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Abstract

Galectins play key roles in numerous biological processes. Their mode of action depends on 

their localization which can be extracellular, cytoplasmic or nuclear, and is partly mediated 

through interactions with -galactose containing glycans. Galectins have emerged as novel 

therapeutic targets notably for the treatment of inflammatory disorders and cancers. This has 

stimulated the design of carbohydrate-based inhibitors targeting the carbohydrate recognition 

domains (CRDs) of the galectins. Pursuing this approach, we reasoned that linear oligo-

galactosides obtained by straightforward iterative click-chemistry could mimic poly-

lactosamine motifs expressed at eukaryote cell surfaces which the extracellular form of 

galectin-3, a prominent member of the galectin family, specifically recognizes. Affinities 

towards galectin-3 consistently increased with the length of the representative oligogalactosides 

but without reaching that of oligo-lactosamines. Elucidation of the X-ray crystal structures of 

the galectin-3 CRD in complex with a synthesized di- and tri-galactoside confirmed that the 

compounds bind within the carbohydrate-binding site. The atomic structures revealed that 

binding interactions mainly occur with the galactose moiety at the non-reducing end, primarily 

with subsites C and D of the CRD, differing from oligo-lactosamine which bind more 

consistently across the whole groove formed by the five subsites (A-E) of the galectin-3 CRD.

Keywords: galectin-3 inhibitor, galectin, X-ray crystallography, oligogalactosides, 1,2,3-

triazole, carbohydrate mimetics

1 | INTRODUCTION

Galectins are an ancient family of proteins found in protozoa through to mammals. In mammals, 

they are produced as early as embryogenesis and later contribute to homeostasis.(Barondes, 

1994),(Johannes, 2018) They are involved in many pathologies including chronic inflammatory 

diseases as well as cancers.(Sciacchitano, 2018),(Toscano, 2018),(Dubé-Delarosbil, 2018) 

Hence, galectins are identified as potential therapeutic targets. Galectins are soluble proteins 

which can be located intra- or extracellularly. They are composed of either one or two 

carbohydrate recognition domains (CRDs). Galectin-3 is distinct from other family members 
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as it possesses an N-terminal collagen-like domain in addition to a single CRD.(Barondes, 

1994) Their biological activities can involve protein/protein interactions but often imply the 

binding of glycans that are expressed on glycoproteins to galectin CRDs. This latter feature has 

been exploited to develop small carbohydrate-based molecules as inhibitors of the most 

comprehensively studied galectin, the galectin-3. Hence both type I and type II 

lactosamine(Fort, 2006),(van Hattum, 2013),(Dion, 2017) and thio-digalactose as well as more 

recently galactose have been successfully used as scaffolds.(Delaine, 2016),(Zetterberg, 2018) 

The galectin-3 CRD has classically been divided into five subsites (A-E). For these inhibitors, 

galactose occupies subsite C, stacking against an essential tryptophan (W181 in galectin-3), 

while galactose aglycons or substituents provide further stabilizing interactions with adjacent 

subsites.(Oberg, 2011) A major achievement has been the design of bis-{3-deoxy-3-[4-(3-

fluorophenyl)-1H-1,2,3-triazol-1-yl]--d-galactopyranosyl}sulfane (generally referred to as 

TD139) that has shown promise for the treatment of idiopathic pulmonary disease.(Delaine et 

al., 2016) However, these inhibitors are not entirely specific for the galectin-3. We thus sought 

to exploit the unique propensity of galectin-3 to bind to poly-N-acetyllactosamine, unlike other 

galectins, with the exception of the galectin-9, to achieve higher selectivity.(Knibbs, 

1993),(Hirabayashi, 2002) Structural analyses revealed that galectin-3, galectin-9 N as well as 

galectin-8 N (albeit at a much lower extent) CRDs can bind not only to terminal, but also to 

internal N-acetyllactosamine units,(Nagae, 2009),(Collins, 2014),(Leffler, 1986) whereas 

recognition by other members seems to be limited to the terminal Gal1-4GlcNAc epitope 

presumably due to steric clashes within the binding site domains.(Bian, 2011) This distinct 

mode of binding largely accounts for the consistent increase of affinity for both galectin-3 and 

galectin-9 with increasing length of the N-acetyllactosamine chains. Access to oligo-N-

acetyllactosamines has been democratized by the sequential use of glycosyl transferases namely 

1,3 or 1,4-galactosyltransferases and 1,3-N-acetylglucosaminyltransferases.(Sauerzapf, 

2009),(Fischöder, 2017) We elected to develop  N-acetyllactosamine oligomer mimics whereby 

the GlcNAc residues are replaced by triazole units. This could be envisaged through a cost 

effective and straightforward strategy relying on the preparation of three synthons (two for 

termination and one for elongation chain) and their iterative assembly using alkyne-azide 

copper-catalyzed cycloaddition reaction (click-chemistry). Here we report the synthesis of a 

small set of representative derivatives as well as the determination of their binding affinity 

towards the galectin-3 CRD in comparison with the N-acetyllactosamine dimer (LN2) and 

trimer (LN3) as positive controls, using fluorescence polarization. While enhanced affinities 
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were observed compared to galactose, the affinities of these novel derivatives did not reach that 

of LN2 or LN3. This prompted us to determine the crystal structures of a di- and a tri-

galactoside in complex with the galectin-3 CRD to reveal their mode of binding. These 

structures establish that the key role in binding is played by the galactose located at the non-

reducing end. In addition, the structural results provide insights for modifications of these 

molecules to further increase their interactions with galectin-3. 

