
HAL Id: hal-02990598
https://hal.science/hal-02990598v1

Submitted on 15 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Better Automation for TLA+ Proofs
Antoine Defourné

To cite this version:
Antoine Defourné. Better Automation for TLA+ Proofs. JFLA 2020 - 31emes Journées Francophones
des Langages Applicatifs, Zaynah Dargaye; Yann Regis-Gianas, Jan 2020, Gruissan, France. �hal-
02990598�

https://hal.science/hal-02990598v1
https://hal.archives-ouvertes.fr

Better Automation for TLA+ Proofs
Antoine Defourné

INRIA

Abstract

TLA+ is a specification language based on traditional untyped set theory. It is equipped
with a set of tools, including the TLA+ proof system TLAPS, which uses trusted back-end
solvers to handle individual proof steps—referred to as “proof obligations”. As most solvers
rely on and benefit from typed formalisms, types are first reconstructed for the obligations;
however, the current encoding into the SMT-LIB format does not exploit all of this type
information. In this paper, we present motivations for a more pervasive usage of types at an
intermediate representation of TLA+ proof obligations, and describe work in progress on
several improvements of TLAPS: a type-driven SMT encoding, a tactic for instantiation
hints, and type annotations for the language. We conclude with some perspectives for
future work.

1 Introduction
TLA+ is a formal specification language designed by Leslie Lamport [?]. It is used to write
system specifications, in particular concurrent systems. It is based on the Temporal Logic of
Actions (TLA)—an extension of first-order logic (FOL) with a notion of state and temporal
operators—combined with the operators of untyped set theory. This choice of traditional set
theory in first-order logic makes TLA+ very similar to the language of usual mathematics,
but the absence of types is uncommon among practical formalisms. This design principle is
advocated by Lamport and Paulson [?] for the flexibility, expressiveness, and ease of use it
offers.

Figure 1 shows an example of a specification (on the left). This code specifies sorting
algorithms at an abstract level; it leaves out the details of potential implementations, but it
could be refined by a more concrete specification [?]. Several constants are first declared, plus
one variable arr, which represents the array to sort. It is initially equal to arrInit, as stated in
the predicate Init. The predicate Next contains the primed variable arr’ representing the array
in the next state; that makes Next an action, a predicate expressing a relation between two
consecutive states. Finally, the predicate Spec assembles the initial predicate and the action
into one temporal formula. Here the modality 2 prefixes a formula that must be valid across
all states. [][Next]_vars is an abbreviation for [](Next \/ vars’ = vars). Thus Spec states
that “Init is initially true, and for all consecutive states either Next is true, or the variables do
not change.”

TLA+ comes with a set of tools, including the finite model checker TLC [?]. This tool can be
used to generate behaviors (sequences of states) that satisfy a given specification, usually in the
same form than Spec. For example, using TLC we can check that our sort algorithm specification
ensures some array gets sorted eventually. This is expressed by the formula Sorted(arr). For a
given initial array, we can ask TLC to check that the negation of that property is an invariant;
if the specification is correct, TLC will find a sequence of states that lead to a state where the
invariant is violated, ie. where the array is sorted.

But this approach is limited by the fact that it is only finite model-checking. The parameters
of the specification must be provided. At best, we can use TLC to analyse the specification
for multiple inputs in the finite domain [1 · · ·N 7→ 1 · · ·Max], but the domain for arbitrary N

Better Automation for TLA+ Proofs Antoine Defourné

(* N: size of the array;
* Max: maximal value;
* arrInit: the initial array
* arr: the array to sort *)

CONSTANTS N, Max, arrInit
VARIABLE arr

vars == <<arr>>
Dom == 1 .. N
USE DEF Dom, vars

ASSUME NIsNat == N ∈Nat
ASSUME MaxIsNat == Max ∈Nat
ASSUME ArrInitIsArray ==

arrInit ∈ [Dom -> 1 .. Max]

Init == arr = arrInit

Swap(f, i, j) == [f EXCEPT ![i] = f[j],
![j] = f[i]]

Next == ∃ i, j ∈ Dom :
/\ i < j
/\ arr[i] > arr[j]
/\ arr’ = Swap(arr, i, j)

Spec == Init /\ [][Next]_vars

Sorted(f) == ∀ x, y ∈ DOMAIN f :
x < y => f[x] <= f[y]

AXIOM PermId ==
∀ f ∈ [Dom -> 1 .. Max] : IsPermOf(f, f)

AXIOM PermComp ==
∀ f, g ∈ [Dom -> 1 .. Max] :
∀ i, j ∈ Dom :

