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A rescaled elliptic relaxation approach: Neutralizing the effect
on the log layer

R. Manceau?®
Laboratoire d Etudes Aérodynamiques, UMR CNRS 6609, universite de Poitiers, SP2MI, Teleport 2,
Bd Marie et Pierre Curie, BP 30179, 86962 Futuroscope Chasseneuil, France

J. R. Carlson and T. B. Gatski
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An alternative scaling for the relaxation function describing the velocity pressure—gradient
correlation used in the elliptic relaxation procedure for both eddy-viscosity and Reynolds stress
models is presented. While other alternatives have been proposed to neutralize the adverse effect on
log-layer dynamics, they have relied on altering the original differential formulation. A simpler
alternative is presented here that involves a rescaling of the relaxation function with the isotropic
dissipation rate as well as the turbulent kinetic energy. Various comparative tests are made and the
new rescaled formulation is shown to provide improved and accurate predictions for both the
eddy-viscosity and Reynolds stress models. 2@2 American Institute of Physics.
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I. INTRODUCTION evaluated using results for both mean and turbulent quanti-

. _ o . ties. In order to further validate the new formulation, the
Recent studiés utiizing the elliptic relaxation ap- rescaledv?—f model is applied to the case of turbulent

proach, proposed by Durbifi for accurate near-wall eddy- 1 \n4ary Jayer flow. Comparisons with DR&nd experi-
viscosity and Reynoldg stress modehr_lg have s.hown.that, d6hental dat¥ of skin-friction variation with Reynolds num-
spite the overall benefit, the formulation negatively impacts,o. 2nd mean velocity predictions further highlight the ben-

‘ot 5
the log-layer predictions of such models. Mances@l.”  ofits of the rescaled elliptic relaxation formulation.
have shown from a DNS database analysis that the cause can

be attributed to the isotropy assumption for the two-point
correlation function used in the derivation of the elliptic re-
laxation equation. Modifying the model to better replicate“' ORIGINAL AND RESCALED ELLIPTIC RELAXATION
. . FORMULATIONS

the underlying physics has led to alternate forms for the el-
liptic relaxation equation that neutralize the impact on the |t s useful at the outset to outline the methodology used
logarithmic layer. However, these new formulations involvein the previous elliptic relaxation formulations. Initiaflhe
additional differential operators, which, when coupled with aelliptic relaxation equation had been written as
full Reynolds stress formulation, may affect the computa- S h
tional robustness of the system in more complex flow fields. fij— LoV =1ij, @

An alternative, isotropic rescaling of the tensor functionwherefij was defined by
representing the redistribution term in the turbulent Reynolds

stress equations is proposed. The rescaling now involves the __:i —u-@—u~ﬂ—s~+s* _ £[¢--—s--+g-*-]
isotropic dissipation rate as well as the turbulent kinetic en- ' K oxp laxg YO TH ) KBTS T
ergy that has been used in all previous elliptic relaxation (2

formulations. While the inclusion of the isotropic dissipation gnq

rate in the scaling has little or no impact on the redistribution

in the near-wall region, it is found to remove its amplifica- h_1 _
tion in the log-layer region when only the turbulent kinetic K 3

energy is used in th_e scaling. . : .with si’] the anisotropic form of the dissipation rate in the
Several comparisons are made with both direct numeri

| simulati t ch | fidvat val ¢ fric loci vicinity of the wall, and Il;; a high-Reynolds number
cal simulations of channe tvalues ot friction velocity pressure—strain rate correlation model. Differ@ngh Rey-
Reynolds number Rg =u_h/v, u, friction velocity, andh

: . ~nolds number pressure—strain rate models can be used. For
channel half-width ranging from 180 to 590, and experi-

| dath® at Re—1017. For th h 1 both th example, Wizmaret al.! compared the results in a channel
mental data” at Re= - For these channel flows both the ¢, using three different models fddl;;: Launder, Reece,

v2—f and Reynolds stress elliptic relaxation approaches arg, 4 rodit! Craft and Laundel and Speziale, Sarkar, and
Gatski™ (SSG. They have shown that sineeand (any) I1;;
dElectronic mail: remi.manceau@lea.univ-poitiers.fr model behave ag ™! along withK constant in the logarith-