2 | MATERIAL AND MATERIALS

2.1 | Material & and general methods 

All reagents were purchased from commercial sources and used without further purification. 

Reactions were monitored by thin-layer chromatography (TLC) on 0.25 mm silica gel plates 

with fluorescent indicator (GF254) and visualized under UV light.  Detection was further 

achieved by charring with vanillin in sulfuric acid/ethanol (1.5:95 v/v). Flash-chromatography 

purifications were made on silica gel columns (4 to 80g, 240-400 mesh) using an automated 

Reveleris Flash Chromatography System (Grace Alltech) equipped by both ELS (Evaporative 

Light Scattering) and UV/diode array allowing the simultaneous use of two customizable 

wavelengths detectors. 

All NMR experiments were performed at 400.13 MHz using a Bruker Avance 400 MHz 

spectrometer equipped with a DUAL+ 1H/13C ATMA grad 5 mm probe. Assignments were 

performed by stepwise identification using COSY, and HSQC experiments using standard pulse 

programs from the Bruker library. Chemical shifts are given relative to external TMS with 

calibration involving the residual solvent signals. High-resolution mass spectra were recorded 

in positive mode on Waters SYNAPT G2-Si HDMS with detection with a hybrid quadripole 

time of flight (Q-TOF) detector. The compounds were individually dissolved in MeOH at a 

concentration of 1 mg.mL−1 and then infused into the electrospray ion source at a flow rate of 

10 µL.min−1 at 100 °C. The mass spectrometer was operated at 3 kV whilst scanning the magnet 

at a typical range of 4000-100 Da. The mass spectra were collected as continuum profile data. 

Accurate mass measurement was achieved based on every five second auto-calibration using 

leucine-enkephalin ([M+H]+ = 556.2771 m/z) as internal standard.

2.2 | Experimental procedures for the synthesis of compounds 4-8

Methyl 3-O-[1-(-D-galactopyranosyl)-1,2,3-triazol-4-yl]-methyl--D-galactopyranoside 4 

To a solution of 1-azido-1-deoxy--D-galactopyranose 1 (19.45 mg, 0.095 mmol) in H2O (265 

µL), successive addition of compound 2 (22 mg, 0.095 mmol), o-phenylenediamine (40 µL of 
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a 375 mM aqueous solution), sodium ascorbate (40 µL of a 125 mM aqueous solution) and 

copper sulfate (40 µL of a 125 mM aqueous solution), was done under argon. The reaction 

mixture was then stirred under darkness at RT for 2 h. Charcoal was then added and the reaction 

mixture further stirred at RT overnight, filtered over a Celite pad, concentrated under reduced 

pressure and further purified under RP-HLPC conditions to give 4 (31 mg, 76%). TLC Rf = 

0.34 (AcOEt/iPrOH/H2O 3:2:1); 1H NMR (400 MHz, CD3OD) δ 8.27 (1 H, s, H triazole), 5.59 

(1 H, d, J = 9.2 Hz, H-1’), 4.86 (1 H, d, J = 12.1 Hz, CHH), 4.78 (1 H, d, J = 12.1 Hz, CHH), 

4.18 (1 H, d, J = 7.6 Hz, H-1), 4.17 (1 H, t, J = 9.2 Hz, H-2’), 4.10 (1 H, br d, J = 3.0 Hz, H-4), 

4.00 (1 H, br d, J = 3.2 Hz, H-4’), 3.86 (1 H, br t, J = 5.9 Hz, H-5), 3.83-3.73 (4 H, m, 2 H-6, 2 

H-6’), 3.72 (1 H, dd, J = 3.2 and 9.2 Hz, H-3’), 3.62 (1 H, dd, J = 7.6 and 9.5 Hz, H-2), 3.55 (3 

H, s, CH3), 3.53 (1 H, br t, J = 6.5 Hz, H-5’), 3.43 (1 H, dd, J = 3.0 and 9.5 Hz, H-3) ; 13C NMR 

(100 MHz, CD3OD) δ 145.0 (C alkene), 122.5 (C alkene), 104.4 (C1), 88.8 (C-1’), 81.4 (C-3), 

78.5 (C-5), 75.0 (C-5’), 73.9 (C-3’), 70.2 and 70.1 (C-2 and C-2’), 69.0 (C-4’), 65.4 (C-4), 62.1 

(CH2), 61.1 and 61.0 (C-6 and C-6’), 55.9 (CH3); HR-ESI-MS m/z calculated for C16H27N3O11 

(M+Na)+ 460.1543, found 460.1561.

