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FLAT AFFINE MANIFOLDS AND THEIR TRANSFORMATIONS

MEDINA A.1, SALDARRIAGA, O.2, AND VILLABON, A.2

Abstract. We give a characterization of flat affine connections on manifolds by means of
a natural affine representation of the universal covering of the Lie group of diffeomorphisms
preserving the connection. From the infinitesimal point of view, this representation is deter-
mined by the 1-connection form and the fundamental form of the bundle of linear frames of the
manifold. We show that the group of affine transformations of a real flat affine n-dimensional
manifold, acts on Rn leaving an open orbit when its dimension is greater than n. Moreover,
when the dimension of the group of affine transformations is n, this orbit has discrete isotropy.
For any given Lie subgroup H of affine transformations of the manifold, we show the existence
of an associative envelope of the Lie algebra of H, relative to the connection. The case when
M is a Lie group and H acts on G by left translations is particularly interesting. We also
exhibit some results about flat affine manifolds whose group of affine transformations admits a
flat affine bi-invariant structure. The paper is illustrated with several examples.
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2 Instituto de Matemáticas, Universidad de Antioquia, Medelĺın-Colombia
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1. Introduction

The objects of study of this paper are flat affine paracompact smooth manifolds with no
boundary and their affine transformations. A well understanding of the category of Lagrangian
manifolds assumes a good knowledge of the category of flat affine manifolds (Theorem 7.8 in
[Wei], see also [Fuk]). Recall that flat affine manifolds with holonomy reduced to GLn(Z)
appear naturally in integrable systems and Mirror Symmetry (see [KoSo]).

For simplicity, in what follows M is a connected real n-dimensional manifold, P = L(M) its
bundle of linear frames, θ its fundamental 1-form, Γ a linear connection on P of connection
form ω and ∇ the covariant derivative on M associated to Γ. The pair (M,∇) is called a flat
affine manifold if the curvature and torsion tensors of ∇ are both null. In the case where M is a
Lie group and the connection is left invariant, we call it a flat affine Lie group. It is well known
that a Lie group is flat affine if and only if its Lie algebra is endowed with a left symmetric
product compatible with the bracket. For a rather complete overview of flat affine manifolds,
the reader can refer to [Gol].

An affine transformation of (M,∇) is a diffeomorphism f of M whose derivative map
f∗ : TM −→ TM sends parallel vector fields into parallel vector fields, and therefore geodesics
into geodesics (together with its affine parameter). An infinitesimal affine transformation of
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(M,∇) is a smooth vector field X on M whose local 1-parameter groups φt are local affine
transformations. We will denote by a(M,∇) the real vector space of infinitesimal affine trans-
formations of (M,∇) and for X(M) the Lie algebra of smooth vector fields on M . An element
X of X(M) belongs to a(M,∇) if and only if it satisfies

LX ◦ ∇Y −∇Y ◦ LX = ∇[X,Y ], for all Y ∈ X(M), (1)

where LX is the Lie derivative. For a vector field X ∈ X(M), we will denote by L(X) its
natural lift on P . If φt is the flow of X, the flow of L(X) is the natural lift L(φt) of φt given
by L(φt)(u) = (φt(m), (φt)∗,mXij), where u = (m,Xij). It is also well known that

X ∈ a(M,∇) if and only if LL(X)ω = 0. (2)

This is also equivalent to saying that L(X) commutes with every standard horizontal vector
field B(ξ) (i.e., vector fields satisfying that θ(B(ξ)) := ξ for all ξ ∈ Rn). We will call a(P, ω)
the set of vector fields Z on P satisfying

Z is invariant by Ra for every a ∈ GLn(R)

LZθ = 0 (3)

LZω = 0,

where Ra is the right action of GLn(R) on P . The map X 7→ L(X) is an isomorphism of Lie
algebras from a(M,∇) to a(P, ω). The vector subspace aff(M,∇) of a(M,∇) whose elements
are complete, with the usual bracket of vector fields, is the Lie algebra of the group Aff(M,∇)
of affine transformations of (M,∇) (see [KoNo] chapter VI, page 229). The image of aff(M,∇)
under the isomorphism X 7→ L(X) will be denoted by ac(P ). For the purposes of this work,
it is useful to recall that (P, ω) admits an absolute parallelism, that is, its tangent bundle
admits n2 + n sections independent at every point. In fact, {B(e1), . . . , B(en), E∗11, . . . , E

∗
nn} is

a paralelism of P , where (e1, . . . , en) and {E11, . . . , Enn} are respectively the natural basis of
Rn and gln(R) (see [KoNo] p 122).

Remark 1.1. If X ∈ a(M,∇) has flow φt, the flow L(φt) of Z = L(X) determines a local
isomorphism of (P, ω). This implies the existence of an open covering (Uα)α∈A trivializing the
bundle (L(M),M, π) such that the maps L(φt) : (π−1(Uα), ω) −→ (π−1(φt(Uα)), ω) are isomor-
phisms. When Z is complete, the maps L(φt) are global automorphisms of (P, ω).

Notice that, for every t, the map L(φt) preserves the fibration and the horizontal distribution
associated to ω.

This paper is organized as follows. In Section 2 we state a characterization of flat affine
manifolds and provide some of its consequences. In the theory of flat affine manifolds appears,
in a natural way, a finite dimensional associative algebra (see Lemma 3.1). This will allow to
show the existence of an associative envelope of the Lie algebra of the Lie group relative to a
subgroup H of the group of affine transformations of the manifold. In Section 3 we specialize
our study to the case of flat affine Lie groups and exhibit some examples. Section 4 deals with
the study of the following question posed by A. Medina.

Question 1.1. Does the group of affine transformations, Aff(M,∇), of a flat affine manifold
(M,∇) admit a left invariant flat affine or, by default, projective structure determined by ∇?

