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Abstract

Trust forms the basis of virtually all interpersonal relationships. Although significant

individual differences characterize trust, the driving neuropsychological signatures

behind its heterogeneity remain obscure. Here, we applied a prediction framework in

two independent samples of healthy participants to examine the relationship

between trust propensity and multimodal brain measures. Our multivariate prediction

analyses revealed that trust propensity was predicted by gray matter volume and

node strength across multiple regions. The gray matter volume of identified regions

further enabled the classification of individuals from an independent sample with the

propensity to trust or distrust. Our modular and functional decoding analyses showed

that the contributing regions were part of three large-scale networks implicated in

calculus-based trust strategy, cost–benefit calculation, and trustworthiness inference.

These findings do not only deepen our neuropsychological understanding of individ-

ual differences in trust propensity, but also provide potential biomarkers in predicting

trust impairment in neuropsychiatric disorders.
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1 | INTRODUCTION

Trust is an essential component of human relationships that is indis-

pensable in interpersonal, institutional, and intercultural relationships

(Fehr, 2009). Overall, trust refers to a person's (i.e., trustor) willing-

ness to be vulnerable to the risk of betrayal based on the expecta-

tions that the action of another party (i.e., trustee) will produce some

anticipated reward due to reciprocity in the future (Mayer, Davis, &

Schoorman, 1995). As an important antecedent of trust behavior, pro-

pensity to trust is a trait-based characteristic that refers to the general

tendency for someone to trust others (Mayer et al., 1995). Evidence

exists that propensity to trust has a global effect not only on trust

intentions (Colquitt, Scott, & LePine, 2007) but also trustworthiness

beliefs about others (Jones & Shah, 2016). The impact of trust propen-

sity is most salient in early trustor-trustee interactions, when other

information about the trustee's trustworthiness may not be available

(McKnight, Cummings, & Chervany, 1998). In the absence of other

information about the trustee, the trustor's decision likely depends on

an evaluation of the likelihood of incurring a loss versus being

rewarded for trusting—thereby applying a calculus-based trust

strategy—based on the trustor's dispositional propensity to trust.

A widely-used quantitative and reliable measurement of trust

behavior is the sequential two-person reciprocal trust game, for which

the one-shot version measures trust propensity toward an anonymous

partner (Berg, Dickhaut, & McCabe, 1995; Camerer, 2003). Those ten-

dencies to trust are relatively stable over the life course (Claibourn &

Martin, 2000); however, individual differences exist: some people are

almost completely willing to trust a stranger, whereas others display

strong distrust. In this article, we investigated the neuropsychological

mechanisms of the heterogeneity in trust propensity—employing the

one-shot version of the trust game—based on intrinsic structural and

functional features of the brain.

Much of what we know about the neuropsychological mecha-

nisms of trust is from task-based functional magnetic resonance

imaging (fMRI) studies that associate experimental conditions or

behavioral performance with neural activation. Task-based and meta-

analytic neuroimaging (Bellucci, Chernyak, Goodyear, Eickhoff, &

Krueger, 2017; Bellucci, Feng, Camilleri, Eickhoff, & Krueger, 2018;

Engelmann, Meyer, Ruff, & Fehr, 2019), lesion (Adolphs, Tranel, &

Damasio, 1998; Belfi, Koscik, & Tranel, 2015), and oxytocin

(Baumgartner, Heinrichs, Vonlanthen, Fischbacher, & Fehr, 2008;

Nave, Camerer, & McCullough, 2015) studies have indicated trust as a

complex psychological construct supported by multiple distributed

regions. For example, the trust game consistently activates core

regions, including subcortical (e.g., anterior insula, AI; amygdala, AMY;

striatum, STR) as well as temporal (e.g., temporoparietal cortex, TPJ;

temporal pole) and prefrontal (medial dorsomedial prefrontal cortex,

DMPFC; ventromedial PFC, VMPFC; dorsolateral PFC, DLPFC; and

ventrolateral PFC, VLPFC) cortical regions (Baumgartner et al., 2008;

Tzieropoulos, 2013).

A recent neuropsychoeconomic model of trust proposes that

trust arises through the interplay of psychological systems—motiva-

tion, affect, and cognition—that engage regions anchored in domain-

general large-scale brain networks (Krueger & Meyer-Lindenberg,-

2019). Overall, a trustor faces an inherent social dilemma during the

one-shot trust game—measuring individual differences in trust pro-

pensity. The risk of treachery (affect, salience network, SAN: e.g., AI,

AMY) contrasted with the anticipation of reward (motivation, reward

network: e.g., STR, VMPFC) creates uncertainty. Two types of

bounded rationality (cognition) can be employed to remove

uncertainty—linked with the vulnerability of trusting another person.

The SAN may engage the central-executive network (CEN: e.g.,

DLPFC, VLPFC, posterior parietal cortex, PPC) adapting a context-

based strategy to reap personal benefits (i.e., economic rationality)

and the default-mode network (DMN: e.g., DMPFC, TPJ) evaluating

the relationship-based trustworthiness of a partner to contribute to

the relationship's success (i.e., social rationality). Trust relationships

evolve through different stages primarily driven by the DMN (evalua-

tion of trustworthiness) and CEN (adoption of strategy): (a) from

calculus-based trust (i.e., trustors perform rational calculations of the

costs and benefits of creating a relationship); (b) over knowledge-

based trust (i.e., trustors acquire additional knowledge about the con-

texts and their partners to predict trustees' behaviors accurately);

(c) to identification-based trust (i.e., trustors develop a rewarding iden-

tification and understanding with trustees to confidently trust them)

(Lewicki & Bunker, 1995). Given the consistent involvement of these

domain-general large-scale brain networks in trust, an intriguing

question arises whether task-independent structural and functional

measures in these regions can predict individual differences in trust

propensity.