Methyl 3-O-[1-(3-O-propargyl--D-galactopyranosyl)-1,2,3-triazol-4-yl]-methyl--D-

galactopyranoside 5  

To a solution of 3 (34.2 mg, 0.11 mmol) in H2O/tBuOH (1:1) (632 µL), successive addition of 

2 (50 mg, 0.21 mmol), o-phenylenediamine (40 µL of a 375 mM aqueous solution), sodium 

ascorbate (40 µL of a 125 mM aqueous solution) and copper sulfate (40 µL of a 125 mM 

aqueous solution), was done under argon. The reaction mixture was then stirred under darkness 

at RT for 20 h. The reaction mixture was then concentrated under reduced pressure and the 

crude residue purified by flash-chromatography on silica gel (eluent: CH2Cl2/MeOH 100:0 to 

CH2Cl2/MeOH 70:30) to give compound 5 (28.4 mg, 47%); TLC Rf = 0.24 (CH2Cl2/MeOH 

8:2); 1H NMR (400 MHz, CD3OD) δ 8.25 (1 H, s, H triazole), 5.64 (1 H, d, J = 9.7 Hz, H-1’), 

4.87 (1 H, d, J = 12.5 Hz, CHH), 4.79 (1 H, d, J = 12.5 Hz, CHH), 4.48 (dd, 1 H, J = 2.44 and 

16.1 Hz, CHH), 4.42 (dd, 1 H, J = 2.44 and 16.1 Hz, CHH), 4.28 (1 H, t, J = 9.3 Hz, H-2’), 4.24 

(1 H, br d, J = 3.1 Hz, H-4), 4.19 (1 H, d, J = 7.9 Hz, H-1), 4.10 (1 H, br d, J = 3.1 Hz, H-4’), 

3.87 (1 H, br t, J = 6.2 Hz, H-5), 3.83-3.76 (4 H, m, 2 H-6, 2 H-6’), 3.76 (1 H, dd, J = 3.2 and 

9.2 Hz, H-3’), 3.64 (1 H, dd, J = 7.9 and 9.8 Hz, H-2), 3.55 (3 H, s, CH3), 3.52 (1 H, br t, J = 

6.2 Hz, H-5’), 3.43 (1 H, dd, J = 3.2 and 9.5 Hz, H-3), 2.91 (1 H, t, J = 2.4 Hz, H alkyne); 13C 

NMR (100 MHz, CD3OD) δ 145.0 (C alkene), 122.4 (C alkene), 104.4 (C1), 88.7 (C-1’), 81.5 

(C-3), 80.7 (C-3’), 79.4 (C alkyne), 78.3 (C-5), 75.0 and 74.9 (C-5’ and C alkyne), 70.2 (C-2), 
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69.1 (C-2’), 66.0 (C-4), 65.5 (C-4’), 62.1 (CH2), 61.1 and 60.9 (C-6 and C-6’), 56.8 (C alkyne), 

55.9 (CH3); HR-ESI-MS m/z calculated for C19H29N3O11 (M+Na)+ 498.1700, found 498.1699.

Methyl 3-O-(1-{3-O-[1-(-D-galactopyranosyl)-1,2,3-triazol-4-yl]-methyl--D-

galactopyranosyl}-1,2,3-triazol-4-yl)-methyl--D-galactopyranoside 6 

To a solution of 1 (10.6 mg, 51.2 µmol) in H2O/tBuOH (1:1) (200 µL), successive addition of 

5 (16.8 mg, 51.2 µmol), o-phenylenediamine (142 µL of a 375 mM aqueous solution), sodium 

ascorbate (142 µL of a 125 mM aqueous solution) and copper sulfate (142 µL of a 125 mM 

aqueous solution), was undertaken under argon. The reaction mixture was then stirred under 

darkness at RT overnight. The reaction mixture was concentrated under reduced pressure and 

further purified by RP-HPLC (separation was performed on a Uptisphere Strategy 100 Å 

C18HQ (Interchim, France) (5 µm, 21.2 × 250 mm) column at a flow rate of 6 mL min−1 with 

ELSD and UV (225 nm) detection. Gradient: 0% B for 5 min, 0–50% B over 35 min; Solvent 

system A: H2O; solvent system B: MeOH), to give compound 6 (16 mg, 67%) after freeze-

drying. TLC Rf = 0.08 (CHCl3/MeOH/AcOH/H2O 60:30:5:3); 1H NMR (400 MHz, 

D2O/CD3OD 1:4) δ 8.30 (1 H, s, H triazole), 8.28 (1 H, s, H triazole), 5.63 (1 H, d, J = 9.2 Hz, 

H-1’), 5.61 (1 H, d, J = 9.2 Hz, H-1’’), 4.93 (1 H, d, J = 12.4 Hz, CHH), 4.85 (1 H, d, J = 12.4 

Hz, CHH), 4.85 (1 H, d, J = 12.4 Hz, CHH), 4.74 (1 H, d, J = 12.4 Hz, CHH), 4.28 (1 H, t, J = 

9.3 Hz, H-2’), 4.25 (1 H, br d, J = 3.4 Hz, H-4’), 4.22 (1 H, d, J = 7.6 Hz, H-1), 4.17 (1 H, t, J 

= 9.5 Hz, H-2’’), 4.09 (1 H, br d, J = 3.1 Hz, H-4), 4.02 (1 H, br d, J = 3.1 Hz, H-4’’), 3.92-

3.86 (2 H, m, H-5 and H-5’), 3.80-3.69 (8 H, m, H-3’, H-3’’, 2 H-6, 2 H-6’ and 2 H-6’’), 3.60-

3.54 (2 H, m, H-2 and H-5’’), 3.53 (3 H, s, CH3), 3.46 (1 H, dd, J = 3.2 and 9.7 Hz, H-3); 13C 

NMR (100 MHz, D2O/CD3OD 1:4) δ 144.6 and 144.5 (2 C alkene), 123.1 (2 C alkene), 103.9 

(C1), 88.3 and 88.2 (C-1’ and C-1’’), 80.9 and 80.8 (C-3 and C-3’), 78.2 and 78.0 (C-5 and C-

5’), 74.8 (C-5’’), 73.3 (C-3’), 69.7 (C-2 and C-2’’), 68.8 (C-2’), 68.6 (C-4’), 65.3 and 65.1 (C-

4 and C-4’’), 61.9 and 61.6 (2 CH2), 60.7 (C-6, C-6’ and C-6’’), 56.3 (CH3); HR-ESI-MS m/z 

calculated for C25H40N6O16 (M+Na)+ 703.2398, found 703.2433.