85”"‘8:]- y
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FIG. 1. A comparison of mean velocity profiles fram—f models with DNS(Ref. 6 and experimental datdefs. 7, 8 in channel flow.

mic layer, the solution of Eq.l) is fij=1“fihj wherel is the  stanj, overweighting the regiog’ <y leads to overestimat-
amplification factor, withI'=1.51. Manceauet al.> have ing ¢;; (this is the negative impact of the elliptic relaxation
summarized the size of this amplification factor for differentstrategy quoted aboye
formulations of the elliptic relaxation equation. Different formulations of the elliptic relaxation equation
As shown by Manceatf Eq. (1) is a consequence of the were proposed by Wizmast al.,' Laurence and Durbif,
modeling of ¥;;(x,x"), the two-point correlation between and Manceatet al.’ in order to avoid this undesired effect.
the fluctuating velocity and the Laplacian of the pressureAll of these alternatives were based on modifying the elliptic
gradient. Indeedy';;(x,x’) appears in the integral equation operator (- L2v2) and have an amplification factor close to
of ¢j: or less than unity.In this study, two representative formula-
tions are selected for comparison with the new rescaled for-

B Wii(x,x") ) mulation proposed here. These are the Wizmtaad.! neutral
=~ Lzéh-rlx—’—xdv(x )- ) (I'=1) proposal,
__¢h
If W,;(x,x’) is modeled by fij— V(L2 =17, (6)
5
V(X)X X)) F( r) : and the Manceast al.” proposal,
K(x) — K(x) L ® [1+168(VL)2]f;j— L2V —8BLVL-Vf;=fl, (7)

(where the scaling b is needed for preserving the correct which is based on an anisotropic correlation function, and
limiting behavior of¢;; in the near-wall regiop Eq.(4) can ~ wherel is a function of 8.5 This functional dependence in
be inverted to give Eq(l). However, Manceauetal.® the Manceatet al.> model allows the adaptation & to the
showed that using an isotropic exponential correlation funcmodel used fodl;;. For a model that overestimates the re-
tion leads to overweighting the points in the region be- distribution in the log layer, such as the Launder, Reece, and
tween the current poink and the wall in Eq.(4). Since  Rodi't model used here for the’?—f formulation,I'<1 is
Wi;(x’,x") decreases like §/ in the log layer(K being con-  preferable; however, for a model that gives a correct level of
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FIG. 2. Acomparison of the2* turbulent normal stress component from— f models with DNS(Ref. 6 and experimental dai@&efs. 7, 8 in channel flow.

redistribution in the log layer, such as the S8@odel used fects the behavior of the elliptic relaxation equation in the
here for the Reynolds stress formulatidh=1 can be cho- logarithmic layer, so thatij:fihj (I'=1). Equationg2) and
sen. In this studyB=0.12 is used for the®—f formulation,  (3) are now rewritten as
leading tol'=0.7, andB= 35 for the Reynolds stress formu-
lation, leading tol"=1. f--:i[¢--—s--+s-*-] @)
In contrast to earlier alternative formulations, the new " eK="" “1 7l
formulation presented here is not based on the modification
of the elliptic operator, but on a modified scaling in ES).
In addition to the usual scaling by the turbulent kinetic en- 1 2
ergy K, the two-point correlation function is now also scaled fihj =K ( IL;;— §séij +si*j
by the isotropic dissipation rate In the log layer, the Rey- €
nolds stresses and turbulent anisotropies are assumed c@@spectively. Note that, similar to the original formulation,
stant ande (=7) is O(y *). As pointed out by Wizman o avoid the occurrence of a singularity of the equation at
etal.' the redistribution term is als@(y ') and the new  the wall,K is bounded by: Ty, whereTy is the Kolmogorov
scalingsK negates thg~* behavior such thatjj~constin  time scale. Since in the vicinity of the walltakes a nonzero
the log layer. value, the originalsingle scaling withK) limiting behavior
The dissipation rate scaling suppresses the effect of thg f;; is retained as soon as the wall boundary conditions for
overweighting due to the isotropy of the exponential functionthe different components df; are rescaled, that is
since W;;(x’,x")/K(x")e(x") is constant in the log layer, o o
and giving more weight to one side and less to the other has ~_ ~ 20v%? = 200%uv
no consequence. Although introducirginto Eq. (5) can fzzz_sziyzm f12:_827y41
appear rather arbitrary, it is worth noting thais a natural (10)
scale forg;; and, accordingly, fo;; . Therefore, the expo- W ew .
nential shape assumption for the correlation function is at 11~ f3g=— 2 122
least as justified with the new scaling as with the former one.
The addition of the dissipation rate scaling directly af-wherey is the distance normal to the wall.