Recent applications of task-free brain morphology and resting-

state functional connectivity (RSFC) studies indicate that individual

differences in intrinsic brain structures or functional connectome are

closely related to individual differences in personality traits (Beaty

et al., 2014; Dubois, Galdi, Han, Paul, & Adolphs, 2018; Jiao

et al., 2017; Nostro et al., 2018) and social preferences (Baumgartner,

Saulin, Hein, & Knoch, 2016; Campbell-Meiklejohn et al., 2012; Feng

et al., 2018). In terms of trust propensity, combining a self-reported

measure with voxel-based morphometry (VBM) analysis showed an

association with regional gray matter volume (GMV) changes in the

DMPFC (Haas, Ishak, Anderson, & Filkowski, 2015). However, such

type of univariate analyses only allows conclusion at the group level

rather at the individual level; therefore, lacking out-of-sample general-

izations that permit detecting complex brain-behavior relationships
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(Dubois & Adolphs, 2016). Further, applying a multivariate predictive

framework of individual differences in trust propensity can be

predicted only for the one-shot (measuring trust propensity) but not

multi-shot (measuring trust dynamics) trust game from RSFC relying

on electroencephalography (EEG) activity over parietal regions (Hahn

et al., 2014). Nevertheless, applying EEG-based RSFC for source local-

ization and drawing conclusions from importance scores of multivari-

ate models are controversially discussed in the literature (Haufe

et al., 2014). Finally, applying a machine learning approach, individual

differences in trust propensity can be predicted from whole-brain

RSFC and RSFC from domain-general large-scale networks essential

for the motivational, affective, and cognitive aspects of trust (Bellucci,

Hahn, Deshpande, & Krueger, 2019; Lu et al., 2019). Such type of

studies usually employs cross-validation procedures to estimate the

prediction model with training samples and to test the performance of

the model with independent test samples—nonetheless without

showing the generality of those predictions to an out of sample popu-

lation performing another paradigm measuring trust propensity (Jung,

Lee, Lerman, & Kable, 2018).

In this study, we extended those previous approaches—measuring

mostly one modality focusing on RSFC—to overcome their limitations

in two substantial aspects. We implemented an internal validation

approach—applying a multivariate predictive framework (using

machine learning)—to predict individuals' trust propensity based on

two intrinsic brain features applying two task-free neuroimaging

modalities. Due to practical implications that brain morphometry can

be more reliably collected than RSFC (Zuo, Xu, & Milham, 2019), we

first predicted individual variations of trust propensity based on the

regional GMV—a structural measure determined from structural MRI

(sMRI). We next determined the node strengths of those identified

anatomical regions within the same population—employing a graph-

theoretical measure of the centrality of a region computed from RSFC

(Rubinov & Sporns, 2010)—to predict individual differences in trust

propensity. Regions with high node strength (i.e., global FC strength,

gFCS) have been regarded as functional hubs in domain-general large-

scale brain networks (Buckner & Carroll, 2007; Wang, Dai, Gong,

Zhou, & He, 2015).

Moreover, we implemented a trust prediction model based on the

intrinsic structural brain features in two independent samples that

performed two different versions of the one-shot trust game. The first

sample (undergoing the internal validation) completed the standard

trust game, whereas the second sample (undergoing the external vali-

dation) completed the binary trust game. Finally, we performed a

modular analysis (i.e., community detection algorithm) to detect net-

work connectivity patterns (i.e., modules) among the identified ana-

tomical regions as well as a functional decoding analysis to link the

identified modules with psychological functions. These following-up

analyses aimed to provide data-driven quantitative inference on psy-

chophysiological functions of contributing regions.

Based on the neuropsychoeconomic model of trust (Krueger &

Meyer-Lindenberg, 2019), we assumed that participants completing

the one-shot trust game with an anonymous partner would apply a

calculus-based trust strategy to remove uncertainty; therefore,

transforming the risk of treachery into positive expectations of reci-

procity. As a measure of individual differences in trust propensity,

calculus-based trust engages both the DMN to simulate the trustwor-

thiness of the partner and the CEN to apply rational costs-benefits

calculations. Hence, we hypothesized that intrinsic structural (GMV)

and functional (gFCS) features of regions being part of DMN and CEN

predict individual differences in trust propensity. Combining an MVPA

framework with modular and functional decoding analyses, our find-

ings demonstrated that individual differences in trust propensity are

decoded by intrinsic structural and functional characteristics of mod-

ules being part of DMN and CEN in addition to an action-perception

network (APN) module associated with number processing—as mea-

sured in two different populations and trust paradigms.

2 | METHODS

2.1 | Participants

The current study consisted of two independent samples of healthy

right-handed participants without a history of neurological or psychi-

atric disorders, playing two different versions of the one-shot trust

game. The first sample (playing the standard version of the trust game)

included 89 college students (45 males; 26 [mean] ± 2.22 [SD] years

old, range: 18–27 years old) and the second sample (playing a binary

version of the trust game) included 86 college students (73 males;

22.62 ± 2.37 years old, range: 18–30 years old). Although both sam-

ples were collected from the same site at Beijing Normal University;

however, they were recruited in different projects. Participants gave

written informed consent for this study, which was approved by the

Ethics Committee of Beijing Normal University and conducted follow-

ing the Declaration of Helsinki.

2.2 | Economic games

The first sample played a one-shot dictator game as dictators

(Kahneman, Knetsch, & Thaler, 1986) and a one-shot trust game as

trustors (Berg et al., 1995) with different anonymous partners. Partici-

pants were given written instructions about both games and asked to

answer several questions to assess their understanding. In the dictator

game, participants decided how to split a sum of money (12 monetary

units, MUs) between themselves and the other player as a passive

recipient. People's behaviors in the dictator game have been argued

to reflect generosity or altruistic preferences (Benenson, Pascoe, &

Radmore, 2007). In the trust game, participants started with an

endowment of nine MUs and decided whether to trust or not by

sending any portion of the endowment to the trustee and to keep the

remainder of the endowment. The shared money was tripled in value

by the experimenter and passed on to an anonymous partner, who

would participate as a trustee in another experiment to decide how

much to return. The first sample was reported in our recent study

employing an independent prediction scheme (Lu et al., 2019).
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The second sample played a one-shot dictator game as dictators

and one-shot binary trust game as trustors. In the dictator game, par-

ticipants decided how to allocate 100 MUs between themselves and

the other player as a passive recipient. The one-shot binary trust game

was similar to the standard game, except that trustors faced a binary

choice to either keep or give all of their endowment to the trustees.

According to their choices (i.e., trust or distrust), participants were cat-

egorized into a trusting (n = 35) or distrusting (n = 51) group. The two

groups did not differ in gender, age, and brain size (All p > .05,

Table S1). Participants in the second sample did not play standard

trust game as played by the participants in the first sample, since

these two datasets were collected in different projects rather than

being designed as a single study.

Participants came to the lab only once to complete the study.

They were informed that they would be paid a week later after

another group of participants completed their decisions as trustees in

the trust game. Unknown to the first group of participants, no trustees

were recruited for the experiment; however, to encourage real deci-

sions, it was emphasized that the earned MUs from the games would

be converted into the monetary payout. Since the exact exchange rate

(from MUs to monetary payouts) was unknown, participants were all

paid with a fixed amount (50 RMB) about a week later. Before leaving

the laboratory, participants were debriefed to examine their beliefs

about the experimental setup and none of them expressed doubts

about the implemented procedure.

2.3 | Image acquisition

MRI acquisition was performed with a Siemens Trio 3-Tesla scanner

at the Beijing Normal University Imaging Center for Brain Research.