Methyl 3-O-(1-{3-O-[1-(3-propargyl -D-galactopyranosyl)-1,2,3-triazol-4-yl]-methyl--

D-galactopyranosyl}-1,2,3-triazol-4-yl)-methyl--D-galactopyranoside 7 

To a solution of compound 1(12 mg, 36 µmol) in H2O/tBuOH (1:1) (200 µL), successive 

addition compound 6 (16 mg, 37 µmol), o-phenylenediamine (14 µL of a 375 mM aqueous 

solution), sodium ascorbate (14 µL of a 125 mM aqueous solution) and copper sulfate (14 µL 
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of a 125 mM aqueous solution), was done under argon. The reaction mixture was then stirred 

under darkness at RT overnight, then K2CO3 (10 mg, 73 µmol) and MeOH (200 µL) were added 

and the reaction mixture further stirred at RT for 1h30. The reaction mixture was concentrated 

under reduced pressure and the crude residue further purified by RP-HPLC (separation was 

performed on a Uptisphere Strategy 100 Å C18HQ (Interchim, France) (5 µm, 21.2 × 250 mm) 

column at a flow rate of 6 mL min−1 with ELSD and UV (225 nm) detection. Gradient: 0% B 

for 5 min, 0–50% B over 35 min; Solvent system A: H2O; solvent system B: MeOH), to give 

compound 7 (16.2 mg, 46%) after freeze-drying. TLC Rf = 0.27 (CH2Cl2/MeOH 8:2);1H NMR 

(400 MHz, CD3OD) δ 8.26 (1 H, s, H triazole), 8.25 (1 H, s, H triazole), 5.65 (1 H, d, J = 9.0 

Hz, H-1’), 5.63 (1 H, d, J = 9.2 Hz, H-1’’), 4.94 (1 H, d, J = 12.4 Hz, CHH), 4.87 (1 H, d, J = 

12.5 Hz, CHH), 4.86 (1 H, d, J = 12.4 Hz, CHH), 4.79 (1 H, d, J = 12.5 Hz, CHH), 4.47 (1 H, 

d, J = 15.7 Hz, CHH), 4.42 (1 H, d, J = 15.7 Hz, CHH), 4.30 and  (2 H, 2 t, J = 9.3 Hz and J = 

9.4 Hz, H-2’ and H-2’’), 4.25-4.22 (2 H, m, H-4’ and H-4’’), 4.18 (1 H, d, J = 7.7 Hz, H-1), 

4.09 (1 H, br d, J = 3.0 Hz, H-4), 3.89-3.83 (2 H, m, H-5 and H-5’), 3.82-3.73 (7 H, m, H-3’’, 

2 H-6, 2 H-6’ and 2 H-6’’), 3.68 (1 H, dd, J = 3.1 and 9.6 Hz, H-3’), 3.64 (1 H, dd, J = 7.7 and 

9.5 Hz, H-2), 3.54 (3 H, s, CH3), 3.53-3.50 (1 H, m, H-5’’), 3.42 (1 H, dd, J = 3.1 and 9.5 Hz, 

H-3); 13C NMR (100 MHz, CD3OD) δ 145.1 and 145.0 (2 C alkene), 122.3 (2 C alkene), 104.5 

(C1), 88.8 (C-1’ and C-1’’), 81.7, 81.5 and 80.7 (C-3, C-3’ and C-3’’), 78.9 (C alkyne), 78.4 

and 78.3 (C-5 and C-5’), 75.0 (C-5’’), 74.6 (C alkyne), 70.2, 69.2 and 69.1 (C-2, C-2’ and C-

2’’), 66.0, 65.7 and 65.5 (C-4, C-4’ and C-4’’), 62.4 and 62.1 (2 CH2), 61.1, 61.0 and 60.9 (C-

6, C-6’ and C-6’’), 56.8 (CH2), 55.8 (CH3); HR-ESI-MS m/z calculated for C28H42N6O16 

(M+Na)+ 741.2550, found 741.2523.

Methyl 3-O-(1-{3-O-[1-(1-(-D-galactopyranosyl)-1,2,3-triazol-4-yl]-methyl--D-

galactopyranosyl)-1,2,3-triazol-4-yl]-methyl--D-galactopyranosyl}-1,2,3-triazol-4-yl)-

methyl--D-galactopyranoside 8

To a solution of compound 1 (0.86 mg, 4.19 µmol) in H2O/tBuOH (1:1) (16 µL), successive 

addition of 7 (3 mg, 4.17 µmol), o-phenylenediamine (1.1 µL of a 375 mM aqueous solution), 

sodium ascorbate (1.1 µL of a 125 mM aqueous solution) and copper sulfate (1.1 µL of a 125 

mM aqueous solution), was undertaken under argon. The reaction mixture was then stirred 

under darkness at RT overnight. The reaction mixture was concentrated under reduced pressure 

and further purified by RP-HPLC (separation was performed on a Uptisphere Strategy 100 Å 