This question was answered positively in some particular cases in the special case of some
flat affine Lie groups (see in [M-S-G]). In Section 4. we exhibit more cases where the answer
to this question is positive.
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2. Characterization of flat affine manifolds

Before stating the main result of the section, let us denote by A∗ the fundamental vector
field on P = L(M) associated to A ∈ g = gln(R) and by B(ξ) the basic or standard horizontal
vector fields (see [KoNo] page 63). Recall that the fundamental form θ of P is a tensorial
1-form of type (GL(Rn),Rn), that is, it verifies (R∗aθ)(Z) = a−1(θ(Z)), for all a ∈ GLn(R) and
Z ∈ X(P ).

If Γ is a linear connection over M , its connection form ω is a gln(R)-valued 1-form satisfying

ω(A∗) = A, for all A ∈ gln(R), (4)

R∗aω = Ada−1ω, for all a ∈ GLn(R). (5)

It is well known that if Ω and Θ are respectively the curvature and torsion forms of the con-
nection ω, they satisfy Cartan’s structure equations

dω(X, Y ) = −1

2
[ω(X), ω(Y )] + Ω(X, Y ),

dθ(X, Y ) = −1

2
(ω(X) · θ(Y )− ω(Y ) · θ(X)) + Θ(X, Y ),

for all X, Y ∈ Tu(P ), u ∈ P (see [KoNo] page 75).
Given the presheaf U → aff(Rn), where U is an open set in P , consider the sheaf F (called

simple faisceau by the French school, see [God], see also [Chr]) of base P and fibre the Lie
algebra aff(Rn) generated by the presheaf so that the restriction operations are reduced to the
identity.

Lemma 2.1. The simple sheaf F acts on Rn by

(u, s(u)) · w = (u, (vu, fu)) · w := vu + fu(w) (6)

Moreover, if η : Sec(TP ) −→ Sec(P × aff(Rn)) is a homomorphism of sheaves of Lie algebras,
then Sec(TP ) acts on Rn via η.

Proof. Recall the construction of the étale space corresponding to F . As F(u) is a direct limit
we have F(u) = aff(Rn) for any u ∈ P .

Moreover the sections over U considered as maps from U to aff(Rn) are locally constant.
Hence the topology of F = P × aff(Rn) is the product topology of that of P by the discrete
topology of aff(Rn).

As a consequence, Equation (6) can be written locally as

s · w = (v, f) · w = v + f(w).

This gives an infinitesimal action of F on Rn.
The last assertion easily follows. �

As a consequence the Lie algebras Sec(TP ), a(P ) and ac(P ) also act infinitesimally on Rn.
In these terms we have the following result.

Theorem 2.2. Let M be a smooth connected manifold, P = L(M) be the principal bundle of
linear frames of the manifold, θ the fundamental form of P and Γ a linear connection on P of
connection form ω. The following assertions are equivalent

(i) The linear connection Γ on P is flat affine.
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(ii) The map

η : Sec(TP ) −→ Sec(P × aff(Rn))
Z 7→ (θ(Z), ω(Z))

,

is a homomorphisms of sheaves of real Lie algebras.

Proof. As aff(Rn) = Rn oid gl(Rn) is the semidirect product of the abelian Lie algebra Rn and
the Lie algebra of commutators of linear endomorphisms of Rn, the map

η : Sec(TP ) −→ Sec(P × aff(Rn))
Z 7→ (θ(Z), ω(Z))

is well defined and R-linear.
That η is a homomorphism of sheaves of Lie algebras means that

η([Z1, Z2]) = (ω(Z1) · θ(Z2)− ω(Z2) · θ(Z1), [ω(Z1), ω(Z2)]), for all Z1, Z2 ∈ Sec(TP ). (7)

In other words, ω is a linear representation of the Lie algebra Sec(TP ) and θ is a 1-cocycle
relative to this representation.

Suppose that Γ is flat and torsion free, then the structure equations for ω reduce to

dθ(Z1, Z2) = −1

2
(ω(Z1) · θ(Z2)− ω(Z2) · θ(Z1)) (8)

dω(Z1, Z2) = −1

2
[ω(Z1), ω(Z2)]. (9)

It is clear that (7) holds when both vector fields are vertical or if one is vertical and the other
is horizontal.

Now let us suppose that both Z1 and Z2 are horizontal vector fields. As the distribution
determined by ω is integrable, it follows that [Z1, Z2] is horizontal and Equation (9) implies
that ω([Z1, Z2]) = [ω(Z1), ω(Z2)]. Also notice that ω(Z1) · θ(Z2)− ω(Z2) · θ(Z2) = 0. Now, we
can suppose that Z1 and Z2 are basic vector fields, that is, Z1 = B(ξ1) and Z2 = B(ξ2). Hence
from (8) we get that θ([Z1, Z2]) = 0. Therefore assertion (ii) follows from (i).

To prove that (ii) implies (i), we will show that Equation (7) implies that the curvature and
the torsion vanish, i.e., Equations (8) and (9) hold.

As η is a homomorphism of sheaves of Lie algebras it follows that for Z1, Z2 ∈ Sec(TP )

ω([Z1, Z2]) = [ω(Z1), ω(Z2)] and θ([Z1, Z2]) = ω(Z1) · θ(Z2)− ω(Z2) · θ(Z1)

The first equality means that the local horizontal distribution on P determined by ω is
completely integrable, hence Ω vanishes.

On the other hand, as the torsion Θ is a tensorial 2-form on P of type (GLn(R),Rn), we have
Θ(Z1, Z2) = 0 if Z1 or Z2 is vertical. Now, if Z1 = B(ξ1) and Z2 = B(ξ2) for some ξ1, ξ2 ∈ Rn,
we obtain

Θ(Z1, Z2) = dθ(Z1, Z2)

=
1

2
(Z1(θ(Z2))− Z2(θ(Z1))− θ([Z1, Z2]))

=
1

2
(Z1(ξ2)− Z2(ξ1)− ω(Z1) · θ(Z2) + ω(Z2) · θ(Z1))

= 0.

