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An alternative scaling for the relaxation function describing the velocity pressure–gradient
correlation used in the elliptic relaxation procedure for both eddy-viscosity and Reynolds stress
models is presented. While other alternatives have been proposed to neutralize the adverse effect on
log-layer dynamics, they have relied on altering the original differential formulation. A simpler
alternative is presented here that involves a rescaling of the relaxation function with the isotropic
dissipation rate as well as the turbulent kinetic energy. Various comparative tests are made and the
new rescaled formulation is shown to provide improved and accurate predictions for both the
eddy-viscosity and Reynolds stress models. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1511547#

I. INTRODUCTION

Recent studies1,2 utilizing the elliptic relaxation ap-
proach, proposed by Durbin3,4 for accurate near-wall eddy-
viscosity and Reynolds stress modeling have shown that, de-
spite the overall benefit, the formulation negatively impacts
the log-layer predictions of such models. Manceauet al.5

have shown from a DNS database analysis that the cause can
be attributed to the isotropy assumption for the two-point
correlation function used in the derivation of the elliptic re-
laxation equation. Modifying the model to better replicate
the underlying physics has led to alternate forms for the el-
liptic relaxation equation that neutralize the impact on the
logarithmic layer. However, these new formulations involve
additional differential operators, which, when coupled with a
full Reynolds stress formulation, may affect the computa-
tional robustness of the system in more complex flow fields.

An alternative, isotropic rescaling of the tensor function
representing the redistribution term in the turbulent Reynolds
stress equations is proposed. The rescaling now involves the
isotropic dissipation rate as well as the turbulent kinetic en-
ergy that has been used in all previous elliptic relaxation
formulations. While the inclusion of the isotropic dissipation
rate in the scaling has little or no impact on the redistribution
in the near-wall region, it is found to remove its amplifica-
tion in the log-layer region when only the turbulent kinetic
energy is used in the scaling.

Several comparisons are made with both direct numeri-
cal simulations of channel flow6 at values of friction velocity
Reynolds number Ret (5uth/n, ut friction velocity, andh
channel half-width! ranging from 180 to 590, and experi-
mental data7,8 at Ret51017. For these channel flows both the
v

2
2 f and Reynolds stress elliptic relaxation approaches are

evaluated using results for both mean and turbulent quanti-
ties. In order to further validate the new formulation, the
rescaledv

2
2 f model is applied to the case of turbulent

boundary layer flow. Comparisons with DNS9 and experi-
mental data10 of skin-friction variation with Reynolds num-
ber and mean velocity predictions further highlight the ben-
efits of the rescaled elliptic relaxation formulation.

II. ORIGINAL AND RESCALED ELLIPTIC RELAXATION
FORMULATIONS

It is useful at the outset to outline the methodology used
in the previous elliptic relaxation formulations. Initially,3 the
elliptic relaxation equation had been written as

f i j2L2¹2f i j5 f i j
h , ~1!

where f i j was defined by

f i j5
1

K S 2u i

]p

]x j
2u j

]p

]x i
2« i j1« i j* D 5

1

K
@f i j2« i j1« i j* #

~2!

and

f i j
h

5

1

K FP i j2
2

3
«d i j1« i j* G , ~3!

with « i j* the anisotropic form of the dissipation rate in the
vicinity of the wall, and P i j a high-Reynolds number
pressure–strain rate correlation model. Different~high Rey-
nolds number! pressure–strain rate models can be used. For
example, Wizmanet al.1 compared the results in a channel
flow using three different models forP i j : Launder, Reece,
and Rodi,11 Craft and Launder,12 and Speziale, Sarkar, and
Gatski13 ~SSG!. They have shown that since« and~any! P i j

model behave asy21 along withK constant in the logarith-a!Electronic mail: remi.manceau@lea.univ-poitiers.fr
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mic layer, the solution of Eq.~1! is f i j5G f i j
h whereG is the

amplification factor, withG51.51. Manceauet al.5 have
summarized the size of this amplification factor for different
formulations of the elliptic relaxation equation.