High-resolution structural images were acquired through a 3D sagit-

tal T1-weighted magnetization-prepared rapid acquisition with

gradient-echo (MPRAGE) sequence, using the following parameters:

sagittal slices, 144; repetition time (TR), 2,530 ms; echo time (TE),

3.39 ms; slice thickness, 1.33 mm; voxel size, 1 × 1 × 1.33 mm3; flip

angle, 7�; inversion time, 1,100 ms; and field of view (FOV),

256 × 256 mm2.

The qualities of all T1-weighted images were good or satisfac-

tory, and no participants were excluded (Supporting Information,

Section 1, Figure S1). The first sample also completed a 5-min

resting-state fMRI (rs-fMRI) scan consisted of 150 contiguous echo-

planar imaging (EPI) volumes using the following parameters: axial

slices, 33; slice thickness, 3.5 mm; gap, 0.7 mm; TR, 2,000 ms; TE,

30 ms; flip angle, 90�; voxel size, 3.5 × 3.5 × 3.5 mm3; and FOV,

244 × 244 mm2. During the RS scan, participants were instructed to

close their eyes, keep still, remain awake, and not to think about

anything systematically. Several approaches were implemented to

prevent the participants from falling asleep during the scan. They

were explicitly instructed to close their eyes but not fall asleep dur-

ing the scan. Experimenters communicated with each participant

immediately after the scan, and they all responded promptly, indi-

cating that they did not fall asleep.

2.4 | Gray matter volume (GMV) features

From each participant, a GMV map was obtained in the Montreal

Neurological Institute (MNI) space using VBM8 implemented with

Statistical Parametric Mapping (SPM8; Wellcome Trust Centre for

Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/) on a MATLAB

(MathWorks, Natick, MA) platform. The processing procedure con-

sisted of the following steps. First, the original T1-weighted image of

each participant was reoriented to the center point of the anterior

commissure. Second, volumetric T1-weighted images were segmented

into GM, white matter, and cerebrospinal fluid density maps using the

standard unified segmentation approach (Ashburner & Friston, 2005).

Third, the segmented GM density (GMD) map was spatially normal-

ized to the International Consortium for Brain Mapping (ICBM) GM

template. Fourth, the modulation was applied to the normalized GMD

images by multiplying the nonlinear components of Jacobian determi-

nants, resulting in GMV maps adjusting for individual variations in

brain sizes. Fifth, the resultant GMV maps were smoothed using a

4-mm full-width at-half-maximum (FWHM) Gaussian kernel. Finally,

to create a GM mask, each GMD map was also smoothed with a

4-mm FWHM kernel size. Those GMD maps were then averaged, and

a threshold of 0.2 was applied to this average map (Cui, Su, Li, Shu, &

Gong, 2018). The GMV features were restricted to the GM mask to

maintain the consistency of the feature dimensions across all partici-

pants (Köbe et al., 2016).

2.5 | Multivariate prediction model

For the standard trust game completed by the first sample, an elastic-

net regularized linear regression model was applied to predict trust

propensity at the individual level. This regularized linear prediction

model has been successfully applied in previous studies (Cui

et al., 2018; Khundrakpam, Tohka, & Evans, 2015). Voxel-wise GMV

features in a linear regression model were formalized as follows:

y =
Xp
i=1

βixi + β0

where y is the individual's trust preference, p is the number of voxels

in the GM mask, xi is the GMV value at the ith voxel, and βi is the

corresponding regression coefficient.

To alleviate the issues of multicollinearity and overfitting, regular-

ization methods have been frequently applied (Friedman, Hastie, &

Tibshirani, 2010). The L1-norm regularization—least absolute shrink-

age and selection operator (LASSO)—minimizes the sum of the abso-

lute regression coefficients and keeps only one representative

predictor from the correlated predictors. The LASSO achieves a sparse

model by excluding the majority of features from the model; there-

fore, facilitating the optimization of the predictors and reducing the

model complexity. However, the LASSO can only retain N (i.e., sample

size) features at the most in the final model. This is problematic for a

model with relatively small samples but a much larger number of
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features such as in our study that includes 89 samples but more than

180,000 features.

In contrast, the L2-norm regularization (i.e., ridge regression) mini-

mizes the sum of the square of the regression coefficients and keeps all

features in the model. Finally, elastic-net regularization reflects a

weighted combination of L1-norm and L2-norm regularization and

retains the desirable property of LASSO by providing sparse solutions

while overcoming the problems associated with a large number of voxel

features. Specifically, the elastic-net regularization takes the following

form, which was added to the linear regressions model as a penalty term:

λ
Xp

j=1
α βj
�� ��

L1
+
1
2

1−αð Þ βj
�� ��2

L2

� �

where βj is the regression coefficient for the jth feature, and α is a

mixing parameter that controls the relative weighting of the L1-norm

and L2-norm contributions. The regularization parameter λ controls the

amount of shrinkage that was applied to βj. If λ = 0, the effect of the

elastic-net penalty is canceled. As λ increases from zero, the coefficients

are progressively shrunk. Elastic-net uses α to create a useful trade-off

between ridge and LASSO, which is equivalent to the ridge regression

when α = 0 and is equivalent to the LASSO when α = 1. The present

study applied the scikit-learn library (version: 0.19.1) to implement the

elastic-net regularization regression (http://scikit-learn.org/).

2.6 | Multivariate prediction framework

For the prediction framework, nested cross-validation was adopted

with an outer leave-one-out cross-validation (LOOCV) to evaluate the

prediction performance and inner three-fold cross-validation used to

select the optimal parameters (Figure 1a). First, the GMV values of all

GM voxels in the GM mask were extracted to generate the feature

vector for each participant. Second, a feature-selection scheme was

implemented, such that the correlation between each feature and

trust propensity was computed within the training sample on each

iteration of LOOCV. The resultant correlation coefficients were for-

ward to a threshold of uncorrected p < .05 (Xie et al., 2015). The

selected features (i.e., voxels) were applied to the remaining GMV

map of the testing participant. Third, a grid search was conducted to

determine the optimal parameter (α, λ) set for the elastic-net regulari-

zation model.

For the outer loop, supposing the whole dataset consisted of

N participants, then N − 1 participants were used for the feature

selection and training for an optimal prediction model. The remaining

participant was used for testing to evaluate the prediction accuracy of

the model. The procedure was repeated N times, each time leaving

out a different participant for testing, resulting in N predictions, and

one for each participant. Estimates such as Pearson's r and mean

squared error (MSE) between actual and predicted trust propensity

were used to evaluate the accuracy of prediction. Within each outer

loop, the optimal parameter set for the elastic-net regularization

model was determined using cross-validations.