Consequently the torsion form Θ vanishes. �
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Recall that there are topological obstructions to the existence of a flat affine connection. In
particular, a closed manifold with finite fundamental group does not admit flat affine structures
(see [AuMa], [Mil] and [Smi]).

As P = L(M) has a natural parallelism, the group K of transformations of this parallelism
is a Lie group of dimension at most dimP = n2 + n. More precisely, given σ ∈ K and any
u ∈ P , the map σ 7→ σ(u) is injective and its image {σ(u) | σ ∈ K} is a closed submanifold of
P . The submanifold structure of {σ(u) | σ ∈ K} turns K into a Lie transformation group of
P (see [Kob]). The group Aut(P, ω), of diffeomorphisms of P preserving ω (therefore θ), is a
closed Lie subgroup of K, so it is a Lie group of transformations of P .

Remark 2.1. The group Aut(L(Rn), ω0) of diffeomorphisms of L(Rn) preserving the usual
connection ω0 on Rn is isomorphic to the group Aff(Rn,∇0), called the classic affine group,
that is, the group generated by translations and linear automorphisms. Recall also that having
a flat affine structure ∇ on M is equivalent to have a smooth atlas whose change of coordinates
are elements of Aut(L(Rn), ω0).

The following technical result is a direct consequence of Theorem 2.6, it concerns certain
G-structures to which a connection can be attached.

Corollary 2.3. Let Γ be flat affine and η the homomorphism of Theorem 2.2, then we have

a. The connection Γ is a metric connection, if and only if η takes values in the Lie algebra
e(p,q)(n) = Rn o o(p,q).

b. The connection Γ preserves a volume form if and only if η takes values in the Lie algebra
Rno sln(R). In particular, if n = 2m, Γ preserves a symplectic form σ if and only if η takes
values in the Lie algebra Rn o spm(R).

Proof. Consider theG-structure onM , whenever exists, given respectively byO(p,q) (with p+q =
n), SLn(R) and Spm(R). In each respective case, the homomorphism η takes values in the
sheaf of Lie algebras Sec(P × (Rno o(p,q))), Sec(P × (Rno sln(R)) and Sec(P × (Rno spm(R)),
respectively. �

Remark 2.2. If Γ is flat affine and X ∈ a(M,∇) with flow φt, then its natural lift L(φt) pre-
serves the foliation defined by ω. Moreover, if L(X) is complete then L(φt) is an automorpism
of the bi-foliated manifold L(M).

The groups Aut(P, ω) and Aff(M,∇) are isomorphic. We denote by Aut(P, ω)0 the unit

component of Aut(P, ω) and by Âut(P, ω)0 its universal covering Lie group.

Example 2.1. Identify C with the plane R2 and C∗ with the punctured plane R2\{(0, 0)} and let
p : R2 −→ R2\{(0, 0)} be the complex exponential map. It is clear that p is a covering map with
automorphism group given by H = {Fk : R2 −→ R2 | Fk(x, y) = (x, y + 2πk) with k ∈ Z}. As
H is a subgroup of affine transformations of R2 relative to ∇0, there exists a unique linear con-
nection ∇ on M := R2\{(0, 0)} so that p is an affine map. Consequently the Aff(R2)−principal
fiber bundle of affine frames A(M) has a connection Γ′, of curvature zero, determined by ∇.
The geodesic curves in M determined by ∇ are logarithmic spirals. The elements of the group
Aff(M,∇), of affine transformations of M relative to ∇, are diffeomorphisms of M locally given
by F (r, θ) = (arb, c ln(r) + θ+ d) where a, b, c, d ∈ R with a > 0 and (r, θ) are polar coordinates
of M .

Let u′0 be in A(M) and H(u′0) be the affine holonomy bundle through u′0. Let us denote by h
affine holonomy representation of (M,∇). It is well known that H(u′0) is a covering manifold
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of M with structure group h(π1(M)) and that A(M) is the disjoint union of holonomy bundles.

Let p′ : H(u′0) −→ M be the covering map and F̃ the natural affine lift of F ∈ Aff(M,∇)

to A(M), i.e., F̃ ((q,X1, X2)(x,y)) = ((F∗,(x,y)(q), F∗,(x,y)(X1), F∗,(x,y)(X2))F (x,y)), with F∗,(x,y)(q)
the end point of the vector F∗,(x,y)(

−→q ) and −→q the vector on T(x,y) from the origin to q. It can

be verified that F̃ sends the affine holonomy bundle H(u′0) through u′0 to the holonomy bundle

H(F̃ (u′0)) through F̃ (u′0).

Recall that ω is flat affine if and only if its affine holonomy group is discrete (see [KoNo] p
210). Nevertheless, there are flat affine manifolds whose linear holonomy group is not discrete.

The Lie algebra homomorphism η of Theorem 2.2 could be integrated, in some particular
cases, into a Lie group homomorphism. For instance, applying Lie’s third Theorem (see [Ch] for
details on the proof of this theorem) and Cartan’s Theorem to the Lie algebra homomorphism
η′ : ac(P ) −→ aff(Rn), obtained from η restricted to ac(P ), we have.

Corollary 2.4. Let (M,∇) be a flat affine connected manifold of connection form ω. Then

there exists a Lie group homomorphism ρ : Âut(P, ω)0 −→ Aut(L(Rn), ω0) determined by (θ, ω).

Lemma 2.5. Let M be a smooth connected manifold and Γ a flat affine connection on P =
L(M) with dim(ac(P )) ≥ dim(M). Then there exists u ∈ P so that the map φu : ac(P ) −→ Rn

defined by φu(Z) = η(0)(Z) = θu(Zu) is onto.