As shown by Manceau,14 Eq. ~1! is a consequence of the
modeling of C i j(x,x8), the two-point correlation between
the fluctuating velocity and the Laplacian of the pressure
gradient. Indeed,C i j(x,x8) appears in the integral equation
of f i j :

rf i j52E
V

C i j~x,x8!

4pix82xi
dV~x8!. ~4!

If C i j(x,x8) is modeled by

C i j~x,x8!

K~x!
5

C i j~x8,x8!

K~x8!
expS 2

r

L D ~5!

~where the scaling byK is needed for preserving the correct
limiting behavior off i j in the near-wall region!, Eq. ~4! can
be inverted to give Eq.~1!. However, Manceauet al.5

showed that using an isotropic exponential correlation func-
tion leads to overweighting the pointsx8 in the region be-
tween the current pointx and the wall in Eq.~4!. Since
C i j(x8,x8) decreases like 1/y8 in the log layer~K being con-

stant!, overweighting the regiony8,y leads to overestimat-
ing f i j ~this is the negative impact of the elliptic relaxation
strategy quoted above!.

Different formulations of the elliptic relaxation equation
were proposed by Wizmanet al.,1 Laurence and Durbin,15

and Manceauet al.5 in order to avoid this undesired effect.
All of these alternatives were based on modifying the elliptic
operator (12L2¹2) and have an amplification factor close to
or less than unity.5 In this study, two representative formula-
tions are selected for comparison with the new rescaled for-
mulation proposed here. These are the Wizmanet al.1 neutral
(G51) proposal,

f i j2¹2~L2f i j!5 f i j
h , ~6!

and the Manceauet al.5 proposal,

@1116b~“L !2# f i j2L2¹2f i j28bL“L"¹ f i j5 f i j
h , ~7!

which is based on an anisotropic correlation function, and
whereG is a function ofb.5 This functional dependence in
the Manceauet al.5 model allows the adaptation ofG to the
model used forP i j . For a model that overestimates the re-
distribution in the log layer, such as the Launder, Reece, and
Rodi11 model used here for thev2

2 f formulation,G,1 is
preferable; however, for a model that gives a correct level of

FIG. 1. A comparison of mean velocity profiles fromv2
2 f models with DNS~Ref. 6! and experimental data~Refs. 7, 8! in channel flow.
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redistribution in the log layer, such as the SSG13 model used
here for the Reynolds stress formulation,G51 can be cho-
sen. In this study,b50.12 is used for thev2

2 f formulation,
leading toG50.7, andb5

1
12 for the Reynolds stress formu-

lation, leading toG51.
In contrast to earlier alternative formulations, the new

formulation presented here is not based on the modification
of the elliptic operator, but on a modified scaling in Eq.~5!.
In addition to the usual scaling by the turbulent kinetic en-
ergyK, the two-point correlation function is now also scaled
by the isotropic dissipation rate«. In the log layer, the Rey-
nolds stresses and turbulent anisotropies are assumed con-
stant and« ~5P! is O(y21). As pointed out by Wizman
et al.,1 the redistribution term is alsoO(y21) and the new
scaling«K negates they21 behavior such thatf i j;const in
the log layer.

The dissipation rate scaling suppresses the effect of the
overweighting due to the isotropy of the exponential function
since C i j(x8,x8)/K(x8)«(x8) is constant in the log layer,
and giving more weight to one side and less to the other has
no consequence. Although introducing« into Eq. ~5! can
appear rather arbitrary, it is worth noting that« is a natural
scale forf i j and, accordingly, forC i j . Therefore, the expo-
nential shape assumption for the correlation function is at
least as justified with the new scaling as with the former one.