For the loop of the inner cross-validation, the training set (N − 1)

was further partitioned into three subsets according to their rank of

the behavioral scores (Callie, Palma, Charles, & Ariun, 2013). Each

inner loop procedure was then executed under a given parameter set

of (α, λ). Regarding the (α, λ) choices, a grid search was employed: the

α was chosen from 10 values in the range of [0.2, 1.0] and the λ was

set as λ = eγ, where γ was chosen from 20 values in the range of

F IGURE 1 Prediction framework. (a) The prediction schematic flow using GMV-based features and elastic-net. (b) Internal validation using
node strength-based features of selected voxels. (c) External validation using GMV-based features of selected voxels. SVC, support vector
classifier
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[−6, 5] (Barretina et al., 2012). This scheme resulted in a total of

200 (α, λ) parameter sets. For each set of (α, λ), Pearson's r and MSE

between the predicted trust propensity and the actual trust propen-

sity were computed to quantify the accuracy of the prediction. Then,

the (α, λ) set with the highest inner prediction accuracy across the

200 inner three-fold CV loops was chosen as the optimal parameter

set for the final elastic-net predictive model, which was applied to the

training set of the corresponding outer LOOCV loop (Cui et al., 2018).

2.7 | Significance of prediction performance

To determine whether the obtained final prediction results (i.e.,

Pearson's r or MSE) were significantly better than expected by chance

(Dosenbach & Schlaggar, 2010), a permutation test was applied to per-

mute trust propensity 1,000 times randomly. For each time, the above

prediction procedure was executed repeatedly only with randomly per-

muted trust propensity. The p-value of the Pearson's r was calculated

by dividing the number of permutations that showed a higher value

than the actual value for the real sample by the total number of permu-

tations (i.e., 1,000). Similarly, the p-value of the MSE was the portion of

permutations that showed a lower value than the actual value for the

real sample.

2.8 | Contributing GM voxels

After the training procedure of the model was accomplished, the fea-

tures (i.e., GM voxels) with a nonzero regression coefficient/weight in

the models of all outer LOOCV loops can be defined as the contribut-

ing voxels for the prediction of trust propensity (Khundrakpam

et al., 2015). The absolute regression coefficient/weight of a voxel

represents the importance of the GMV feature in predicting trust pro-

pensity (Cui et al., 2018; Dosenbach & Schlaggar, 2010). The inter-

section of features with nonzero regression coefficients across all

outer LOOCV loops was selected as brain measures predictive of trust

propensity.

Note that a control analysis was implemented to examine further

the significance of predictions for the model—controlling for potential

confounds of altruistic preferences, age, gender, individual brain size,

and T1-weighted image quality rating. In particular, the association

between actual and predicted trust propensity was re-computed

based on the residuals after adjusting for these confounding variables.

2.9 | External validation: Classification of trust
propensity in an independent sample

As a test of generalizability, the identified GMV features were

employed to an independent validation sample of participants who

played the binary trust game. GMV information with the selected con-

tributing voxels in the new dataset was applied to classify trusting and

distrusting groups. A linear support vector classification (LSVC)

algorithm implemented in MATLAB (MathWorks, Natick, MA) and

LIBSVM toolbox (http://www.csie.ntu.edu.tw/�cjlin/libsvm/) was

used. The LSVC allows for finding optimal weights and bias for a dis-

criminant function using a training data set, which is identified as a

hyperplane in this multidimensional space to best separate the train-

ing data into two categories matching with the known labels

(i.e., trusting or distrusting group). The discriminant function was, in

turn, applied to predict the class of new testing samples by the output

of classification scores (positive scores indicate a trusting group, and

negative scores indicate a distrusting group). The LSVC was employed

because (a) the predictive regression model trained on the first

dataset cannot be directly used for the second dataset concerning the

classification problem and (b) the LSVC is one of the most widely used

supervised classification algorithms in the field of neuroscience and

usually outperforms other methods (Misaki, Kim, Bandettini, &

Kriegeskorte, 2010).

A nested cross-validation scheme was implemented to train the

model and optimize the hyperparameter of the model (soft-margin

parameter, C), with the outer loop for examining the performance of

the model and the inner loop for optimizing the hyperparameter in

the range of [0.005, 0.01, 0.02, 0.1, 0.2, 0.5, 1, 2, 5, 10, 50, 100,

200, 1,000, 2000, 5,000] (Figure 1c). The LOOCV was adopted for

both inner and outer loops (Feng et al., 2018). To quantify the classifi-

cation performance, accuracy, sensitivity, specificity, positive predic-

tive value (PPV), and negative predictive value (NPV) were calculated.

Accuracy refers to the proportion of participants who were correctly

classified into the trusting or distrusting group. Sensitivity and speci-

ficity are the proportion of trusting group and distrusting group classi-

fied correctly, respectively. PPV and NPV are the proportion of

correct trusting group and distrusting group predictions, respectively.

Also, a receiver operating characteristic (ROC) analysis was implemented

to evaluate the performance of the model. The area under the curve

(AUC)-ROC represents the classification power of a classifier, such that

a larger AUC indicates a higher classification power. The ROC curve

was generated with sequential thresholding at the classification score of

each participant.

Finally, the significance of the classification accuracy and AUC

was determined using a permutation test with 1,000 permutations.

The algorithm was fitted to randomly permuted targets using the

above-described LOOCV procedures for a total of 1,000 permuta-

tions. In every permutation, the LOOCV approach was employed to

fit the classification model to randomly permuted targets. The p-value

for the classification accuracy was calculated by dividing the number

of models with randomly permuted targets that showed higher accu-

racy than that of the model with true targets by the total number of

permutation (i.e., 1,000).

2.10 | Ten-fold validation

Each of the above prediction or classification models was validated

with ten-fold cross-validation, which might provide more stable esti-

mates of predictive accuracy than the LOOCV scheme (Varoquaux
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et al., 2017). Participants were divided into 10 subsets, of which nine

were used as the training sets, and the remaining one was employed

as the testing set. This procedure was repeated 10 times so that each

subset was used as a testing set once. Since the full dataset was ran-

domly divided into 10 subsets, performance might have depended on

data division. Therefore, the ten-fold cross-validation was repeated

100 times, and the results averaged to produce a final prediction per-

formance. A permutation test was applied 1,000 times to test the sig-

nificance of the prediction performance.