IsPermOf(f, g) => IsPermOf(Swap(f, i, j), g)

THEOREM Spec => []IsPermOf(arr, arrInit)
<1>1 Init => IsPermOf(arr, arrInit)

<2> HAVE Init
<2> SUFFICES IsPermOf(arrInit, arrInit)

BY DEF Init
<2> QED

BY PermId, ArrInitIsArray
<1>2 IsPermOf(arr, arrInit) /\ Next

=> IsPermOf(arr’, arrInit)
<2> SUFFICES ASSUME IsPermOf(arr, arrInit), Next

PROVE IsPermOf(arr’, arrInit)
OBVIOUS

<2> SUFFICES ASSUME NEW i ∈Dom,
NEW j ∈Dom

PROVE IsPermOf(Swap(arr, i, j), arrInit)
BY DEF Next

<2> QED
BY PermComp, ArrInitIsArray

<1>3 IsPermOf(arr, arrInit) /\ arr’ = arr
=> IsPermOf(arr’, arrInit)

OBVIOUS
<1> QED

BY PTL, <1>1, <1>2, <1>3, TypeInv DEF Spec

Figure 1: Example of TLA+ Specification and Proof

and Max is infinite. Verifying properties independent of the parameters can only be done by
writing and checking a formal proof.

The dedicated proof system of TLA+ is TLAPS, developped by the joint center INRIA-
Microsoft Research. The main component of TLAPS is its proof manager, which generates
several proof obligations from a proof script. Each obligation corresponds roughly to an indi-
vidual proof step, and must be checked by one of TLAPS’ trusted back-end solvers.

On the right of figure 1, a proof script is shown. Here a different property of the specification
is proved: the array is always a permutation of the initial array1. Proofs in TLAPS are
hierarchical in the sense that each proof is either one line of relevant facts and definitions,
or a sequence of steps, each step justified by its own proof. We have left hidden some parts
of the whole script, like the definition of IsPermOf, and some unimportant facts, to lighten the
presentation. The structure of this proof is simple and matches a very common pattern: first
it is shown that the property holds in the initial state; then that it is preserved by the action
(two values are swapped); then that it is also preserved when the array is unchanged; finally, all
proof steps are assembled to prove the main goal. The particular method PTL is invoked here
to reason about temporal formulas. The difficult steps of the proofs are handled separately in
lemmas PermId and PermComp, but we do not present the proofs for those.

1Such properties are called “safety properties”. They state that some invariant is maintained by the specifi-
cation. Properties that state that an interesting state is eventually reached (like “the array is eventually sorted”)
are called “liveness properties”.

2

Better Automation for TLA+ Proofs Antoine Defourné

2 Overview of the SMT Encoding
In previous work [?], Vanzetto defined an encoding of proof obligations into SMT-LIB, a stan-
dard input format for SMT solvers [?]. This permitted to interface TLAPS with CVC4, Zenon
and VeriT as back-end solvers.

The language of SMT-LIB is based on multi-sorted first-order logic with equality; the encod-
ing of TLA+ can then be seen as a translation of set theory into that logic. The translation of
Vanzetto is composed of two steps: in the first step (preprocessing), the obligation is transformed
into an equivalent one which is free of so-called non-basic expressions—that is all expressions
that do not have a counterpart in the target logic, mainly set theoretic expressions—the sec-
ond step is a straightforwad encoding of the basic obligation into SMT-LIB. Most of the work
being performed in the preprocessing step, we will present it briefly. Three transformations are
applied to the obligation until it is in basic form:

Rewriting applies simple rules that eliminate non-basic expressions directly;

Abstraction replaces non-basic expressions by new constants, which are axiomatised;

Elimination optimizes the translation by simplifying equalities involving variables.

Let P (x) and Q(x, y, z) be two predicates, and a an expression. Consider the following
pseudo-example of a preprocessing:

1. ∀x∀y. P ({z ∈ a : Q(x, y, z)})

2. (∀x∀y. P (k(a, x, y))) ∧ ∀a∀x∀y.k(a, x, y) = {z ∈ a : Q(x, y, z)} (abstraction, k fresh)

3. (∀x∀y. P (k(a, x, y))) ∧ ∀a∀x∀y∀z. z ∈ k(a, x, y)⇔ z ∈ a ∧Q(x, y, z) (rewriting)

First the expression {z ∈ a : Q(x, y, z)} is replaced by a fresh constructor k, which is defined
at the top-level—for this k must be parameterized by the base set a and the free variables of
the original expression. Then, as the equality between sets matches one of the rewriting rules,
it is applied, eliminating the non-basic construct. There is no elimination step in this example,
but most eliminated equalities are equalities present in the original obligation.