The addition of the dissipation rate scaling directly af-

fects the behavior of the elliptic relaxation equation in the
logarithmic layer, so thatf i j5 f i j

h (G51). Equations~2! and
~3! are now rewritten as

f i j5
1

«K
@f i j2« i j1« i j* # ~8!

and

f i j
h

5

1

«K S P i j2
2

3
«d i j1« i j* D , ~9!

respectively. Note that, similar to the original formulation,3

to avoid the occurrence of a singularity of thef i j equation at
the wall,K is bounded by«TK , whereTK is the Kolmogorov
time scale. Since in the vicinity of the wall« takes a nonzero
value, the original~single scaling withK! limiting behavior
of f i j is retained as soon as the wall boundary conditions for
the different components off i j are rescaled, that is

f 22
w

52

20n2
v

2

«2y4 , f 12
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52

20n2uv

«2y4 ,

~10!
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wherey is the distance normal to the wall.

FIG. 2. A comparison of thev21 turbulent normal stress component fromv
2
2 f models with DNS~Ref. 6! and experimental data~Refs. 7, 8! in channel flow.
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Note that Durbin and Laurence16 proposed a similar res-
caling, f i j5Lf i j /K. SinceL behaves asy in the logarithmic
layer, this rescaling also neutralizes the effect of the elliptic
operator in this region. However, since the turbulent length
scale K3/2/« goes to zero at the wall, this formulation
changes the near-wall behavior of the model, unless the

length scaleL used in the normalization off i j reverts to the
Kolmogorov length scale in the near-wall region. From a
computational standpoint, such changes in scaling definitions
can be problematic if not done with care; otherwise, discon-
tinuities can be introduced that can be further amplified when
in any differentiation process. Such problems do not arise
when the rescaling by«K is used.

The v
2
2 f model3 is the reduction of the elliptic relax-

FIG. 3. A comparison of turbulent kinetic energy profiles fromv
2
2 f models with DNS~Ref. 6! and experimental data~Refs. 7, 8! in channel flow.

FIG. 4. Variation of a skin friction coefficient over Reynolds number range
for v

2
2 f models in channel flow:s, Rec53260 (Ret5180); h, Rec

57897 (Ret5395); n, Rec512 485 (Ret5590); L, Rec522 776 (Ret
51017).

FIG. 5. Skin friction coefficient variation with a momentum thickness Rey-
nolds number forv2

2 f models~log–log scale! in boundary-layer flow.
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ation procedure to three transport equations. The Reynolds
stresses are obtained from the Boussinesq equation, with a
modified eddy viscosity,

n t5Cmv
2T, ~11!

whereT is K/« but bounded near the wall by the Kolmog-
orov time scaleAn/«. The use ofv2 instead of the standard

K in ~11! accounts for the blocking effect of the wall on
turbulence diffusion without using empirical damping func-
tions. A transport equation is solved forv

2, directly taken
from the full Reynolds stress model. Herev

2 is considered
an energy scale generalizing the wall–normal Reynolds
stress component everywhere in the domain—a hypothesis
that has proved successful in many flows.17–19 In addition,
the anisotropic form of the dissipation rate tensor« i j* is taken

FIG. 6. A comparison of mean velocity profiles fromv2
2 f models with DNS~Ref. 9! and experimental data~Ref. 10! in boundary-layer flow.

FIG. 7. A comparison of mean velocity profiles from Reynolds stress models with DNS~Ref. 6! and experimental data~Refs. 7, 8! in channel flow.
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proportional to the isotropic dissipation rate using« i j*
5(u iu j/K)«. The complete set of equations solved for the
v

2
2 f model, as well as for the full Reynolds stress model,

are given in the Appendix. Some results from both thev
2

2 f and Reynolds stress forms of the elliptic relaxation pro-
cedure compared to both DNS and experimental data will
show the improved effect of the new scaling approach.