C18HQ (Interchim, France) (5 µm, 21.2 × 250 mm) column at a flow rate of 6 mL min−1 with 
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ELSD and UV (225 nm) detection. Gradient: 0% B for 5 min, 0–50% B over 35 min; Solvent 

system A: H2O; solvent system B: MeOH), to give compound 8 (2.13 mg, 55%) after freeze-

drying. TLC Rf = 0.35 (BuOH/EtOH/H2O 5:5:3); 1H NMR (400 MHz, D2O) δ 8.30 (2 H, s, 2 

H triazole), 8.27 (1 H, s, H triazole), 5.70, 5.69 and 5.68 (3 H, 3 d, J = 9.0, 9.2 and 9.1 Hz, H-

1’, H-1’’ and H-1’’’), 4.92, 4.91 and 4.84 (3 H, 3 d, J = 12.6, 12.5 and 12.3 Hz, 3 CHH), 4.81, 

4.81 and 4.73 (3 H, 3 d, J = 12.6, 12.5 and 12.3 Hz, 3 CHH), 4.31-4.26 (4 H, m, H-1, H-2’, H-

2’’and H-4’), 4.24 (1 H, br d, J = 3.7 Hz, H-4’’), 4.20 (1 H, t, J = 9.7 Hz, H-2’’’), 4.07 (1 H, br 

d, J = 2.0 Hz, H-4), 4.05 (1 H, br d, J = 3.1 Hz, H-4’’’), 3.99-3.94 (3 H, m, H-5, H-5’ and H-

5’’), 3.85-3.67 (13 H, m, H-3’, H-3’’, H-3’’’, 2 H-6, 2 H-6’, 2 H-6’’ and 2 H-6’’’), 3.63 (1 H, 

dd, J = 4.2 and 7.9 Hz, H-2), 3.54-3.51 (2 H, m, H-3 and H-5’’’); HR-ESI-MS m/z calculated 

for C34H53N9O21(M+Na)+ 946.3254, found 946.3269.

2.3 | Expression and purification of full length galectin- 3, and galectin-3 CRD, proteins

Production of full-length galectin-3 was carried out in E. coli BL21(DE3) strain transformed 

by construction in pTRC  expression vector overnight cultured in LB-ampicillin medium 

supplemented with 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG), at 20°C. After 

protein extraction (Avestin emulsiflex C5; 15000psi) in a 20 mM phosphate–150 mM NaCl 

buffer pH7.35, (1 mM of PMSF, 2 mM EDTA, 4 mM DTT) purification is realized by column 

chromatography with a lactose agarose matrix (Sigma-Aldrich; L7634) at 4°C. Elution fractions 

(100mM of lactose) were further purified by size-exclusion chromatography on a Superdex 75 

column (GE Healthcare) to eliminate lactose. Galectin-3 CRD (amino acid residues 108-250) 

was generated and purified in its untagged form as described  previously.(Collins et al., 2007)  

Briefly, bacterial culture were induced at OD 0.6 with 1mM IPTG and grown for 3-4 hours at 

37C. Bacterial cells were lysed, and galectin-3 CRD was purified through affinity 

chromatography on a lactosyl-sepharose column. Elution was performed at 100 mM lactose, 

and extensive dialysis was performed in 1PBS to remove lactose. Finally, protein was 

concentrated to 11 mg/ml and flash cryo-cooled at liquid nitrogen prior to storage at minus 

80C.

2.4 Crystallization

Galectin-3 CRD protein crystals were obtained using the hanging-drop vapour-diffusion 

method after the mixing of a 1:1 ratio of galectin-3 CRD (11mg/ml) and the reservoir solution 

(31% PEG 3100, 100 mM tris-HCl pH 7.5, 100 mM MgCl2, 8 mM 2-Mercaptoethanol). 
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Crystals grew within 2 weeks. Galectin-3 CRD complexes with either 4 or 6 were obtained by 

soaking the crystal in reservoir solution that contained 100 mM of either compound. X-ray 

diffraction data sets were collected at 100 K at beamline MX1 of the Australian Synchrotron. 

Data were integrated using iMOSFLM and scaled and merged using SCALA, as implemented 

in the CCP4 suite of crystallographic software.(Winn, 2011) The atomic structures of the 

galectin-3 CRD 4 and 6 complexes were solved by molecular replacement using a search model 

of the galectin-3 CRD (PDB ID: 2NMO(Collins, 2007)) and REFMAC5 was used for atomic 

model refinement.(Murshudov, 1997) Visualization of electron densities and model building 

was performed using COOT.(Emsley et al., 2010) Ligand geometry was obtained using the 

PRODRG2 server.(Schüttelkopf, 2004)

2.5 | Fluorescence polarization analysis

Fluorescence polarization experiments were carried out using full length galectin-3 as described 

in the supplementary information and in the literature.(Dion, 2017) 

3 | RESULTS

3.1 | Synthesis of inhibitors

An iterative synthesis has been designed to prepare a set of oligo-galactosides using two 

terminating, and one elongating, building blocks 1-3 (Scheme 1).  The latter was obtained upon 

reacting 1-azido-1-deoxy--D-galactopyranose 1 with 3-bromo-1(trimethylsilyl)-1-propyne 

from O3-O4 stannylidene intermediate in 68% yield. Cu(I)-catalyzed azide–alkyne cycloaddition 

of building block 1 with 2 in the presence of o-phenylenediamine(Baron et al., 2008) gave rise 

to known disaccharide 4(Xu et al., 2016) in 76% yield. Application of these conditions to the 

cycloaddition of galactoside 3 with 1 was accompanied with the loss of the trimethylsilyl 

protecting group to give rise to disaccharide 5 in 47% yield. Compound 5 was next reacted 

analogously with either 1 or 3 to provide trisacccharides 6 or 7 in 55 and 46% yield, 

respectively. Finally, tetrasaccharide 8 was obtained in 67% yield from 7 and terminating 

building block 1. 