Proof. Let β = (Z1, . . . , Zm) be a linear basis of ac(P ). We claim that there are linear frames
u where the set (ηu(0)(Z1) = θu(Z1,u), . . . , (ηu(0)(Zm) = θu(Zm,u)) spans Rn. Otherwise, for
every u and every subset (X1 = Zi1 , . . . , Xn = Zin) of β with n = dim(M) and 1 ≤ i1 < · · · <
in ≤ m, the set {θu(X1,u), . . . , θu(Xn,u)} is linearly dependent. Thus, there exists real constants
α1, . . . , αn so that 0 =

∑
αiθu(Xi,u). It follows that

0 =
∑

αiθu(Xi,u) = θu

(∑
αiXi,u

)
= u−1(π∗,u(Xu))

where u is seen as a linear transformation from Rn to Tπ(u)M and X =
∑
αiXi. It follows that

π∗,u(Xu) = 0 for every u, that is, X ≡ 0. But this contradicts the fact that the set {X1, . . . , Xn}
is linearly independent. As the map φu is linear, we conclude that it is onto. �

The following example exhibits a flat affine manifold M whose bundle P = L(M) has frames
u where the map φu of the previous lemma is not onto.

Example 2.2. Consider the manifold M = R2 \ {(0, 0), (0, 1)} with the connection ∇ induced
by ∇0. A simple calculation shows that the real space aff(M,∇) is two dimensional with linear

basis given by
(
X1 = x ∂

∂x
, X2 = x ∂

∂y

)
. One can also verify that, for a linear frame u over a

point (x, y) ∈ M , one has that θu(X̃1) = u−1
[
x
0

]
and θu(X̃2) = u−1

[
0
x

]
, where X̃1 and X̃2

are the natural lifts of X1 and X2, respectively. Notice that the set {θu(X̃1), θu(X̃2)} is linearly
independent if and only if x 6= 0.

Remark 2.3. If M = G is a Lie group endowed with a flat affine left invariant connection
∇+, then the map φu of the previous lemma is onto for every u ∈ P . This follows from the
fact that right invariant vector fields are complete infinitesimal affine transformations relative
to ∇+ forming a global parallelism of G.
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Theorem 2.6. Let M be a smooth connected n-dimensional manifold and Γ a flat affine connec-
tion on P = L(M) of connection form ω. If dim(Aut(P, ω)) ≥ n, there exists a homomorphism

ρ : Âut(P, ω)0 −→ Aut(R, ω0) having a point of open orbit. Moreover, if dim(Aut(P, ω)) = n,

the point also has discrete isotropy, that is, ρ is an étale affine representation of Âut(P, ω)0 in
Rn.

Proof. Let u ∈ P be a linear frame, φu as in the previous lemma, η′ : ac(P ) −→ aff(Rn) the map

defined by η′(Z) = (θu(Z), ωu(Z)) and ρ : Âut(P, ω) −→ Aut(L(Rn), ω0) the homomorphism

satisfying that ρ∗,Id = η′. If π : Âut(P, ω) −→ Orb0 is the orbital map, since π∗,Id(Z) = η(0)(Z),
it follows that π∗,Id = φu. As φu is onto, we get that 0 is a point of open orbit. The second
assertion in immediate. �

The following result is a direct consequence of the preceding theorem.

Corollary 2.7. Under the hypothesis of Theorem 2.6, manifolds M satisfying the condition
dim(Aff(M,∇)) = dim(M) give a positive answer to Question 1.1. That is, the group Aff(M,∇)
is endowed with a flat affine left invariant connection determined by ∇.

Recall that there are flat affine manifolds (M,∇) with dimension equal to dim(Aff(M,∇)).
For instance, flat affine tori other than the Hopf torus listed in [NaYa] (see also [Ben]) and one
of the manifolds of Example 2.3 below.

Notice that the proof of Lemma 2.5, implies that if dim(ac(P )) < n, the map φu is injective,
so we have

Corollary 2.8. Under the conditions of Theorem 2.6, if dim(ac(P )) < n, there exists an

injective homomorphism ρ : Âut(P, ω)0 −→ Aut(L(Rn, ω0)), that is, a faithful representation

of Âut(P, ω)0 by classical affine transformations of Rn.

Proof. Let η′ be as in the proof of Theorem 2.6 and suppose that η′(Z) = η′(Y ), for some
Y, Z ∈ ac(P ), hence θu(Zu) = θu(Yu). As θu is inyective for some u ∈ P , we have that Yu = Zu.
Since Y and Z are natural lifts of infinitesimal affine transformations, it follows that Y = Z. �

Remark 2.4. There are flat affine manifolds (M,∇) of dimension greater than dim(Aff(M,∇)).
This condition is satisfied by some of the flat affine Klein bottles listed in [FuAr]. More precisely,
flat affine Klein bottles that are not double covered by a Hopf torus.

Example 2.3. Let M1, M2 and M3 be the plane without one, two and three non colineal points,
respectively, and let ∇i, i = 1, 2, 3, be the connection ∇0 restricted to Mi. Let us suppose that
the points removed are p1 = (0, 0), p2 = (0, 1) and p3 = (1, 0). An easy calculation shows that
the corresponding groups of affine transformations of Mi relative to ∇i are given by

Aff(M1,∇1) = {F : M1 −→M1 | F (x, y) = (ax+ by, cx+ dy) such that ad− bc 6= 0}.
Aff(M2,∇2) = {F ∈ Diff(M2) | F (x, y) = (ax, bx+ y) or F (x, y) = (ax, bx− y + 1), a 6= 0}

notice that this is a 2-dimensional non-commutative group with four connected components.
The group Aff(M3,∇3) is discrete, its elements are the set of affine transformations of

(R2,∇0) permuting the points p1, p2 and p3.
The group of diffeomorphisms Aut(P, ω1) of P = L(M1) preserving the connection form ω1

is given by{
F ∈ Diff(P)