III. RESULTS

Direct simulations of fully developed turbulent channel
flow have now become sufficiently complete that such a flow
field can be extensively utilized to compare near-wall closure
models. There is currently available a consistent set of direct
simulation data at Ret5180, 395, and 590~see Moser
et al.6!, as well as some experimental results~e.g., Wei and
Willmarth7,8 at Ret51017), that can be used for assessing
the performance of this new elliptic relaxation scaling. The
eight elliptic relaxation models (v

2
2 f and Reynolds stress

model, four formulations each! are calibrated in order to re-
produce as well as possible the four cases from Ret

5180– 1017, while keeping the usual coefficients (C«1 ,
C«2 , etc.! as close as possible to their standard values in free
shear flows, in order to avoid spoiling the predictions in such
flows. The results presented in the following section are thus
the best compromise obtainable for each model.

In addition to extending the channel flow assessments to
higher values of Ret , a further validation of this new rescal-
ing is provided by a comparative assessment of predictions
from previousv

2
2 f formulations and the present model in

flat plate turbulent boundary layer flow. These results are
further compared to direct numerical simulation data~see
Spalart9 1988! as well as experimental data.10

The channel flow computations are performed with a
simple finite difference one-dimensional~1-D! code in which
the governing equations are normalized byh andut , so that
Ret can be imposed. The flat plate boundary layer is solved
using a finite volume code on a 2-D grid consisting of 440
3100 cells in the streamwise and wall–normal directions,
respectively. The DNS data9 at Reu5300 are used as inflow
conditions.

A. v2
Àf model

Figure 1 shows the mean velocity predictions using dif-
ferent forms of the elliptic relaxation model developed pre-
viously and the present rescaled model compared to DNS
(Ret5180,395,590) and experimental (Ret51017) results in
channel flow. The present model as well as the Wizman
et al.1 and Manceauet al.5 models clearly improve the log-
layer predictions of the Durbin model3 at all the Reynolds
numbers. However, the present rescaled model exhibits a

FIG. 8. A comparison of theu21 turbulent streamwise stress component from Reynolds stress models with DNS~Ref. 6! and experimental data~Refs. 7, 8!
in channel flow.
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better sensitivity to reducing the Reynolds number to low
values: in particular, the mean velocity profile at Ret5180 is
much better predicted than with the other models. It must be
emphasized that this sensitivity is obtained without introduc-
ing any new low-Reynolds number modification in the
model.

The correspondingv2 profiles are shown in Fig. 2. Once
again the present model better predicts the entirey1 distri-
bution ~including the peak! compared to the Wizmanet al.,
Manceauet al., and Durbin models over the entire Reynolds
number range examined. In the inner layer, all the modified
models~including the present model! slightly overpredict, in
general, both the DNS and experimental data; however, the
original model~Durbin3! underpredicts the data in this re-
gion. In the central region of the flow, a major improvement
is obtained with the present model, compared to all the other
models, in particular, at the lowest Reynolds number. For the
turbulent kinetic energy predictions shown in Fig. 3, all the
modified models now underpredict the~DNS! data in the
inner region, whereas the original model overpredicts the
data and, in particular, the peak of kinetic energy. In addition,
the present, rescaled model better predicts the simulation
data than the other modified models in the log layer.@Note
that for the experimental data, the measurements were ob-
tained from a two-component LDA system that did not mea-

sure thew ~spanwise! Reynolds stress component. Thus, no
kinetic energy data are available.#

Both the mean and turbulent quantities shown suggest
that the current, rescaled elliptic relaxation procedure can
accurately replicate the flow field over a Reynolds number
range. This is further substantiated by examining the skin
friction variation over the range of Ret studied. Figure 4
shows the variation ofC f (52ut

2/Uc
2, Uc centerline veloc-

ity! with Rec (5Uch/n) using the different elliptic relax-
ation formulations. All the modified formulations better pre-
dict theC f variations relative to the original Durbin model.
The present rescaled formulation tends to predict betterC f

levels at the lower Reynolds numbers, but as the value of Rec

increases all the modified models tend to the same levels.
Note that even thoughUc appears in bothC f and Rec ~andut

is fixed for each case!, theC f evolution does not depend on
the computational approach. For example, by imposing the
centerline velocity~i.e., Rec) and evaluating the wall shear
stress from the results,exactly the sameC f behavior is ob-
tained.