3.2 | Affinity studies

The binding affinities of galectin-3 for 4–8 and the reference compounds methyl -D-

galactoside 9, (LacNAc)2 10 and (LacNAc)3 11 (Figure 1) were evaluated by a fluorescent 

polarization assay (Table 1). Very weak affinities were determined for methyl -D-galactoside 
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6 as well as for 4, which is consistent with reported data in the literature.(Rajput et al., 2014) 

The Kd of galectin-3 for di-galactosides decreased about 17 times to 1.2 mM. The tendency is 

further confirmed for tri-galactosides 6 and 7 as well as tetra-galactoside 8 to reach 500 µM. 

The Kd values for (LacNAc)2 and (LacNAc)3 were much stronger and determined to be 5 μM 

and 3 µM respectively (LacNAc)2 and (LacNAc)3. These values are in good agreement with 

those reported for derivatized-LacNAc)2 and (LacNAc)3 analogs  reported in the literature (1.3 

and 0.35 µM, respectively), and determined by frontal affinity chromatography.(Hirabayashi et 

al., 2002)

3.3 | Crystal structure of galectin-3 CRD in complex with compounds 4 and 6
The crystal structures of galectin-3 CRD with compound 4 and with 6, reveal that in both cases galactose 

at the non-reducing (upstream) end and adjacent triazole ring could bind within the carbohydrate 

recognition site via a stacking interaction with W181 and combined with a series of hydrogen bonding 

interactions with the CRD subsite C residues. The binding mode of the ring of this galactose exhibits 

characteristic interactions exhibited by galectins with galactose when integrated as a component of 

endogenous ligands for example lactose (Figure 2A). The interactions between galectin-3 CRD and 

galactose ring are consistent and also observed in structures of galectin-3 CRD with bound galactose-

based derivatives.(Collins, 2007),(Kishor, 2018),(Atmanene, 2017)

The triazole ring linked to the upstream end in both compound 4 and 6 participated in the 

hydrogen bonding with the side chain of R162 and a water molecule W1. The W1 helps the 

triazole ring to further interact with the CRD site via hydrogen bonds with R186 and E184.

The electron density map for the upstream galactose and triazole ring portion of the molecule 

is well-defined and reveals that it is this end of oligogalactosides that makes the key interactions 

with galectin-3 through the formation of a stable conformation. In contrast, the downstream 

region of the molecule is not significantly visible in the omit electron density map (at 1.0 ) 

due to flexibility resulting in multiple conformations. However, at lower electron density 

contour levels (~0.7 ) there is indication of the direction that the downstream galactose ring 

of compound 4, and the central galactose ring of compound 6, could position, which is such 

that there could be interaction with the side chain of E165. Besides this, the electron density for 

the downstream galactose ring of compound 6 could not be traced. The upstream end of 

compounds 4 and 6 have a galactose covalently linked to a triazole ring and this forms a rigid 

conformation that could be accommodated in the carbohydrate binding site of galectin-3. 

However, the 1-4 glycosidic bond to the N-acetyllactosamine (LacNAc) (compounds 10 and 

11) exhibits more flexibility than a triazole ring (such as within compounds 4 and 6), and the 
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GlcNAc moiety could bend toward subsite D and interact with galectin-3 more strongly (Figure 

2D), which was reflected through the FP assay where (LacNAc)2 and (LacNAc)3 affinity is 

estimated to be 5 and 3 M for galectin-3. Conversely, the electron density map of the 

downstream end of the galactose ring in compound 4 and triazole-linked galactose in compound 

6 could not be traced (Figure 2A and 2B). The flexibility of the downstream end of both 

compounds could be a reason for lack of electron density for this end (Figure 2C). However, 

the downstream end in compound 6 is longer and anticipated more flexible than compound 4 

and thus has more ability to provide additional interactions by fitting in the groove between 

residues R168 and S188 (Figure 2D).  The shorter downstream end of compound 4 has restricted 

access to reach that groove (Figure 2D). This could explain the binding affinity results which 

reveal that the tri-galactosides (compound 6) binds significantly tighter than mono galactosides 

(compound 2) and di- galactosides (compound 4) for galectin-3 (Table1).