The procedure above describes a faithful encoding of the untyped expressions of TLA+ into
untyped first-order logic, or rather into a unique sort U of multi-sorted FOL. It is limited by
the fact that the usual sorts of SMT, like int , are left on the side. Consider the goal:

∀x. x ∈ Int ⇒ x+ 0 = 0

The naive encoding would declare a function +U with signature U × U → U , and define
its behavior with the axioms of arithmetic. But the solvers would not be able to make any
use of their reasoning capacities about arithmetic. We can partially remedy this by linking the
sorts int and U with an injective “cast” operator:

∀xU . x ∈ Int ⇔ ∃nint . x = int
U↓n

∀mint∀nint .
(
int
U↓m

)
+U

(
int
U↓n

)
= int

U↓(m+ n)

∀xU . x ∈ Int ⇒ x+U

(
int
U↓0

)
= x (Goal)

This solution allows solvers to reason about arithmetic, but it obfuscates the resulting
problem with casts and additional quantifiers. This was the main motivation in [?] for the
introduction of reconstructed types. Before an obligation is encoded, an algorithm attempts to

3

Better Automation for TLA+ Proofs Antoine Defourné

infer types for the bound variables. If this succeeds, the process results in an obligation with
type annotations, such as:

∀xint . x ∈ Int ⇒ x+ 0 = 0

This obligation can then be encoded more efficiently. In particular, x ∈ Int can be simplified,
and there is no need to introduce a function +U .

The current encoding into the SMT-LIB format implements a rich type system with depen-
dent and refinement types. This allows very fine optimizations of the translation, for example
the application f [x] can be translated directly if types ensure the fact x ∈ DOMAIN f holds.
All expressions of TLA+ are not typable in this way, so the untyped encoding is invoked if the
typed encoding fails.

3 Better Encoding of Untyped Set Theory
In this section we present a series of potential improvements of the current encoding of TLA+

into SMT-LIB.
All of these ideas revolve around types, and are somewhat motivated by the assumption that

SMT solvers perform best with types in general. Although there are reconstructed types, the
encoding we described above does not harness the full potential of this extra type information. It
is used for optimizations involving objets of an atomic type, like integers, or to check conditions
like membership in some function’s domain, but by default the encoding remains untyped.

Type-driven Encoding
Our first proposal is based on the observation that most expressions are still mapped into the
generic sort U by the current encoding. In particular, the expression e1 ∈ e2 will always lead to
some encoded term in(e′1, e

′
2), where in has signature 〈U,U〉 → o. In the same vein, functional

application e1 [e2] gives app(e′1, e
′
2) with app of signature 〈U,U〉 → U . Instead of ignoring types

of e1 and e2, we propose to extend the encoding in order to specialize the operators in and app
according to their operands’ types. Let us turn immediately to a concrete example in order to
clarify.

Surjective(f,A,B) ,

∀y ∈ B. ∃x ∈ A. y = f [x]

` Surjective([n ∈ Nat 7→ n] ,Nat ,Nat)

During the type reconstruction phase, bound variables receive type annotations, and defined
operators are decorated as well. The problem becomes:

Surjective 〈α, β〉 (fα→β , ASet(α), BSet(β)) ,

∀yβ ∈ B. ∃xα ∈ A. y = f [x]

` Surjective(
[
nint ∈ Nat 7→ n

]
,Nat ,Nat)

Nat is always of type Set(int), which implies that the bound variable in [n ∈ Nat 7→ n]
receives the type int , and that the explicit function is of type int → int . The Surjective

4

Better Automation for TLA+ Proofs Antoine Defourné

operator is polymorphic: it is parameterized by two types α and β. It expects three arguments,
all of a higher-order type: a function of type α → β, and two sets of respective types Set(α)
and Set(β).

In order to obtain an equivalent problem that is purely first-order, several things need to be
done:

• The polymorphic Surjective operator must be specialized. For example, the particular
use of this operator in the goal instanciates α with int and β with int .

• Actual objets of a functional type τ1 → τ2 must be encoded as an object of a fresh
first-order sort pτ1 → τ2q. Similarly for set-objets.

• Application of a functional variable of type τ1 → τ2 must be encoded using a specialized
operator Applyτ1,τ2 , of type (pτ1 → τ2q, τ1)→ τ2. Similarly for set membership.

