Green fun
tion (obviously

not the simplest way to solve this problem). The problem 
an also be solved by intro-

du
ing �rst a spa
e transformation �. For instan
e, let us 
onsider the transformation

� :

8

<

:

[0; 1℄ �! [0; 1℄

x 7�! x

1=2

:

(C 6)

and the fun
tions ' = f Æ �

�1

and � = �

2

'=�x

2

. Now, �, the Lapla
ian of ', 
an be

expressed as:

�(x) =

�

�

2

f

�x

2

Æ �

�1

��

��

�1

�x

�

2

+

�

�f

�x

Æ �

�1

��

�

2

�

�1

�x

2

�

; (C 7)

whi
h yields

�(x) = 5x

4

�

7

3

: (C 8)

The fun
tion ' is then the solution of the Diri
hlet problem in [0; 1℄:

8

>

>

>

<

>

>

>

:

r

2

'(x) = �(x) = 5x

4

�

7

3

;

'(0) = 1;

'(1) = 0:

(C 9)

Sin
e the domain has been preserved, the Green fun
tion is the same, and the solution

of (C 9) is

'(x) =

Z

x

0

(x� 1)x

0

(5x

04

�

7

3

)dx

0

+

Z

1

x

x(x

0

� 1)(5x

04

�

7

3

)dx

0

+ 1� x; (C 10)

whi
h leads to

'(x) =

x

6

6

�

7

6

x

2

+ 1: (C 11)

Finally, one 
an return to the original spa
e using f = ' Æ �, whi
h yields (C 5) again.

This simple example shows how the fun
tions are transformed and how one 
an obtain

the same result by working in the transformed spa
e. In prin
iple, this method 
an be

extended to multi-dimensional spa
es. In 
omplex geometries the method is obviously

still valid, but the Green fun
tion 
annot be determined analyti
ally.
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