While the results shown here for thev2
2 f model sup-

port the analysis of the previous section, which showed that
the new scaling neutralizes the adverse effect in the log layer,
the present model was also found to give improved overall

FIG. 9. A comparison of thev21 turbulent normal stress component from Reynolds stress models with DNS~Ref. 6! and experimental data~Refs. 7, 8! in
channel flow.
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predictions across the channel relative to not only the Durbin
model but the other modified models. Before proceeding
onto a channel flow analysis of a Reynolds stress model
based on the rescaled elliptic relaxation formulation, it is of
interest to examine the performance of the rescaledv

2
2 f

model in a flat plate turbulent boundary layer flow.
As was shown in Fig. 4 for the channel flowC f com-

parisons, the rescaled model displayed the proper Reynolds
number dependency over a range of Reynolds numbers. The
same trend can also be seen in Fig. 5, where theC f predic-
tions as a function of momentum thickness Reynolds number
Reu are compared with both the DNS9 and experimental10

data. The rescaledv2
2 f model closely predicts the lower

Reu DNS data and is asymptotically consistent with the
higher Reu experimental data. In addition, the behavior is
qualitatively similar to the result obtained from the von
Kàrmàn–Schoenherr correlation given here in the form20

1

C f
517.08~ log Reu!2

125.11~ log Reu!16.012. ~12!

Figure 5 also shows significant discrepancies between two
previous forms of thev2

2 f model. The originalv2
2 f ver-

sion in the figure was used by Durbin21 to compute the
boundary layer and uses the production-to-dissipation
rate ratio P/« in the variable coefficientC«1 . The stand-

ard v
2
2 f version in Fig. 5 was introduced by Parneix,

Durbin, and Behnia17 and replacesP/« by AK/v2 in
C«1 ~this version is now widely used and is described of the
Appendix; it is the version used for the computations of the
channel flow in the present study!. As Fig. 5 shows, the
standard version does not reproduce the variation of the fric-
tion coefficient with Reynolds number very well. In contrast,
the original version reproduces the trend at high Reynolds
number very well, but not at low Reynolds number. Only the
present rescaled model is able to predict the correct evolution
over the whole range of Reynolds numbers examined (Reu

ranges from 670 to 13 052, which corresponds to Red from
5200 to 120 000, whered is the boundary layer thickness,
and, in wall units, to Red1 from 250 to 4100!.

The boundary-layer mean velocity profiles at Reu5670
and 13 052 are shown in Fig. 6. These two Reynolds num-
bers delimit the range covered by the DNS and experimental
data. At Reu5670, the current rescaled model gives the better
overall prediction of the mean velocity profiles compared to
the other two versions. At Reu513 052, all the predictions
deteriorate relative to the lower Reynolds number. The re-
scaled model continues to outperform the standard version,
but the predictions of the original model have improved and
are as accurate as those of the rescaled model.

FIG. 10. A comparison ofw21 turbulent spanwise stress component from Reynolds stress models with DNS~Ref. 6! and experimental data~Refs. 7, 8! in
channel flow.
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B. Reynolds stress model

The elliptic relaxation form of the Reynolds stress model
has not received as much attention and validation as thev

2

2 f form. Nevertheless, it is of interest to examine the effect
of this isotropic rescaling on a closure model that best de-
scribes the anisotropies of the turbulence.

Figure 7 shows the mean velocity profiles computed us-
ing the four different elliptic relaxation procedures. The three
modified formulations are able to predict the correct velocity
distributions across the channel with the Manceauet al.2

form providing the best predictions on balance across the
Reynolds number range. Similar to thev2

2 f results just
presented, the new rescaled formulation is more sensitive to
the reduction of Reynolds number; although Fig. 7 shows
that for the case Ret5180, the formulations of Wizmanet al.
and Manceauet al. also give good predictions.