2.11 | Internal validation: Prediction from RSFC
features of selected voxels

Employing voxels identified in the GMV-based predictive model, it

was next examined whether the prediction model generalized to the

RSFC-related measures of these voxels. A similar prediction frame-

work was implemented except that (a) the feature selection or the

elastic-net regularization scheme was not employed, that is, all the

voxels contributing to the GMV-based prediction model were

included (Figure 1b) and (b) gFCS rather than GMV values on each

voxel was employed as predictors. A linear regression model combin-

ing with a cross-validation scheme was employed in the prediction of

trust propensity based on gFCS features. The internal validation based

on functional characteristics was inspired by a growing body of evi-

dence that brain structure characteristics (e.g., gray matter volume)

have a direct impact on brain function, causing functional differences

(Honey, Thivierge, & Sporns, 2010; Neudorf, Ekstrand, Kress, &

Borowsky, 2020; Tewarie et al., 2014). Therefore, the identified con-

tributing structural voxels are also most likely to be the functionally

affected ones related to human's corresponding cognition and behav-

ior. Likewise, a plethora of evidence shows that abnormal brain struc-

ture and corresponding changes in brain function can strongly affect

behavior (Achiron et al., 2013; Schneider et al., 2005; von dem Hagen

et al., 2011), further illustrating the necessity of the corresponding

functional features in behavior prediction. Hence, we examined

whether these identified structural voxels would be functionally

predictable.

The voxel-wise node strength analysis was performed using the

GRETNA (GRaph thEoreTical Network Analysis) toolbox (http://www.

nitrc.org/projects/gretna/) (Wang, Wang, et al., 2015). A whole-brain

voxel-wise functional connectivity (FC) matrix for each participant

was obtained by computing the correlation (Pearson's r) between the

time series of each pair of brain voxels in the brain mask and then

converted to the Fisher's Z-values (Figure S3). For a given voxel, its

node strength value was defined as the sum of the Z-values between

the voxel and all of the other voxels in the brain mask. As such, node

strength characterizes the degree of centrality for a given brain region

without referring to its functional connectivity with a particular area

(Wang, Wang, et al., 2015). As voxel-wise GMV, gFCS is also a nodal

feature; therefore, providing a comparable feature derived from func-

tional data. Specifically, the node strength approach does not require

selection of a priori nodes or networks of interest, thus allowing for a

comprehensive, whole-brain characterization for the FC property of

each voxel across the whole brain (Gotts et al., 2012). Moreover, node

strength has been employed as a RSFC measure in numerous studies

(Cao et al., 2018; Feng et al., 2018; Jung et al., 2018; Wu et al., 2015)

and brain regions with high node strength have been regarded as

functional hubs in large-scale brain networks (Buckner & Carroll,

2007; Wang, Dai, Gong, Zhou, & He, 2014).

A control analysis was implemented to further examine the signif-

icance of the predictions of the model after controlling for potential

confounds of altruistic preferences, age, gender, head motion, and

T1-weighted image quality rating. In detail, after adjusting for these

confounding variables, the association between actual and predicted

trust propensity was re-computed. Finally, we implemented an addi-

tional control analysis to examine the prediction of trust propensity

based on whole-brain gFCS features. The prediction framework was

the same as the main model except that the prediction features were

gFCS measures rather than GMV.

2.12 | Modular analysis of the functional brain
network

A modular analysis of the functional brain network was performed to

explore the potential functionally specific relationships between these

contributing clusters. Regions of interest (ROIs, n = 13) were defined

by building spheres with a 4 mm radius around the contributing clus-

ter peak voxels. The mean time courses of all the voxels within each

ROI were extracted to calculate the Pearson correlation coefficient

matrix for representing the resting brain functional network, resulting

in a symmetric connectivity matrix for each participant. These matri-

ces were Fisher z-transformed and averaged to obtain a mean matrix

used for the following analyses.

To exclude the confounding impact of spurious relationships in

internal connectivity matrices, the obtained mean matrix connectivity

density value was set to range from 0.26 to 0.50 with a step length of

0.01. These low-value filtered matrices were performed for the modu-

lar analysis using the Graph-Theoretical Network Analysis Toolkit

(Wang, Wang, et al., 2015). The toolkit detects communities by maxi-

mizing the modularity Q with the spectral optimization algorithm,

which has been introduced as a measure to assess the goodness of a

partition (Newman, 2006; Newman & Girvan, 2004). Finally, the num-

ber of modules and the membership of each ROI were obtained.

2.13 | Functional decoding for contributing
modules

To explore which psychological topics were most relevant to the three

identified modules, a meta-analysis was first performed based on ver-

sion 0.6 of the Neurosynth database (Yarkoni, Poldrack, Nichols, Van

Essen, & Wager, 2011). The database consists of 11,406 fMRI studies

and over 410,000 activity peaks that cover all-sided published neuro-

imaging literature (Figure S2). The observations for each study
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contains the peak activities for all contrasts reported in the study's

table and the frequency of all words in the article abstract. Notably, a

set of psychological 60 topics were used (De La Vega, Yarkoni, Wager, &

Banich, 2017), which was derived by the latent Dirichlet allocation topic

modeling to remedy the redundancy and potential ambiguity in word

terms (Blei, Ng, & Jordan, 2003).

Using all fMRI studies, next, a functional decoding analysis was

performed by training a naïve Bayes classifier, which is widely used in

text classification (Lewis, 1998; Rennie, Shih, Teevan, & Karger, 2003).

Two sets of studies that activated at least 5% voxels and that did not

activate any voxel of the given ROI were selected respectively, as the

positive and negative samples of the training set (De La Vega

et al., 2017). The AUC-ROC was used to measure the performance of

the model with a four-fold cross-validation. This resulted in the condi-

tional probability of the 60 psychological topics under each module.

Notably, only those topics that survived multiple comparisons using

false discovery rate (FDR) with p < .01 by implementing a permutation

test were reported. Finally, the log odds ratio between the probability

of a given topic activating the module and the probability of the topic

not activating the module was extracted from the trained naïve Bayes

model to generate functional decoding profiles.

3 | RESULTS

3.1 | Performance of GMV-based prediction model

First, we aimed to predict individual differences in trust propensity

measured with the standard trust game (Figure 2a), combining an

elastic-net regularized linear regression GMV-based model with a

LOOCV approach.

The GMV features predicted individual differences in trust pro-

pensity (r = 0.33, p = .004; MSE = 2.06, p < .001, permutation test)

and remained significant after adjusting for covariates such as altruis-

tic preferences, age, gender, brain size, and image quality (r = 0.30,

p = .007, Figure 2b,c; MSE = 1.94, p = .001, Figure 2d,e, permutation

test). The reliability and significant of the model were further con-

firmed after performing a ten-fold cross-validation (unadjusted for

covariates: r = 0.32, p < .001; MSE = 2.08, p < .001, permutation test;

adjusted for covariates: r = 0.29, p = .007, Figure S3a,b; MSE = 1.96,

p = 0.008, Figure S3c,d, permutation test).