C)
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FIG. 3. A comparison of turbulent kinetic energy profiles frof- f models with DNS(Ref. 6 and experimental datd&efs. 7, 8 in channel flow.

Note that Durbin and Laurent&proposed a similar res- length scald. used in the normalization df; reverts to the
caling, f;;=L ¢;;/K. SinceL behaves ag in the logarithmic  Kolmogorov length scale in the near-wall region. From a
layer, this rescaling also neutralizes the effect of the ellipticcomputational standpoint, such changes in scaling definitions
operator in this region. However, since the turbulent lengtican be problematic if not done with care; otherwise, discon-
scale K%Y goes to zero at the wall, this formulation tinuities can be introduced that can be further amplified when
changes the near-wall behavior of the model, unless then any differentiation process. Such problems do not arise

when the rescaling byK is used.
The v?—f modePf is the reduction of the elliptic relax-

7 . . T T T T
--== Durbin”’
B . T 53 — T T T T T —T T T
+=+= Wizman ef al.1
6 ° ——— Manceau et al.” 6L |
Present -~
o
o r b 4.0+ —
—
"
s I “© 35 -
—
g DNS
i 1 O 30 . 10 1
@ Experiment
AR 4 a6k —m Standa.rd‘W -f _
——=— Original v - f
. | . ! . ! . | s 238 Rescaled v - f .
0 3 1o 5 15 20 L Karman-Schoenherr
ReCXIO ol 4] . . M |
: 1 10
FIG. 4. Variation of a skin friction coefficient over Reynolds number range Re,x 10

for v2—f models in channel flowO, Re.=3260 (Re=180); O, Re,
=7897 (Re=395); A, Re=12485 (Re=590); ¢, Re=22776 (Re
=1017).

FIG. 5. Skin frictign coefficient variation with a momentum thickness Rey-
nolds number fow?— f models(log—log scalgin boundary-layer flow.



3872

30 —

Phys. Fluids, Vol. 14, No. 11, November 2002

251

20+

S 15|

10

* DNS'
c=:= Standard v* - f

=== Original v - f
Rescaled v* - f

100 1000

Manceau, Carlson, and Gatski

35 T

0l Re,=13052
25—
20—

15—

-—-— Standard ¥’ - f
5 gt — Original?i—f
Rt Rescaled v’ - f
PN el TN I
1 10 100 1000 10000

+

y

FIG. 6. A comparison of mean velocity profiles framd— f models with DNS(Ref. 9 and experimental datdref. 10 in boundary-layer flow.

ation procedure to three transport equations. The Reynolds in (11) accounts for the blocking effect of the wall on
stresses are obtained from the Boussinesq equation, withtarbulence diffusion without using empirical damping func-

modified eddy viscosity,

v;=C,v°T,

(11)

tions. A transport equation is solved fof, directly taken
from the full Reynolds stress model. Hewé is considered
an energy scale generalizing the wall-normal Reynolds
stress component everywhere in the domain—a hypothesis

whereT is K/& but bounded near the wall by the Kolmog- that has proved successful in many floWs'® In addition,
orov time scale\v/e. The use ob? instead of the standard the anisotropic form of the dissipation rate tensfyris taken
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in channel flow.