• Complex functional or set-theoretic expressions that are translated into uninterpreted
operators must be axiomatised.

The final encoded problem should look like:

New F pint→intq
I (Decl I)

New S
pSet(int)q
Nat (Decl Nat)

New Apply
〈pint→intq×int〉→int
int,int (Decl Apply)

New Mem
〈pSet(int)q×int〉→o
int (Decl Mem)

∀nint .Memint(SNat , n)⇒ Applyint,int(FI , n) = n (Def Apply-I)

∀nint .Memint(SNat , n)⇔ n ≥ 0 (Def Mem-Nat)

SurjectiveΦ(fpint→intq, ApSet(int)q, BpSet(int)q) ,

∀yint .Memint(B, y)⇒ ∃xint .Memint(A, x) ∧ y = Applyint,int(f, x)

` SurjectiveΦ(FI , SNat , SNat)

SurjectiveΦ is the specialized operator, which expects an argument of type pint → intq and
two arguments of type pSet(int)q. In this example Surjective is specialized only once, but
in general there may be several distinct specializations. The set Nat is encoded into the
constant SNat (Decl Nat), then membership for the type pSet(int)q with the specialized op-
erator Memint (Decl Mem); finally the membership relation n ∈ Nat is encoded using an
axiom (Def Mem-Nat). The encoding of

[
nint ∈ Nat 7→ n

]
leads to similar declarations and

definitions (Decl I), (Decl Apply), (Def Apply-I).
This example merely gives an idea of the encoding. We believe previous works such as the

defunctionalization procedure described in [?] could be adapted to our needs. In particular, the
type Set(τ) can be treated just like the type of predicates τ → o. An operator Mem is then
merely a particular case of Apply. It is also possible to handle underspecifications, although
only partially: in our example, the value of Applyint,int(FI , n) is specified under the condition
that Memint(SNat , n), that is n ≥ 0. Thus an expression such as [n ∈ Nat 7→ n] [−1] would
be encoded faithfully. The expression [n ∈ Nat 7→ n] [∅], however, is likely to make the type
reconstruction phase fail.

5

Better Automation for TLA+ Proofs Antoine Defourné

Instanciation Hints
It is well-known that instantiation of quantifiers is difficult for SMT solvers. As TLAPS relies
solely on its trusted back-ends, it can become a problem if an obligation necessitates difficult
instantiations–in fact even simple ones sometimes lead to failure. TLAPS provides the keyword
“witness” to invoke in a proof script with an expression. A proof step of the form “witness e”
in the context of a goal ∃x. φ(x) to prove under hypotheses Γ will result in the obligation
Γ, φ(e) ` ∃x. φ(x) being generated. Thus the task of matching φ(x) with φ(e) still rests on the
back-ends.

We propose to exploit a feature of SMT-LIB [?, p. 31] to remedy this problem. In SMT-
LIB, quantifiers may be annotated with patterns, which are formulas that may trigger an
instantiation when a match is detected. Formally, if we consider a formula

∀x1 . . . ∀xn. φ(a1, . . . , am, x1, . . . , xn)

then a pattern for this formula is a list of formulas (ψi)1≤i≤p such that the free variables of
each ψi are contained in {a1, . . . , am, x1, . . . , xn}2. A match for such a pattern is a substitution θ
of the variables such that φiθ is true for all i. The purpose of a pattern is to suggest that
whenever a match θ is found by the SMT solver, the formula should be instantiated with the
terms θ(x1), . . . , θ(xn). There can be several matches for one quantified formula.

Say that we need to prove a goal that involves instantiating a quantifier with some known
expression e. This can happen if the goal is existential, or some hypothesis is universal, for
instance. We can do this by declaring a fresh unary predicate W (for “with”, or “witness”)
in the encoded SMT-LIB problem, add the axiom “W (e)”, and the pattern consisting of the
single formula “W (x)” for every quantifier Qx that requires to be instantiated. It would seem
that this is more patterns than necessary, especially if one single instantiation is aimed for, but
we believe that many unnecessary instantiations will still lead to better performances than no
instantiations at all.