3.2 | Contributing regions of the GMV-based
prediction model

Next, we determined the representative voxels selected by the pre-

diction model as important features in predicting trust propensity.

Contributing voxel clusters were located in the following regions:

superior temporal gyrus (STG, Brodmann area, BA 22), supramarginal

gyrus (SMG, BA 40), superior parietal lobule (SPL, BA 7), precentral

gyrus (PrCG, BA 9 & BA 6), postcentral gyrus (PoCG, BA 4), superior

frontal gyrus (SFG, BA 10, DMPFC), inferior frontal gyrus (IFG, BA

45 & BA 46, VLPFC), middle frontal gyrus (MFG, BA 9, DLPFC),

precuneus (PreC, BA 29) and middle occipital gyrus (MOG, BA 18)

(Table 1, Figure 3a).

3.3 | Internal validation: Prediction from RSFC
features of selected voxels

Next, we tested whether individual trust propensity can be predicted

by node strength features (i.e., gFCS) of brain systems—a graph-

theoretical measure of the centrality of a region computed from RSFC

(Rubinov & Sporns, 2010)—identified by the GMV-based prediction

model. The node strength of selected voxels for those regions were

able to predict trust propensity (r = 0.39, p < .001; MSE = 2.89,

p < .001, permutation test). The prediction remained significant after

adjusting for altruistic preferences, age, gender, and head motion

(r = 0.39, p < .001, Figure 4a,b; MSE = 2.73, p < .001, Figure 4c,d, per-

mutation test) (Table S2). In contrast, the prediction model based on

the whole-brain gFCS features cannot reliably predict trust propensity

(Supporting Information, Section 2).

3.4 | External validation: Classification of trusting
and distrusting groups

Moreover, we performed an external validation using a new dataset

(a second sample that completed the binary trust game) to classify

trusting and distrusting groups—employing only voxels identified by the

prediction model from the first sample. The LSVC (Table S3) accurately

discriminated the two groups (accuracy, 72.09%; AUC, 68.46%; sensitiv-

ity, 76.47%; specificity, 65.71%; PPV, 76.47%; NPV, 65.71%). The per-

mutation tests yielded p < .001 for accuracy (Figure 5a,b) and p = .004

for AUC (Figure 5c,d). Importantly, the GMV-based model did not pre-

dict participants' altruistic preferences as measured with the dictator

game, although trusting and distrusting groups exhibited significant dif-

ferences in altruistic preferences (Supporting Information 3).

3.5 | Network analysis for contributing regions

Furthermore, we performed a modular analysis (i.e., a community

detection algorithm) to detect the connectivity patterns between the

identified contributing regions. Three stable network modules were

detected—DMN (blue), CEN (yellow), and APN (red)—for which the

modules' partitioning maintained good consistency across different

connectivity strengths (Figure 3b). For the connectivity density of

0.40, a spring embedder layout model for straight-line representations

was applied—grouping together or pulling apart nodes according to

their connectivity patterns (Brandes & Wagner, 1997). The spring-like

layout of the three network modules was characterized by the Euclid-

ean distance between each pair of nodes (reflecting the graph-

theoretic distance) and the thickness of lines (representing the con-

nection strength of the edges) (Figure 3c). The RSFC for which ROIs
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were sorted by modules demonstrated that the modules were more

strongly connected internally than externally (Figure 3d).

3.6 | Functional decoding for contributing modules

Finally, we explored the modules' psychological functions by

employing a data-driven approach to survey a broad range of fMRI

studies in the Neurosynth database (Yarkoni et al., 2011). Naïve Bayes

classifiers were trained to predict the presence or absence of activity

in each contributing module using a set of 60 psychological topics

derived from a standard topic modeling approach to the article

abstracts of the Neurosynth database. After training the model for

each psychological topic, each topic received a conditional probability

coefficient for activating a contributing module. The log odds ratio

between the probability of a given topic activating the module and

F IGURE 2 Performance of the GMV-based prediction model. (a) Trust propensity (i.e., amounts of investment in the standard trust game:
mean ± SEM: 4.00 ± 0.16) across participants. (b) Correlation between actual and predicted trust propensity. (c) Permutation distribution of the
correlation coefficient (r) with blue dashed line indicating value obtained from real scores. (d) Consistency between actual and predicted trust
propensity. (e) Permutation distribution of the mean squared error with blue dashed line indicating value obtained from real scores
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TABLE 1 Contributing regions in the GMV-based prediction model

Region BA ROI ID Hemi Cluster size (voxels)

Peak MNI coordinate

Weights Modulex y z

Superior frontal gyrus (SFG) 10 1 R 5 12 58 16 12.38 1

Superior temporal gyrus (STG) 22 2 R 6 44 −22 −6 7.07 1

Supramarginal gyrus (SMG) 40 3 R 6 52 −38 42 10.18 2

Inferior fontal gyrus (IFG) 46 4 L 13 −34 36 10 9.53 2

Inferior fontal gyrus (IFG) 45 5 L 6 −46 28 2 6.92 2

Middle frontal gyrus (MFG) 9 6 R 7 26 32 32 6.89 2

Precentral gyrus (PrCG) 9 7 L 11 −38 2 26 6.27 2

Precuneus (PreC) 29 8 R 5 10 −44 8 5.76 2

Superior parietal lobule (SPL) 7 9 L 7 −22 −48 58 5.67 3

Middle occipital gyrus (MOG) 18 10 R 12 24 −84 14 5.76 3

Postcentral gyrus (PoCG) 4 11 L 7 −50 −6 22 7.84 3

Precentral gyrus (PrCG) 6 12 R 9 46 −6 32 3.88 3

Precentral gyrus (PrCG) 6 13 R 5 24 −22 74 6.62 3

Abbreviations: BA, Brodmann area; Hemi, hemisphere; L, left; ROI, region of interest; R, right.