proportional to the isotropic dissipation rate usirzgj In addition to extending the channel flow assessments to
=(uju;/K)e. The complete set of equations solved for thehigher values of Rg a further validation of this new rescal-
v?—f model, as well as for the full Reynolds stress model,ing is provided by a comparative assessment of predictions
are given in the Appendix. Some results from both tife  from previousv?— f formulations and the present model in
—f and Reynolds stress forms of the elliptic relaxation pro-flat plate turbulent boundary layer flow. These results are
cedure compared to both DNS and experimental data wilfurther compared to direct numerical simulation désae

show the improved effect of the new scaling approach.  Spalart 1988 as well as experimental datd.
The channel flow computations are performed with a

11l. RESULTS simple finite difference one-dimension@tD) code in which

) ) . the governing equations are normalizedtbgndu ., so that
Direct simulations of fully developed turbulent channel Re, can be imposed. The flat plate boundary layer is solved
flow have now become sufficiently complete that such a ﬂo""using a finite volume code on a 2-D grid consisting of 440
field can be extensively utilized to compare near-wall closure, 10 cells in the streamwise and wall—normal directions,

models. There is currently available a consistent set of dire%spectively. The DNS datat Re,=300 are used as inflow
simulation data at Re-180, 395, and 590(see Moser  gnditions.

et al.®), as well as some experimental resultsg., Wei and

Willmarth”® at Re=1017), that can be used for assessing __

the performance of this new elliptic relaxation scaling. TheA- v:—f model

eight elliptic relaxation modelsv€— f and Reynolds stress Figure 1 shows the mean velocity predictions using dif-
model, four formulations eaglare calibrated in order to re- ferent forms of the elliptic relaxation model developed pre-
produce as well as possible the four cases from. Reviously and the present rescaled model compared to DNS
=180-1017, while keeping the usual coefficients {, (Re,=180,395,590) and experimental (ReL017) results in
C.», etc) as close as possible to their standard values in freehannel flow. The present model as well as the Wizman
shear flows, in order to avoid spoiling the predictions in suchet al.! and Manceauet al.> models clearly improve the log-
flows. The results presented in the following section are thusayer predictions of the Durbin modeat all the Reynolds
the best compromise obtainable for each model. numbers. However, the present rescaled model exhibits a
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FIG. 9. A comparison of the2* turbulent normal stress component from Reynolds stress models with(R&IS6 and experimental datdefs. 7, 8 in
channel flow.

better sensitivity to reducing the Reynolds number to lowsure thew (spanwis¢ Reynolds stress component. Thus, no

values: in particular, the mean velocity profile at,R&80 is  kinetic energy data are availabe.

much better predicted than with the other models. It must be  Both the mean and turbulent quantities shown suggest
emphasized that this sensitivity is obtained without introducthat the current, rescaled elliptic relaxation procedure can
ing any new low-Reynolds number modification in the accurately replicate the flow field over a Reynolds number

model. P o range. This is further substantiated by examining the skin
The corresponding“ profiles are shown in Fig. 2. Once friction variation over the range of Restudied. Figure 4
again the present model better predicts the entiredistri-  shows the variation o€; (=2u?/U2, U, centerline veloc-

bution (including the peakcompared to the Wizmaet al., ) with Re, (=U_h/») using the different elliptic relax-
Manceauet al., and Durbin models over the entire Reynolds 4o, formulations. All the modified formulations better pre-

number.range. examined. In the inner layer, all the .mOQ'f'Eddict the C; variations relative to the original Durbin model.
models(including the present modeslightly overpredict, in The present rescaled formulation tends to predict b&ter

general, both the DNS and experimental data; however, th
- 3 . . . evels at the lower Reynolds numbers, but as the value gf Re
original model (Durbin®) underpredicts the data in this re- . -
increases all the modified models tend to the same levels.