4 | DISCUSSION

Galectin-3 binds with exquisite specificity to poly-N-acetyllactosamines which are expressed 

as natural motifs on glycans at mammalian cell surfaces. This recognition facilitates cancer 

progression and immune cell evasion.(Bresalier, 1996),(Srinivasan, 2009),(Dange, 

2014),(Tsuboi, 2011) We have herein developed bioinspired synthetic inhibitors to selectively 

target galectin-3 whereby GlcNAc units of poly-N-acetyllactosamine are replaced by 1,2,3-

triazoles while keeping the galactoside residues. Preparation of these linear triazole-linked 

pseudo oligogalactosides relies on click-chemistry reactions using a limited number of three 

different building blocks and thus is straightforward and cost effective. The 1,2,3-triazole ring 

is well established as a bioisostere notably as an amide, carboxylic acid and ester surrogates 

(Bonandi, 2017) Of note is that a sugar triazolyl nucleoside has been synthesized as a nucleoside 

triphosphate mimic and shown to be an ATP-competitive inhibitor.(Rowan, 2009) On the other 

hand linear or cyclic 1,2,3-triazole pseudo oligosaccharide have been reported but with the aim 

of obtaining new materials or to be used as scaffolds.(Schmidt, 2016),(Temelkoff, 

2006),(Pathigoolla, 2013),(Campo, 2015) In one case, triazoles were used as mannose 

surrogates in the development of high mannose mimics but they most likely serve as 

spacers.(François-Heude, 2015) This is the case when click-chemistry has been applied for 

design of galectin inhibitors.(Marchiori, 2015),(André, 2014),(Giguère, 2008) Five pseudo 

oligogalactosides have been synthesized and the galectin-3 CRD’s affinity for these compounds 

has been assessed. They appeared to be weak inhibitor of the galectin-3. However, the actual 

affinities show stronger binding for these derivatives than for methyl -D-galactopyranoside. 
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Affinities increased from the mono up to the di- and further to the tri-galactoside Affinities of 

digalactosides 4 or 5 for the galectin-3 are comparable to that of an analogous head-to-head 

digalactoside inhibitor, previously reported in the literature whereby the triazole ring was 

introduced as a spacer.(Giguère, 2008) Moreover, the observed affinities are higher than those 

determined for galactoside clusters based on RAFT or lysine tree scaffolds.(André, 

2011),(André, 2000) However, these observations are unlikely to be ascribed to a multivalency 

effect since the topology of the oligogalactosides does not allow the bridging of the CRD of 

two distinct galectin-3 molecules. (LacNAc)2 and (LacNAc)3 are two natural galectin-3 linear 

oligosaccharide ligands composed of two and three galactoses respectively, and which have 

been included as positive controls in our assay. They proved to be 100 times more potent 

towards the galectin-3 than the herein tested pseudo oligogalactosides. While galactose binds 

weakly to the galectin-3 CRD, notably via an O4 and O6 hydrogen bonding network, and upon 

establishing hydrogen- interactions with residue W181 of the CRD, GlcNAc alone does not 

bind at all with the galectin-3 CRD. However, when the latter is linked to a galactose residue 

e.g. as in lactose/lactosamine type I or type II core (Gal1-3GlcNAc or Gal1-4GlcNAc), both 

sugars cooperate to create an extensive hydrogen bonding and salt bridge network, resulting in 

a micromolar range affinity.(Hsieh, 2015),(Atmanene, 2017) Extension of this core with further 

LacNAc unit leads to additional interaction and subsequently improved binding. The 1,2,3-

triazole ring is obviously too rigid and not functionalized to be a true mimic of a GlcNAc 

residue. To explain the observed affinities which are intermediate between that of galactose and 

those of (LacNAc)2 and (LacNAc)3, one could evoke a “bind and slide”(Dam, 2008) binding or 

galactose rebinding mechanisms due to higher local concentration. Additional stabilizing 

interactions provided by the oligogalactosides compared to monogalactosides would be an even 

simpler explanation. For example, it is well established that 1,2,3-triazole ring substituents at 

the C3 position of the galactose can occupy subsite B or the galectin-3 CRD and contribute to 

the stabilization of galactose/lactose derivatives within the CRD.(Salameh, 2010) Finally, these 

novel inhibitors could interact through a different mechanisms. We thus carried out 

crystallographic studies of galectin-3 CRD in complex with di- and tri-galactosides 4 and 6 to 

gain insights into their mode of binding. The crystal structure of the galectin-3 CRD complex 

with compound 4 and 6 reveals that galactose linked with a triazole ring at the non-reducing 

end could be accommodated in the CRD binding site (subsite C) while the downstream end of 

both compounds are directed toward subsite E, with the longer compound 6 being able to 

occupy that subsite. The triazole ring at the upstream end could be providing a rigidity to the 

galactose moiety to bind with CRD of galectin-3. The downstream galactose ring of compound 
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6 could reach the groove present between R168 and S188 providing additional interactions. The 

revelation of the features of binding of triazole-linked oligogalactoside will assist in designing 

better inhibitors with high affinity for galectins.

5 | CONCLUSION

Galectins are key to maintain homeostasis. They have essential roles in various biological 

processes in normal but also in pathological conditions, a feature which makes them potential 

therapeutic targets. Galectins exert their activities upon binding to carbohydrate motifs through 

a small set of six extremely conserved residues in their CRDs. A major challenge thus remains 

in the design of inhibitors that are specific for each individual galectin, which is an important 

aim since they can play distinct roles, sometimes antagonist. In search of galectin binders, we 

have reported herein that oligo triazolo-galactosides are new scaffolds able to accommodate 

galectin-3 binding site. The rigidity of these unprecedented structures does not allow a perfect 

fitting with the galectin-3 CRD but could be advantageously exploited to introduce substituents 

at defined positions and gain further interactions, providing higher affinity. 
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TABLE 1. Kd (mM)¶ values of galactoside derivatives and reference compounds for galectin-

3 at 4°C†

Compound 9

Me -Gal

2 4 5§ 6 7§ 10

(LacNAc)

2

8 11

(LacNAc

)3

Kd >4 000 4 000 972

144

1170

370

535

138

37910

2

3.76

0.73

372

55

2.60

0.51

 factor / 

2‡

- 1 1.6 1.7 2 3.5 400 2 444

¶Average and standard deviation of repeated point measurements;†Determined by 

fluorescence polarization (see SI); ‡ factor is calculated as Kd for 2 / (Kd for a given inhibitor 

× number of galactose residues) to take into account of the numbers of galactose per 

derivative; §Purity of compounds 5 and 7 was 85% and 93%, respectively, as estimated by 

their respective 1H NMR spectra.
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TABLE 2.  Crystallographic data and refinement statistics.