∣∣∣∣ F (x, y,X11, X12, X21, X22) =
(ax+ by, cx+ dy, aX11 + bX21, aX12 + bX22, cX11 + dX21, cX12 + dX22)

}
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where (x, y,X11, X12, X21, X22) are local coordinates of L(M1).
The connected component of the unit of the group Aut(L(M2), ω2), of automorphisms of

P = L(M2) preserving the connection form ω2 associated to ∇2, is formed by diffeomorphisms
Fa,b, with a > 0, given by

Fa,b (x, y,X11, X12, X21, X22) = (ax, bx+ y, aX11, aX12, bX11 +X21, bX12 +X22) ,

where (x, y,X11, X12, X21, X22) are local coordinates of L(M2).
The homomorphism of Corollary 2.4 corresponding to the manifold M1 is given by

ρ1 : Aff(M1,∇1) → Aff(R2)
F = F(Y1,Y2,Y3,Y4) 7→ ρ1(F )

where the linear part of ρ1(F ) is given byX11X22Y1−X12X21Y4−X11X12Y3+X21X22Y2
X11X22−X12X21

X2
22Y2−x212Y3+(Y1−Y4)X12X22

X11X22−X12X21

X2
11Y3−X2

21Y2+(Y4−Y1)X11X21

X11X22−X12X21

X11X22Y4−X12X21Y1+X11X12Y3−X21X22Y2
X11X22−X12X21

 ,
and the cocycle part of ρ1(F ) is u2X12−u1X22+u1X22Y1−u2X12Y4−u1X12Y3+u2X22Y2

X11X22−X12X21

u1X21−u2X11−u1X21Y1+u2X11Y4+u1X11Y3−u2Xx21Y2
X11X22−X12X21


with (u1, u2) are local coordinates on M1, (X11, X12, X21, X22) are local coordinates for GL2(R)
and F = F(Y1,Y2,Y3,Y4) defined by F (u1, u2) = (Y1u1 + Y3u2, Y2u1 + Y4u2) with Y1Y4 − Y2Y3 6= 0.
Moreover, Theorem 2.6 guarantees that the action of Aff(M1,∇1) on R2 determined by ρ1 leaves
and open orbit. In fact, the open orbit is the whole plane.

Now, a direct calculation shows that the homomorphism of Corollary 2.4 corresponding to the
manifold M2 is given by

ρ : G(ac(P )) −→ Aff(R2)
Fa,b 7→ ρ(Fa,b)

where G(ac(P )) is the connected and simply connected Lie group of Lie algebra ac(P ), Fa,b the
affine map of (M2,∇2) defined by Fa,b(x, y) = (ax, bx+ y) with a > 0 and ρ(Fa,b) is given by

1

D

aX11X22 − bX11X12 −X12X21 (a− 1)X12X22 − bX2
12 (a− 1)xX22 − bxX12

(1− a)X11X21 + bX2
11 −aX12X21 + bX11X12 +X11X22 (1− a)xX21 + bxX11

0 0 D


where (X11, X12, X21, X22) is a system of local coordinates of GL2(R), D = X11X22 − X12X21

and (x, y) local coordinates of M2. According to Theorem 2.6, the representation ρ is étale
whenever x 6= 0, hence, Aff(M2,∇2) admits a flat affine (left invariant) connection.

If M = G is a Lie group, we will identify its Lie algebra Lie(G) = g with the real vector
space of left invariant vector fields on G and also with the tangent space at the unit ε ∈ G.
For any x ∈ TεG, we denote by x+ (respectively by x−) the left (right) invariant vector field
determined by x. The group G acts on itself on the left (respectively right), and we will denote
by Lσ (respectively Rσ) the left (respectively right) action of σ ∈ G. These actions naturally
lift to actions of G on P = L(G) given by ψ1,σ(u) = σ · u = (στ, (Lσ)∗,τ (Xij)) (respectively
ψ2,σ(u) = u ·σ = (τσ, (Rσ)∗,τ (Xij)) where u = (τ, (Xij)). A linear connection Γ on G is said left
invariant (respectively right invariant) if the action ψ1 (respectively ψ2) preserves the horizontal
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distribution. The connection is bi-invariant if the horizontal distribution is preserved by ψ1 and
ψ2.

The existence of a left invariant flat affine connection on a Lie group G, is equivalent to the
existence of an étale affine representation of G, i.e, there exists a homomorphism of Lie groups
τ : G −→ Aff(Rn) having at least an open orbit with discrete isotropy.

In these terms we get the following consequence of Theorem 2.2 and Corollary 2.4. In the
next result the Lie group G can be supposed simply connected

Theorem 2.9. Let G be a connected n-dimensional Lie group, of Lie algebra g, endowed with
a left invariant connection ∇+ of connection form ω+. The following assertions are equivalent

1 The connection ω+ is flat affine.

2 There exists a unique Lie group homomorphism ρ : Âut(L(G), ω+)0 −→ Aut(L(Rn), ω0)
with derivative ρ∗,Id = (θ, ω+) leaving an open orbit.

3 There exists an affine étale representation ρ′ : Gop −→ Aff(Rn,∇0) determined by
(θ,−ω+).

Proof. That 1. implies 2. follows from Corollary 2.4, Theorem 2.6 and Remark 2.3.

Now, suppose that there is a Lie group homomorphism ρ : Âut(L(G), ω+)0 −→ Aut(L(Rn), ω0)
with a point of open orbit so that ρ∗,Id = (θ, ω+). That is, ρ∗,Id = η/ac(P ) where η is the ho-
momorphism of Theorem 2.2. As right invariant vector fields on G are infinitesimal affine
transformations, we have that gop, the opposite Lie algebra of g, can be considered as a Lie sub-
algebra of ac(L(G)). Therefore the restriction η′ = η/gop : gop −→ aff(Rn) is also a Lie algebra
homomorphism. Using Cartan’s and Lie’s third Theorems we get a Lie group homomorphism
ρ′ : Gop −→ Aff(Rn). Let π′ : Gop −→ Orb(0) be the orbital map. It is easy to verify that
π′∗,ε(Z) = θu(Z), hence by mimicking the proof of Lemma 2.5, we get that π′∗,ε(Z) is a linear
isomorphism, therefore ρ′ is étale. Hence 2. implies 3. is true.