gion. In the central region of the flow, a major improvement .
is obtained with the present model, compared to all the othe_’?IOte that even thoughil; appears in boti¢ and Re (andu,

models, in particular, at the lowest Reynolds number. For thé&® fixed for each cagethe Cy evolution does not depend on

turbulent kinetic energy predictions shown in Fig. 3, all the!n® computational approach. For example, by imposing the
modified models now underpredict tH®NS) data in the centerline velocity(i.e., Rg) and evaluating the _Wal.l shear
inner region, whereas the original model overpredicts thtress from the resultexactly the sameC behavior is ob-
data and, in particular, the peak of kinetic energy. In additiontained. o

the present, rescaled model better predicts the simulation While the results shown here for thé—f model sup-
data than the other modified models in the log laysiote  port the analysis of the previous section, which showed that
that for the experimental data, the measurements were olthe new scaling neutralizes the adverse effect in the log layer,
tained from a two-component LDA system that did not mea-the present model was also found to give improved overall
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channel flow.

in

.1 (this version is now widely used and is described of the
prpendix; it is the version used for the computations of the
channel flow in the present studyAs Fig. 5 shows, the
standard version does not reproduce the variation of the fric-

parisons, the rescaled model displayed the proper Reynolé n cqefﬁment w!th Reynolds number very weII.. In contrast,
number dependency over a range of Reynolds numbers. THae original version reproduces the trend at high Reynolds
same trend can also be seen in Fig. 5, wheretheredic- number very well, but nqt at low Reynglds number. Only the
tions as a function of momentum thickness Reynolds numbdpresent rescaled model is able to predict the correct evolution
Re, are compared with both the DRSind experimentd ~ Over the whole range of Reynqlds numbers examined, (Re
data. The rescaled®—f model closely predicts the lower ranges from 670 to 13052, which corresponds tg fem

Re, DNS data and is asymptotically consistent with the5200 to 120000, wheré is the boundary layer thickness,
higher Rg experimental data. In addition, the behavior is@nd, in wall units, to Rg. from 250 to 4100

qualitatively similar to the result obtained from the von  The boundary-layer mean velocity profiles at,R€670

Karman—Schoenherr correlation given here in the fftm ~ and 13052 are shown in Fig. 6. These two Reynolds num-
bers delimit the range covered by the DNS and experimental

i =17.08log Re))2+25.1%log Re;) + 6.012. (12) data. At Rg=670, the current rescaled model gives the better

Cs overall prediction of the mean velocity profiles compared to
Figure 5 also shows significant discrepancies between twthe other two versions. At Re13052, all the predictions
previous forms of the?—f model. The originabz—f ver- deteriorate relative to the lower Reynolds number. The re-
sion in the figure was used by DurBinto compute the scaled model continues to outperform the standard version,
boundary layer and uses the production-to-dissipatiobut the predictions of the original model have improved and
rate ratioP/e in the variable coefficienC,;. The stand- are as accurate as those of the rescaled model.

predictions across the channel relative to not only the Durbirard v2—f version in Fig. 5 was introduced by Parneix,
model but the other modifit_ad models. Before proceedinqjurbm’ and Behni{ and replacesP/s by ‘/K/F
onto a channel flow analysis of a Reynolds stress mod
based on the rescaled elliptic relaxation formulation, it is o
interest to examine the performance of the rescaled f
model in a flat plate turbulent boundary layer flow.