In the context of a typed encoding, like the one discussed in the previous section, there would
be several predicates Wτ , each of type τ → o, for as much types as necessary. The pattern
Wτ (x) would only annotate quantifiers of the appropriate type Qxτ . This in fact illustrates
the benefit of types: instead of one large domain U , there are several smaller domains, and
thus more changes to find the good instances for a quantifier. However, this poses a problem,
because for a given instanciation hint e, the type of e may not be known, since e is given outside
of any context. Take for instance the following TLA+ problem:

Id(S) == [x ∈ S |-> x]

THEOREM ASSUME NEW S
PROVE ∃f ∈ [S -> S] : ∀x ∈ S : f[x] = x

BY DEF Id WITH Id(S)

The use of the keyword “with” here is custom—it illustrates how the proposed feature could
be implemented in the syntax. The definition of Id need to be expanded in order to prove
the property. The issue arises from the fact that no annotations are generated for the term
[x ∈ S 7→ x] from analysing the proof obligation, since it does not appear in it. But if types
were generated for all defined operators in the whole module, which is the subject of the next
section, the problem would disappear.

2The SMT-LIB standard also specifies that the ψi be quantifier-free

6

Better Automation for TLA+ Proofs Antoine Defourné

Type Annotations

Type reconstruction is currently performed on proof obligations, which are themselves generated
from a list of usable facts and definitions. From a single proof script, many obligations can be
generated, and all do not share the same amount of information; facts established at some point
in a proof may be invoked later, definitions may be hidden or expanded, etc. The “by” and
“def” keywords control what facts and definitions should be considered usable in a proof step.
The purpose of this simple mechanism is to ensure that obligations do not get saturated with
useless information. One major downside is that it is very easy to forget necessary facts that
seem irrelevant in a proof. In our experience, this happens quite often with simple facts of
the form x ∈ S. For example, n + 0 = n is only true in TLA+ if the fact n ∈ Int is visible.
Unfortunately in many situations n will be known to belong to some set S, and S ⊂ Int can
only be proven if enough definitions are expanded.

This observation lead us to the conclusion that TLAPS could benefit for type annotations
at the module level. Instead of reconstructing types for each individual obligation, declared
operators could be annotated at the top-level, and this information shared for al obligations.
We believe this extension will enable new optimizations; returning to our example, if S was
an operator defined as {n ∈ Nat : n > 0} (for example), S could be attached the type Set(int),
and the fact S ⊂ Int could be inferred without expanding the definition of S.

As a next step, we also intend to allow the user to provide its own type annotations when
declaring operators. A syntax for this feature could be:

IsZero(n : int, f : int -> int) : bool == f[n] = 0

IsZero would be given the type (int× int → int)⇒ bool . The double arrow serves to distinguish
regular functions from first-order operators, which can only be fully applied.

However, it remains to decide what should be the precise semantics of these annotations,
since our intention is not to restrict the class of accepted TLA+ expressions. What should
be done if the definition of the operator does not type-check? What if the operator is used
with arguments of the wrong type, or in a wrong context, like for instance in the expression
IsZero(∅, [n ∈ Nat 7→ 3.14])?

4 Perspectives and Conclusion

As was said before, we expect these various improvements to result in better performance of
the SMT back-ends, and a better ergonomy for TLAPS.

However, as it was assumed all along that types for the obligations could be reconstructed,
it remains to decide what should be done when this procedure fails. The validity of so-called
silly expressions is a part of TLA+’s design. More importantly, a back-end for TLA+ would
not be complete if it prevented us from proving silly theorems, like for instance:

∃n ∈ Nat : ∃x : x ∈ n

This is true because, if all natural numbers where equal to ∅, then all natural numbers would
be equal to each other, and we would have 0 = 1.

There is always the possibility to rely on an untyped encoding of TLA+ when the typed
encoding fails. But that might lead to a loss in robustness, since one single “anomaly” in the
obligation would significantly reduce the chances to solve it, or at least the performance of the
solvers.

7

Better Automation for TLA+ Proofs Antoine Defourné

In place of an optional type system, a soft type system would solve this problem. By “soft”
we suggest that such a system would be able to infer types for any source expression, and thus
not reject any. We are aware of some work [?] in that vein in the context of ML, but not in the
context of mathematical logic. It is also uncertain if such an approach would lead to a net gain
in performance overall, as the type system would be drastically different.

Aside from that, we intend to investigate the possibility of using the reasoning capacities of
higher-order solvers directly, notably to improve the support of inductive reasoning. This fall
within the project Matryoshka, which aims at extending superposition and SMT solvers with
higher-order reasoning in a way that preserves their performances.

5 Acknowledgments
This project receives funding from the European Research Council under the European Union’s
Horizon 2020 research and innovation program (grant agreement No. 713999, Matryoshka), and
the region of Lorraine.

8

	Introduction
	Overview of the SMT Encoding
	Better Encoding of Untyped Set Theory
	Perspectives and Conclusion
	Acknowledgments