Parameter Galectin-3 CRD in complex 

with compound 4 

Galectin-3 CRD in complex 

with compound 6

Data collection

Resolution range (Å) 31.3-1.99 (2.06-1.99) 42.41 - 1.99 (2.06  - 1.99)

Space group P212121 P212121

Unit cell a=35.74,  b=57.82 c=62.59 a=35.95, b= 57.86 c=62.34 

Total reflections 108810 (3288) 72928 (2202)

Unique reflections 9346 (906) 9367 (901)

Multiplicity 11.5 7.7

Completeness (%) 100 (99.9) 99.9 (99.5)

Mean I/sigma(I) 27.0 ( 8.1) 49.6 (17.6)

Wilson B-factor 11.65 11.97

R-merge (%) 6.7 (11.7) 2.9 (5.3)

Refinement Statistics

R-work (%) 16.41 (18.1) 17.86 (19.6) 

R-free (%) 20.53 (21.2) 21.75 (24.3) 

RMS deviations

RMS (bonds) 0.016 0.020

RMS (angles) 2.03 2.14

Ramachandran plot statistics (%)

Favoured 96.6 97.2

Allowed 3.4 2.8

Outliers 0 0

PDB ID 6Q17 6Q0Q
#Rmerge  = ∑

hkl
∑

i
|Ii(hkl) ―  (I(hkl))| ∕ ∑

hkl
∑

i
Ii(hkl)
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FIGURE LEGENDS

Scheme 1. Synthesis of mono-, di-, tri- and tetragalactosides. Reagent and conditions: a) CuSO4 

(5 mol%), sodium ascorbate (10 mol%), o-phenylenediamine (15 mol%), H2O-tBuOH (1:1), 

RT, overnight.

Figure 1. Reference compounds: Methyl -D-galactopyranoside 9 and di- and tri-lactosamine 

10 and 11

Figure 2. A) Stereo diagram of the 2│Fo│-│Fc│αc map of compound 4 (at 1 σ) (yellow stick) 

(PDB ID 6Q17) bound within the galectin-3 CRD. Galectin-3 is depicted as a grey ribbon and 

interacting residues indicated as a grey sticks, hydrogen bonds indicated as a dashed black line. 

The water molecules interacting with compound 4 indicated as red spheres. B) Stereo diagram 

of the 2│Fo│-│Fc│of compound 6 (cyan stick) (PDB ID 6Q0Q) at 1 σ at CRD binding site of 

galectin-3. C) Alignment of the crystal structures of galectin-3 CRD in complex with 4 and 6 

showing the upstream galactose and triazole rings could fit into the carbohydrate recognition 

site of the galectin-3 CRD whilst the downstream substituents adopt orientation toward subsite 

E. D) Comparison of compounds 4 and 6 with N-acetyllactosamine (LacNAc as a purple blue 

stick) (PDB ID:1KJL)[47] in CRD of galectin-3 to indicate  that the 1-4 glycosidic of LacNac is 

more flexible and bend toward subsite D. The downstream galactose ring of compound 4 and 

the central galactose ring of compound 6 bend towards subsite E whilst the downstream 

galactose ring of compound 6 extends from subsite E and could approach the groove (red oval 

circle) between R168 and S188 for additional binding.
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Figure 1. Reference compounds: Methyl β-D-galactopyranoside 9 and di- and tri-lactosamine 10 and 11 
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. A) Stereo diagram of the 2│Fo│-│Fc│αc map of compound 4 (at 1 σ) (yellow stick) (PDB ID 6Q17) bound 
within the galectin-3 CRD. Galectin-3 is depicted as a grey ribbon and interacting residues indicated as a 

grey sticks, hydrogen bonds indicated as a dashed black line. The water molecules interacting with 
compound 4 indicated as red spheres. B) Stereo diagram of the 2│Fo│-│Fc│of compound 6 (cyan stick) 

(PDB ID 6Q0Q) at 1 σ at CRD binding site of galectin-3. C) Alignment of the crystal structures of galectin-3 
CRD in complex with 4 and 6 showing the upstream galactose and triazole rings could fit into the 

carbohydrate recognition site of the galectin-3 CRD whilst the downstream substituents adopt orientation 
toward subsite E. D) Comparison of compounds 4 and 6 with N-acetyllactosamine (LacNAc as a purple blue 
stick) (PDB ID:1KJL)[47] in CRD of galectin-3 to indicate  that the 1-4 glycosidic of LacNac is more flexible 

and bend toward subsite D. The downstream galactose ring of compound 4 and the central galactose ring of 
compound 6 bend towards subsite E whilst the downstream galactose ring of compound 6 extends from 
subsite E and could approach the groove (red oval circle) between R168 and S188 for additional binding. 
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