As was shown in Fig. 4 for the channel flo@ com-
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B. Reynolds stress model Figure 7 shows the mean velocity profiles computed us-

The elliptic relaxation form of the Reynolds stress modelmg th? four differe_nt elliptic relaxation procedures. The thr_ee

has not received as much attention and validation a® fhe rr?od.med. formulations are able to prgdlct the correct velocity
distributions across the channel with the Mancesial .2

—f form. Nevertheless, it is of interest to examine the e1‘fectf rm providing the best predictions on balan ; th
of this isotropic rescaling on a closure model that best deor™M Pro g the best predictions on balance across the

scribes the anisotropies of the turbulence. Reynolds number range. Similar to .th’é._f results Ju_s_t
presented, the new rescaled formulation is more sensitive to
the reduction of Reynolds number; although Fig. 7 shows

7 ' | ' ' ' | ' that for the case Re=180, the formulations of Wizmaet al.

| b —e—— Durbin* | and Manceauwt al. also give good predictions.
\'\'.\\\ e Wigman ef al The distribution of the normal stress components are
sk o \';\‘.\. ——— Manceaueral’ shown in Figs. 8—10. For the* componentFig. 8), all the

Y — Present profiles are well predicted in the log layer; although only the
] Wizman et al. and Manceatet al. formulations are able to
reproduce the peak value of. Thev? normal stress distri-
butions are shown in Fig. 9. Overall, the agreement is not as
i good as theu? component, particularly in the outer layer
regions as the centerline is approached. It also appears that
B the formulations of Wizmaret al. and Mancealet al. are
more accurate in the near-wall region*(<30) for all the

0 5 10 Ls 20 25 Reynolds numbers, while the present rescaled model gives

Re_x 10° better results in the center of the channel at low Reynolds

FIG. 12. The variation of the skin friction coefficient over the Reynolds number. very similar conclusions can be drawn for pro-
number range for Reynolds stress models in channel f(waec=32)f/30 files shown in Fig. 10, except thaﬂhe orlglnal formulation

(Re=180): 0, Re.=7897 (Re=395); A, Re=12 485 (Re=590); ¢, predicts a betterthighep peak of w? for the cases Re
Re.=22 776 (Re=1017). =395. [Recall that for the experimental data, the(span-
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TABLE I. Elliptic relaxation operator and coefficients used for the different formulations obThef model.

Model Lf C.  Ce C, o, oy C. c, Cr A C, C,

Durbin (Ref. 17 f—L2v2f 1.4 1.9 022 13 1 0.25 85 6 0.045 1.4 045

Wizmanet al. (Ref. 1) f—V2(L2f) 144 191 022 13 1 0.35 65 6 0.05 1.8 0.6

Manceauet al. (Ref. 5 [1+168(VL)2]f 144 191 022 13 1 0.275 85 6 0.045 1.8 0.6
—L2V?f—8BLVL.-Vf

Present f—L2v?f 144 191  0.22 1.3 1 0.38 85 6 0.045 1.8 0.6

wise) Reynolds stress component was not measlired. nificantly better prediction of th€; number variations, par-

For fully developed channel flow, the turbulent shearticularly when compared to the original formulation of
stress is the only Reynolds stress component that directipurbin?
affects the streamwise momentum equation. As Fig. 11  The boundary layer comparisons revealed that previous
shows, all the modified models are able to closely predict theersions”2* of the v2—f model were not able to as accu-
behavior of the shear stress through the buffer layer over theately compute such flows as the new rescaled model. Both
range of Recovered by the DNS data, whereas the originalskin friction variation over a broad range of Reynolds num-
model overpredictsiv for y*<20. The experimental data, bers and corresponding mean velocity profiles at the low and
however, are not well reproduced by any of the models ovehigh Reynolds number limits examined quantified the differ-
the range ofy™ values shown. For larger values pf (not  ences between models. This analysis also led to the conclu-
shown) the predictions are in very good agreement with bothsion that the original versiéh is more accurate in the
the DNS and experimental data. boundary-layer predictions than the current standard