F IGURE 3 Contributing regions of the GMV-based prediction model. (a) The GMV-based prediction model determined 13 contributing
regions (i.e., region of interests, ROIs) plotted with cluster sizes as the number of voxels. The colors indicate different brain network modules.
(b) The modular analysis determined three stable modules from ROIs shown in the same color (default-mode network, DMN, blue; central-
executive network, CEN, yellow; and action-perception network, APN, red) under connectivity density levels ranging from 0.26 to 0.50 by
increments of 0.01. (c) The spring-like layout of the three network modules for a connectivity density of 0.40 displays the Euclidean distance
between each pair of nodes, reflecting the graph-theoretic distance and the thickness of lines, reflecting the connection strength of the edges.
(d) Functional connectivity matrix for a connectivity density of 0.40 (ROIs are sorted by modules) showing a stronger strength of edges within
than those between modules. (e) The log odds ratio displaying the functional decoding profiles for the top four psychological topics associated
with each module. IFG, inferior frontal gyrus (ventrolateral prefrontal cortex, VLPFC); MFG, middle frontal gyrus (dorsolateral prefrontal cortex,
DLPFC); MOG, middle occipital gyrus; PrCG, precentral gyrus; PoCG, postcentral gyrus; PreC, precuneus; SFG, superior frontal gyrus (dorsomedial
prefrontal cortex, DMPFC); SMG; supramarginal gyrus; SPL, superior parietal lobule; STG, superior temporal gyrus
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the probability of the topic not activating the module was displayed in

a functional decoding profile for the top four topics per module

(Figure 3e). Values greater than zero indicate that the presence of that

topic positively predicted activity in a given contributing module. In

comparison to the other two modules, the DMN module was more

associated with the psychological functions of mentalizing, awareness,

memory, and emotion, the CEN module with inhibition and conflict,

and the APN module with action, visual-motion, gaze, and motor.

4 | DISCUSSION

We applied in this study a prediction framework via machine learning in

two independent samples of healthy participants to examine the

relationship between individual differences in trust propensity

(as measured by two different types of trust games) and task-indepen-

dent, multimodal brain measures (as collected from sMRI and rs-fMRI).

First, our multivariate prediction analyses revealed that individual differ-

ences in trust propensity for the first sample playing the standard trust

game were predicted by gray matter volume and node strength across

multiple regions (i.e., internal validation). Second, the gray matter volume

of these regions further enabled the classification of individuals from an

independent sample with the propensity to trust or distrust as measured

with the binary trust game (i.e., external validation). Finally, our modular

and functional decoding analyses revealed that the predicted regions

were parts of three identified brain modules, of which the psychological

functions have been previously associated with domain-general large-

scale brain networks: DMN, CEN, and APN.

F IGURE 4 Internal validation of prediction model using node strength-based features from selected voxels. (a) Correlation between actual
and predicted trust propensity. (b) Permutation distribution of the correlation coefficient (r) with blue dashed line indicating value obtained from
real scores. (c) Consistency between actual and predicted trust propensity. (d) Permutation distribution of the mean squared error with blue
dashed line indicating value obtained from real scores
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Our findings fit well with a recently proposed neu-

ropsychoeconomic model of trust—assuming that trust is rooted in

the interplay of psychological components that engage in domain-

general large-scale brain networks (Krueger & Meyer-Lindenberg,-

2019). The one-shot trust game measuring a person's propensity to

trust represents a social dilemma in which the risk of treachery con-

trasted with the anticipation of reward creates uncertainty. To trans-

form the risk of treachery into positive expectations of reciprocity,

the CEN implements a calculus-based trust strategy engaging the

APN to perform cost–benefit calculations while the DMN simulates

the trustworthiness of the anonymous partner.

On the one hand, as hypothesized, intrinsic structural and func-

tional features of the DMN module—DMPFC (SFG, BA 10) and

temporal cortex (STG, BA 22)—predicted individual differences in trust

propensity. The functional decoding analysis showed that the psycho-

logical functions of this module were more associated with

mentalizing, awareness, memory, and emotion compared to the other

two modules. As key nodes of the DMN module, the DMPFC and

STG are consistently associated with mentalizing (i.e., theory of mind)

to simulate, explain, and predict behavior of others (Frith &

Frith, 1999; Krueger, Barbey, & Grafman, 2009). The DMPFC is criti-

cal not only for self-awareness and self-referential processing but also

in forming impressions and inferencing traits of others—in both social

“offline” tasks (e.g., social judgment paradigms) and economic “online”

games (Frith & Frith, 2006; Ma et al., 2012; Wilson-Mendenhall,

Simmons, Martin, & Barsalou, 2013). Mentalizing and episodic

F IGURE 5 External validation based on GMV features from selected voxels. (a) The classification plot for each participant based on GMV
features. (b) Permutation distribution of the classification accuracy with blue dashed line indicating the value obtained from real scores. (c) The
receiver operating characteristic (ROC) graph for the GMV feature-based classifier. (d) Permutation distribution of the area under the curve (AUC)
with blue dashed line indicating the value obtained from real scores
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memory share common regions—including the DMPFC and STG—

utilized for imagining oneself in another perspective, time, or place

(Van Hoeck et al., 2013). Further, mentalizing and emotional

processing share similar neural regions (Hooker, Verosky, Germine,

Knight, & D'Esposito, 2008). For example, reduced activities in the

DMPFC and STG are observed for impaired affective mentalizing in

psychotic compared to nonpsychotic individuals (Harenski et al.,

2018). Further, the DMPFC is more associated with utilitarian

appraisals of moral dilemmas, whereas the STG more with emo-

tional appraisals (Hutcherson, Montaser-Kouhsari, Woodward, &

Rangel, 2015). Finally, meta-analytic evidence revealed that the

STG is involved in the execution of cognitive emotion regulation

(Kohn et al., 2014; Winecoff, Labar, Madden, Cabeza, & Huettel,

2011), where top-down connectivity from the STG controls affec-

tive valuation in the PFC and modulates emotional responses in the

amygdala (Koush et al., 2019).

Our findings support previous evidence that task-free RSFC of

DMN exclusively predicts individual differences in trust propensity in

a one-round trust game employing a prediction-analytics framework

(Bellucci et al., 2019). Further, both the STG and DMPFC are involved

during trust behavior. People who tend to conform to others' opinions

and behaviors (i.e., social influence) show decreased STG activity

when trusting another person (Wei, Zhao, & Zheng, 2019). The gray

matter volume of DMPFC is linked with individual differences in self-

reported trust propensity (Haas et al., 2015). DMPFC activity is

observed during attributing and inferring traits of others to evaluate a

partner's trustworthiness—not only based on prior information about

the partner but also through iterative interactions with the partner

(Fouragnan et al., 2013; McCabe, Houser, Ryan, Smith, & Trouard,

2001). DMPFC activity reflects whether partners progress from a

calculus-based relationship to advanced forms of trust relationships

(i.e., knowledge-based, identification-based trust) (Krueger et al., 2007).

Finally, DMPFC activity has been shown in novice chess players who

employ an iterative thinking pattern about potential intentional

choices of an opponent alongside chess rule-based decision-making

(Powell, Grossi, Corcoran, Gobet, & Garcia-Finana, 2017). Based on

previous evidence, we argue that intrinsic structural and functional

features of the DMN module predicted individual differences in trust

propensity since this module helps simulate an anonymous partner's

trustworthiness based on the implementation of a calculus-based

trust strategy.