Finally suppose 3., i.e., there exists an affine étale representation ρ′ : Gop −→ Aff(Rn,∇0)
with ρ′∗,ε = (θ,−ω+). Then it is easy to verify that the map λ : g −→ aff(Rn,∇0) defined by

λ = (θ, ω+) is a representation of g. By Lie’s third theorem, the map ρ : G −→ Aff(Rn,∇0)
with ρ∗,ε = λ is an affine étale representation of G. Therefore ω+ is a flat affine left invariant
connection on G. �

3. The associative envelope of the Lie algebra of a Lie group of flat affine
transformations

Given a flat affine manifold (M,∇) and a Lie subgroup H of the group Aff(M,∇), we show
the existence of a simply connected Lie group endowed with a flat affine bi-invariant connection
whose Lie algebra contains Lie(H) as a Lie subalgebra (see Theorem 3.3).

For this purpose we recall some known facts and introduce some notation. Let M be an
n dimensional manifold with a linear connection Γ and corresponding covariant derivative ∇,
consider the product

XY := ∇XY, for X, Y ∈ X(M). (10)

If the curvature tensor relative to ∇ is identically zero, this product verifies the condition

[X, Y ]Z = X(Y Z)− Y (XZ), for all X, Y, Z ∈ X(M).

If both torsion and curvature vanish identically we have

(XY )Z −X(Y Z) = (Y X)Z − Y (XZ), for all X, Y, Z ∈ X(M). (11)
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A vector space endowed with a bilinear product satisfying Equation (11) is called a left symmet-
ric algebra (see [Vin], see also [Kos]). These algebras are also called Kozsul-Vinberg algebras
or simply KV-algebras. The product given by [X, Y ]1 := XY − Y X defines a Lie bracket on
the space. Moreover, if ∇ is torsion free, this Lie bracket agrees with the usual Lie bracket of
X(M), that is

[X, Y ] = ∇XY −∇YX (12)

Recall that product (10) satisfies (fX)Y = f(XY ) and X(gY ) = X(g)Y + g(XY ), for all
f, g ∈ C∞(M,R), i.e., the product defined above is R-bilinear and C∞(M,R)-linear in the first
component.

In what follows, given an associative or a left symmetric algebra (A, ·), we will denote by A−
the Lie algebra of commutators of A, i.e., the Lie algebra with bracket given by

[a, b] = a · b− b · a.

To our knowledge, the next result seems to appear for the first time in J. Vey’s thesis (see [Vey],
see also [Yag]).

Lemma 3.1. Let (M,∇) be an n-dimensional flat affine manifold. Then Product (10) turns
the vector space a(M,∇) into an associative algebra, of dimension at most n2 + n, whose
commutator is the Lie bracket of vector fields on M . In particular, if (G,∇+) is a flat affine
Lie group of Lie algebra g, the space a(G,∇+)− contains gop as a Lie subalgebra, where gop is
the opposite Lie algebra of g.

Proof. Since ∇ is flat affine, it follows from (1) that a smooth vector field X is an infinitesimal
affine transformation if and only if

∇∇Y ZX = ∇Y∇ZX, (13)

for all Y, Z ∈ X(M). This equality implies that ∇XY ∈ a(M,∇), whenever X, Y ∈ a(M,∇)
and also gives that the product XY = ∇XY is associative. On the other hand, it follows from
Equation (12) that the commutator of this product agrees with the Lie bracket of a(M,∇).

In particular if M = G is a Lie group of Lie algebra g and ∇+ is left invariant and flat affine,
the real vector space g of right invariant vector fields on G is a subspace of aff(G,∇+). Hence
from (12) we get that gop is a Lie subalgebra of a(G,∇+)−. �

The following well known result will be used in what follows (see for instance [Med] or [BoMe]).

Proposition 3.2. Let G be a Lie group of Lie algebra g. The group G admits a flat affine
bi-invariant structure if and only if g is the underlying Lie algebra of an associative algebra so
that [a, b] = ab− ba, for all a, b ∈ g.

We have the following consequence of Lemma 3.1.

Theorem 3.3. Given a flat affine manifold (M,∇) and a Lie subgroup H of Aff(M,∇), there
exists a connected finite dimensional Lie group G endowed with a flat affine bi-invariant struc-
ture containing a connected Lie subgroup locally isomorphic to H.

Proof. From Lemma 3.1, the real vector space a(M,∇) is an associative algebra under the
product determined by∇. Let E be the subalgebra of the associative algebra a(M,∇) generated

by the vector subspace h =Lie(H) and Â = E ⊕ R1 the associative algebra obtained from E
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by adjoining a unit element 1. Consider U(Â) the group of units of Â, this is open and dense

in Â. Let
G :=

{
u ∈ U(Â) | u = 1 + a, with a ∈ E

}
and G = G0 the connected component of the unit of G. Then the Lie group G verifies the
conditions of the theorem (for more details see [BoMe]).

It is clear that h is a Lie subalgebra of E−. Consequently there exists a connected Lie
subgroup H ′ of G of Lie algebra h, hence the groups H and H ′ are locally isomorphic. �

Remark 3.1. In general aff(M,∇) is not a subalgebra of the associative algebra a(M,∇). This
fact is contrary to what some authors state. This can be observed in Examples 3.2 and 3.4.

The previous remark and Theorem 3.3 motivates the following.

Definition 3.1. If (M,∇) is a flat affine manifold and H is a Lie subgroup of Aff(M,∇), we
set

(a) The smallest subalgebra of the associative algebra a(M,∇) containing the vector space
h =Lie(H), denoted by env∇(h), will be called the associative envelope of h relative to
∇.