Finally, as was shown with the’— f results for the skin model*’
friction coefficient, the elliptic relaxation procedure correctly ~ The proposed dissipation rate modification is a simple
sensitizes the predictions to Reynolds number variations oveand efficient way to suppress a major negative side effect of
the range studied. This also holds for the Reynolds streste original model in the log layer. It is based on the intuitive
models, as shown in Fig. 12. The figure shows that all théwypothesis that the natural scaling &ynust be introduced in
models correctly predict the qualitative Reynolds numbeithe process, contrary to the Manceettal.® model that is
variation, and that the present, rescaled model more closelyased on a refinement of the shape assumption for the two-
replicates the quantitative variation. point correlations involved in the redistribution term under

its integral form.
__The simplicity of the modification to the original models

IV. CONCLUSIONS (v2—f and Reynolds stress mogletompared to the gain in

. accuracy in the log-layer profiles and the friction coefficient,
The examples discussed here have shown that thé . S
e . S : makes the new proposal attractive. Indeed, considering the
present, rescaled elliptic relaxation formulation is a Vlablesuccesses achieved previously usina onlv the original turbu-
alternative to previous modified elliptic relaxation formula- lent kinetic ener ch“n theyresultg reﬁented r?ere 4o Sua-
tions that can be used successfully in accurately predictin 9y 9, P 9

both the near-wall and log-layer dynamics in both channeges’t that extensions to more complex flows will also yield

flows and boundary layers. Based on the channel flow Com|_mproved overall predictions in the near-wall region for both

parisons at the four Reynolds numbers (RE80, 395, 590, mean and t_urbulent quantitie;. Such more complex flows will
. : . be the subject of future studies.

and 1017 analyzed, the important point emerging from the

results is the improvement of the predictions in the center of o

the channel due to the rescaling i instead ofK alone, as APPENDIX: RESCALED v?—f AND REYNOLDS

well as the comparable performance to the oftmeodified = STRESS MODELS

models over the remainder of the channel. The better sensi—_ Vi—f

tivity to the Reynolds number reduction also observed is o

probably a consequence of this improvement, insofar as, at Thev?—f model consists of the transport equations for

low Reynolds number, a coupling between the near-wall anthe turbulent kinetic energy, the isotropic dissipation rate,

outer layer regions of the flow appears. This leads to a sigand thev? (= 7,,) normal stress component,

TABLE IlI. Coefficients used for the different formulations of the RSM model. For the form of the elliptic relaxation op£ragee Table I.

Model Ca C, C, o, o« C C, C A C C C C; C& C Cs

Durbin (Ref. 4 135 183 0.26 1.4 1 0.16 80 6 0.1 3.4 1.8 4.2 0.8 1.3 1.25 0.4
Wizmanet al. (Ref. 1) 135 183 0.26 1.4 1 0.29 80 6 0.1 3.4 18 4.2 0.8 13 1.25 0.4
Manceauet al. (Ref. 5 135 183 0.26 1.4 1 0.28 80 6 0.1 3.4 1.8 4.2 0.8 13 1.25 0.4
Present 135 183 0.26 1.4 1 0.23 80 6 0.12 3.4 1.8 4.2 0.8 115 1.25 0.4
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wherev;=C,v°T. An elliptic relaxation equation is solved T to avoid a singularity at the wall. This yields

for the functionf that models the redistributive effect in the
v? equation, and is identical to the equation satisfied by the Lfij=— (C1—2)i+C*£ bij+C2idE\(bikbkj)
wall normal component,, of the full Reynolds stress model eT K eT

in a channel flow, S
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replacings/K by 1/T to avoid a singularity at the wall, leads yith
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These equations are then solved subject to the boundary con- f11="Ta3=— 2 f22, (A15)

ditions at the solid boundary, where the subscrifil) denotes the value at the first interior

20Ky — 20”2?(1) computational grid point away from the wall.
K=0, e=—5—, 0v?=0, f=——7—, (A8) As with the v2—f model, the form of the operatof
Y &Y depends on the choice of either the DurbWjzmanet al.,*
where the subscripl) denotes the value at the first interior Manceauet al.? or present formulationgsee Table )L The
computational grid point away from the wall. coefficients used with the different elliptic relaxation formu-
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