On the other hand, as predicted, intrinsic structural and functional

features of the CEN module—the LPFC (VLPFC, BA 45, 46; DLPFC,

MFG, BA 9; PrCG, BA 9) and PPC (SMG, BA 40; PreC, BA 29)—

predicted individual differences in trust propensity. In comparison to

the other two modules, the psychological functions of the CEN mod-

ule were more associated with conflict and inhibition. The cognitive

control system is anchored in the LPFC (i.e., DLPFC, VLPFC) within

the CEN, which has been consistently associated with high-level cog-

nitive functions (e.g., inhibition, conflict resolution) in regulating, inte-

grating, and adopting goal-directed behaviors under changing context

(Miller & Cohen, 2001). Both the DLPFC and VLPFC are activated

during trust decisions. For example, the DLPFC responds differently

when learning to trust individualistic compared to cooperative coun-

terparts (Lemmers-Jansen, Krabbendam, Veltman, & Fett, 2017). In

general, the DLPFC provides the cognitive capacity for resolving con-

flict, as seen in social dilemmas such as trust—eliminating the uncer-

tainty between the risk of treachery and the anticipation of reward

(Krueger & Meyer-Lindenberg, 2019). Further, the VLPFC disrupts the

impact on learning (via the dorsal STR) after violations of trust when

priors about the trustee are present—maintaining choices anchored

with reliable prior beliefs (Fouragnan et al., 2013). Overall, the VLPFC

grants the cognitive capacity for inhibiting information about social

risk to maintain a positively biased expectation of a partner's reciproc-

ity (Krueger & Meyer-Lindenberg, 2019). Based on previous evidence,

we argue that intrinsic structural and functional features of the CEN

module predicted individual differences in trust propensity since this

module likely provides the cognitive capacities of resolving the con-

flict of uncertainty and inhibiting information about the risk of treach-

ery to transform it into a positive expectation of reciprocity.

Further, we argue that the posterior parietal regions (SMG, BA

40; PreC, BA 29) of the CEN module in conjunction with the pre-

motor (PrCG, BA 6) and primary motor (PoCG, BA 4), posterior parie-

tal (SPL, BA 7), and occipital (MOG, BA 18) regions of the APN module

enabled cost–benefit calculations. The APN module was linked with

the psychological functions of action, motor, gaze, and visual-motor

compared to the other two modules. The embodied cognition frame-

work suggests that neural systems for both action and perception are

engaged in higher cognitive processes (Dehaene & Cohen, 2007;

Tschentscher, Hauk, Fischer, & Pulvermuller, 2012). For example,

developmental studies show a link between numbers and individual

finger counting movements due to the acquisition of numerical skills

through finger counting while counting objects and solving simple

counting problems in childhood (Butterworth, 1999; Lindemann,

Alipour, & Fischer, 2011). Those systematic sensory-motor neural

activities during number acquisition remain part of the numerical

knowledge in our later life (Lakoff & Núñez, 2000).

A plethora of studies have confirmed this anatomical overlap of

neuronal activity for numerical processing and performance in sim-

ple arithmetic tasks in addition to grasping movements and pointing

(Pesenti, Thioux, Seron, & De Volder, 2000; Zago et al., 2001)—

driven by parietal cortical areas (e.g., SPL, SMG, PreC) subsequently

activating pre-motor (e.g., PrCG) and primary motor (e.g., PoCG)

areas eliciting the sub-threshold tendency to move associated fin-

gers (Butterworth, 1999; Rusconi, Walsh, & Butterworth, 2005).

Moreover, neuroimaging findings in adults suggest specific number

and generalized magnitude processing as well as exact and approxi-

mate number processing rely on distinct neural circuits. For exam-

ple, a recent neuroimaging meta-analysis revealed specific SPL

activity for symbolic numerical magnitudes (i.e., Arabic digits and

number words) but specific PreC activity for non-numerical magni-

tudes (e.g., physical size, duration, or luminance) (Sokolowski, Fias,

Bosah Ononye, & Ansari, 2017). Further, arithmetic calculations in

symbolic formats (e.g., Arabic digits) showed increased activity in

SMG, whereas arithmetic in the non-symbolic format (e.g., dot

arrays) showed increased activities in SPL and MOG (Peters,
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Polspoel, Op de Beeck, & De Smedt, 2016). Based on previous evi-

dence, we argue that intrinsic structural and functional features of

the APN module predicted individual differences in trust propensity

since this module possibly helps to perform a cost–benefit analysis

in calculating how much money to send over to and how much to

expect back from the other party.

In summary, we examined the prediction of individual differences

in trust propensity based on multimodal, task-independent brain mea-

sures in two independent samples completing two behavioral mea-

sures of trust propensity. Our multivariate prediction analyses

revealed that individual differences in trust propensity were predicted

by intrinsic structural (i.e., GMV) and functional (i.e., gFCS) features

across multiple regions. The intrinsic structural features of these

regions further enabled the classification of individuals from an inde-

pendent sample with a propensity of trust or distrust as measured

with the binary trust game. The predicted regions have been previ-

ously implicated as modules of domain-general large-scale brain net-

works, supporting psychological processes that determine an

individual's trust propensity.

A couple of limitations need to be noted. First, the current study

controlled for various confound variables in a large homogeneous

healthy sample. However, future studies should include additional

confounding variables (e.g., personality traits, clinical characteristics)

with an increased sample size to fit more complex prediction models

in a more heterogeneous sample. Second, future investigations have

to show re-test reliability for our findings in which the same popula-

tion completes the same trust measure but at different time points—

essential for characterizing trust propensity with brain functions in

health and disease as the next step. Finally, although the performance

of the current prediction/classification models was significantly better

than the chance level, their performance was at a moderate level and

could be further improved. In this regard, the current study should be

considered as a proof-of-concept study, and future investigations

should improve the accuracy of those models. For example, only

voxel-wise GMV patterns were employed in the current prediction

models. Future studies might improve the performance of prediction

model by including surface-based morphometric metrics (e.g., cortical

thickness) as these metrics have been associated with human social

behaviors (Baumgartner et al., 2016; Baumgartner, Schiller, Hill, &

Knoch, 2013). Likewise, different levels of metrics derived from func-

tional data (e.g., nodal or network level) should be explored in future

studies.

Despite these limitations, based on internal and external valida-

tion, our results identified novel and critical evidence for intrinsic

structural and functional features of multiple brain modules that are

predictive of trust propensity at the individual level—supporting

previous evidence from both task-based and task-free fMRI studies

investigating the neurobiological signatures of trust. Our findings

deepen not only the neuropsychological understanding of individual

differences in trust propensity, but also provide potential bio-

markers in an fMRI-informed science of individual differences of

trust propensity in patients with neurological and psychiatric

disorders.
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