(b) Any Lie group of Lie algebra env∇(h) will be said an enveloping Lie group of H.

That any enveloping Lie group is endowed with a flat affine bi-invariant connection deter-
mined by ∇ follows from Proposition 3.2.

Corollary 3.4. Given a flat affine Lie group (G,∇+) of Lie algebra g, there exists a finite
dimensional associative algebra A containing g so that g is a Lie subalgebra of A−.

Proof. As gop is a subalgebra of the associative algebra a(G,∇+), there exists a Lie subgroup
H of Aff(G,∇+) of Lie algebra gop. By taking A =env∇(h)op, the opposite algebra of env∇+(h),
we get an an associative algebra satisfying the statement. �

Definition 3.2. The algebra of the previous corollary, denoted by env∇+(g), will be called the
associative envelope algebra of the left symmetric algebra g.

Remark 3.2. Although the elements of the associative envelope env∇+(g) of the left symmetric
algebra g =Lie(G) are differential operators of order less than or equal to 1 on G, the associative
envelope is not a subalgebra of the universal enveloping algebra of g.

Example 3.1. Let M = R2 \ {(0, 0)} and ∇ be the connection on M induced by the connec-
tion ∇0. That G = Aff(M,∇)0 is an enveloping Lie group of itself results from the following
observations. It can be verified that a linear basis for the real space aff(M,∇) is given by(
x
∂

∂x
, y

∂

∂x
, x

∂

∂y
, y

∂

∂y

)
. Also, this space is a subalgebra of the associative algebra a(M,∇).

As a consequence G = Aff(M,∇) is endowed with a flat affine bi-invariant connection deter-
mined by ∇.

Example 3.2. Let ∇+ be the flat affine left invariant connection on G = Aff(R) defined by

∇+

e+1
e+1 = 2e+1 , ∇+

e+1
e+2 = e+2 , ∇+

e+2
e+1 = 0, and ∇+

e+2
e+2 = e+1 . (14)

A direct calculation shows that a linear basis of a(G,∇+) is given by the following vector fields

e−1 = x
∂

∂x
+ y

∂

∂y
, e−2 =

∂

∂y
, C3 =

1

x

∂

∂x
, C4 =

y

x

∂

∂x
, C5 =

(
x+

y2

x

)
∂

∂x
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and C6 =

(
−xy − y3

x

)
∂

∂x
+ (x2 + y2)

∂

∂y
,

where e−1 and e−2 denote the right invariant vector fields. As the connection is left invariant,
the vector fields e−1 and e−2 are complete. Moreover, it can be checked that no real linear com-
bination of the fields C3, C4, C5 and C6 is complete. Consequently (e−1 , e

−
2 ) is a linear basis of

aff(G,∇+) = gop.
On the other hand, the multiplication table of the product defined by ∇+, i.e., the product

XY = ∇+
XY , on the basis of a(G,∇+) displayed above is given by

e−1 e−2 C3 C4 C5 C6

e−1 e−1 + C5 C4 0 C4 2C5 2C6

e−2 e−2 + C4 C3 0 C3 2C4 2e−1 − 2C5

C3 2C3 0 0 0 2C3 2e−2 − 2C4

C4 2C4 0 0 0 2C4 2e−1 − 2C5

C5 2C5 0 0 0 2C5 2C6

C6 C6 C5 0 C5 0 0

(15)

It follows from Table 15 that the real associative subalgebra of a(G,∇+) generated by {e−1 , e−2 }
has linear basis β = (e−1 , e

−
2 , C3, C4, C5). That is, env∇+(g) is the real 5-dimensional associative

algebra with linear basis β and the opposite product of Table (15).
The animation below shows the lines of flow of each of the vector fields e−1 , e

−
2 , C3, C4, C5 and

C6 with the initial condition (1.5,−1). The fact that the flows of the vector fields C3, C4, C5

and C6 cross the boundary of the orbit of (0, 0) determined by the affine étale representation
relative to ∇, correspond to the fact that the vector fields are not complete in G0. (To play the
animation click on the image on the pdf version, only accessible from the online version).

Remark 3.3. The reader can verify that the simply connected Lie group of Lie algebra env∇+(g)−
of the previous example is isomorphic to the group E := (R2oθ1 R)oθ2G, where G = Aff(R)0 is
the connected component of the unit of Aff(R) and the actions θ1 and θ2 are respectively given
by

θ1(t)(x, y) = (e2tx, e2ty) and θ2(x, y)(z1, z2, z3) =
(
x2z1 − xyz2 + y2z3, xz2 − 2yz3, z3

)
The Lie group E is also isomorphic to the semidirect product H3oρR2 of the additive group R2

acting on the 3-dimensional Heisenberg group where ρ is given by

ρ(a, b)(x, y, z) =
(
eax, e2a+2by, ea(e2b − 1)x+ ea+2bz

)
. (16)
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At this point we have some questions for which we do not have an answer.
Questions.

1. To determine a transformation group E of diffeomorphisms of P = L(M) so that
Lie(E) = env∇(aff(M,∇)) in the case when dim(env∇(aff(M,∇))) < n2 + n.

2. Is it possible to realize an enveloping Lie group of a flat affine Lie group (G,∇+) as a
group of transformations of L(G) (eventually as a subgroup of the Lie group K)?

If ac(P ) = a(P, ω) the answer to the first question is positive. When dim(Env(ac(P ))) < n2+n,
the method described on Theorem 3.3 could give an answer to these questions.

The following example describes the generic case of flat affine connections on Aff(R).

Example 3.3. Consider the family of left symmetric products on g = aff(R) given by

· e1 e2
e1 αe1 e2
e2 0 0

where α 6= 0 and denote by ∇+
α the corresponding left invariant flat affine connection on

Aff(R)0 =: G. A calculation shows that aff(G,∇+
α ) is generated by the vector fields

C1 = x
∂

∂x
+ y

∂

∂y
, C2 =

∂

∂y
, C3 = y

∂

∂y
, and C4 =

1

α
(xα − 1)

∂

∂y
.

The product defined as in Equation 10 gives

C1 C2 C3 C4

C1 αC1 − (α− 1)C3 0 C3 αC4 + C2

C2 C2 0 C2 0
C3 C3 0 C3 0
C4 C4 0 C4 0

Hence env∇+
α

(aff(G,∇+
α )) = aff(G,∇+

α ). Now, for α 6= 1, the associative envelope of the left
symmetric algebra (g, ·) is 3-dimensional with basis (C1, C2, C3). Whereas, for α = 1, the
associative envelope of (g, ·) is two dimensional with linear basis (C1, C2).

Furthermore, using Theorem 3.3, an enveloping Lie group of Aff(G,∇+
α ) is given by

G′ =


1 + β1 β2 0

0 1 + β3 0
β1/α β2/α + β4 1

∣∣∣∣ β1 6= −1 and β3 6= −1

 .

We finish the section with a more general example.

Example 3.4. Let G = GLn(R) endowed with the flat affine bi-invariant connection D de-
termined by composition of linear endomorphisms. Given the local coordinates [xij] with i, j =
1, . . . , n, it is easy to check that linear bases of left and right invariant vector fields are given by

E+
rs =

n∑
i=1

xir
∂

∂xis
and E−rs =

n∑
i=1

xsi
∂

∂xri
,

with r, s = 1, . . . , n. The group Aff(G,D) is of dimension 2n2− 1 ([BoMe]) and the Lie bracket
of its Lie algebra is the bracket of vector fields on G. Using the product determined by D on
left and right invariant vector fields one gets

DE+
pq
E−rs = xsp

∂

∂xrq
, for all p, q, r, s = 1, . . . , n.
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It follows that an enveloping Lie group of Aff(G,D) is locally isomorphic to GLn2(R).

The following remark describes an algorithm to compute the associative envelope of a finite
dimensional left symmetric algebra.

Remark 3.4. Given a finite dimensional real or complex left symmetric algebra A, do as
follows.

Find, applying Lie’s third theorem, the connected and simply connected Lie group G(A) of
Lie algebra A− of commutators of A. This group is endowed with a flat affine left invariant
connection ∇+ determined by the product on A.

Compute the associative subalgebra B of a(G(A),∇+) generated by the subspace of right in-
variant vector fields.

The associative envelope env∇+(A) of A is Bop.

To finish the section, let us pose the following interesting problem.

Open Problem. To find an algebraic method to determine the associative envelope, in the
sense of the Definition 3.2, of a real or complex finite dimensional left symmetric algebra.

4. Affine Transformation Groups endowed with a flat Affine bi-invariant
structure

To finish, let us present some general cases of flat affine manifolds giving a positive answer
to Question 1.1.

Proposition 4.1. If (M,∇) is a complete flat affine manifold, then Aff(M,∇) has a flat affine
bi-invariant connection determined by ∇.

Proof. It follows from the fact that the completeness of ∇ implies that a(M,∇) = aff(M,∇)
(see [KoNo] page 234). �

Corollary 4.2. Let (M,∇) be a connected and simply connected flat affine manifold. If
dim Affx(M,∇) ≥ n2 for some x ∈ M, then the group Aff(M,∇) is endowed with a flat affine
bi-invariant structure determined by ∇.

Proof. The result follows by recalling that the only obstruction to the completeness of ∇ is the
existence of a point x ∈M so that dim Affx(M) < n2 (see [BoMe] and [Tse]). �

Corollary 4.3. Let (G,∇+) be a flat afffine Lie group, then the group Aff(G,∇+) admits a flat
affine bi-invariant connection if any of the following conditions hold

(1) (G,ω+) is a unimodular symplectic Lie group and ∇+ is the flat affine connection nat-
urally determined by ω+.

(2) G is unimodular and ∇+ is the Levi-Civita connection of a flat pseudo-Riemannian
metric.

Proof. Cases (1) and (2) imply that the connection is complete (see [LiMe] and [AuMe], respec-
tively). �

The following result is due to [Vey], we present a different proof .

Proposition 4.4. Let (M,∇) be a compact flat affine manifold, then the Lie group Aff(M,∇)
is endowed with a flat affine bi-invariant connection determined by ∇.



FLAT AFFINE MANIFOLDS AND THEIR TRANSFORMATIONS 15

Proof. As M is a compact manifold every vector field on M is complete, in particular every
infinitesimal affine transformation of (M,∇) is complete, hence aff(M,∇) = a(M,∇). The
conclusion follows from Lemma 3.1. �

Corollary 4.5. Let (G,∇+) be a flat affine Lie group, D a discrete cocompact subgroup of G
and ∇ the connection naturally induced by ∇+ on M = D\G. Then the group Aff(M,∇) has a
flat affine bi-invariant structure determined by ∇.

Notice that the converse of Proposition 4.1 is not true. A counterexample is given by the
Hopf torus that admits a flat affine connection determined by the usual connection on the
punctured plane (see [NaYa] p 200, see also [Ben]), and therefore non-complete, but its group
of affine transformations is locally isomorphic to GL2(R) (see [NaYa]).

Corollary 4.6. The group of isometries I(M, g) of a compact flat Riemannian manifold (M, g),
admits a flat affine bi-invariant structure determined by the Levi-Civita connection.

Proof. The hypothesis imply that I(M, g)0 = Aff(M,∇)0 (see [Yan] and [KoNo] page 244). �

Corollary 4.7. If M is compact and ∇ is the Levi-Civita connection of a flat Lorentzian metric,
the group of Aff(M,∇) admits a flat affine bi-invariant connection.

Proof. Under these assumptions, the flat manifold is geodesically complete (see [Car]). �
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