The distribution of the normal stress components are
shown in Figs. 8–10. For theu2 component~Fig. 8!, all the
profiles are well predicted in the log layer; although only the
Wizman et al. and Manceauet al. formulations are able to
reproduce the peak value ofu2. Thev

2 normal stress distri-
butions are shown in Fig. 9. Overall, the agreement is not as
good as theu2 component, particularly in the outer layer
regions as the centerline is approached. It also appears that
the formulations of Wizmanet al. and Manceauet al. are
more accurate in the near-wall region (y1

,30) for all the
Reynolds numbers, while the present rescaled model gives
better results in the center of the channel at low Reynolds
number. Very similar conclusions can be drawn forw2 pro-
files shown in Fig. 10, except that the original formulation
predicts a better~higher! peak of w2 for the cases Ret
>395. @Recall that for the experimental data, thew ~span-

FIG. 11. A comparison of turbulent shear stress profiles from Reynolds stress models with DNS~Ref. 6! and experimental data~Refs. 7, 8! in channel flow.

FIG. 12. The variation of the skin friction coefficient over the Reynolds
number range for Reynolds stress models in channel flow:s, Rec53260
(Ret5180); h, Rec57897 (Ret5395); n, Rec512 485 (Ret5590); L,
Rec522 776 (Ret51017).
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wise! Reynolds stress component was not measured.#
For fully developed channel flow, the turbulent shear

stress is the only Reynolds stress component that directly
affects the streamwise momentum equation. As Fig. 11
shows, all the modified models are able to closely predict the
behavior of the shear stress through the buffer layer over the
range of Ret covered by the DNS data, whereas the original
model overpredictsuv for y1<20. The experimental data,
however, are not well reproduced by any of the models over
the range ofy1 values shown. For larger values ofy1 ~not
shown! the predictions are in very good agreement with both
the DNS and experimental data.

Finally, as was shown with thev2
2 f results for the skin

friction coefficient, the elliptic relaxation procedure correctly
sensitizes the predictions to Reynolds number variations over
the range studied. This also holds for the Reynolds stress
models, as shown in Fig. 12. The figure shows that all the
models correctly predict the qualitative Reynolds number
variation, and that the present, rescaled model more closely
replicates the quantitative variation.

IV. CONCLUSIONS

The examples discussed here have shown that the
present, rescaled elliptic relaxation formulation is a viable
alternative to previous modified elliptic relaxation formula-
tions that can be used successfully in accurately predicting
both the near-wall and log-layer dynamics in both channel
flows and boundary layers. Based on the channel flow com-
parisons at the four Reynolds numbers (Ret5180, 395, 590,
and 1017! analyzed, the important point emerging from the
results is the improvement of the predictions in the center of
the channel due to the rescaling by«K instead ofK alone, as
well as the comparable performance to the other~modified!
models over the remainder of the channel. The better sensi-
tivity to the Reynolds number reduction also observed is
probably a consequence of this improvement, insofar as, at
low Reynolds number, a coupling between the near-wall and
outer layer regions of the flow appears. This leads to a sig-

nificantly better prediction of theC f number variations, par-
ticularly when compared to the original formulation of
Durbin.3

The boundary layer comparisons revealed that previous
versions17,21 of the v

2
2 f model were not able to as accu-

rately compute such flows as the new rescaled model. Both
skin friction variation over a broad range of Reynolds num-
bers and corresponding mean velocity profiles at the low and
high Reynolds number limits examined quantified the differ-
ences between models. This analysis also led to the conclu-
sion that the original version21 is more accurate in the
boundary-layer predictions than the current standard
model.17

The proposed dissipation rate modification is a simple
and efficient way to suppress a major negative side effect of
the original model in the log layer. It is based on the intuitive
hypothesis that the natural scaling by« must be introduced in
the process, contrary to the Manceauet al.5 model that is
based on a refinement of the shape assumption for the two-
point correlations involved in the redistribution term under
its integral form.

The simplicity of the modification to the original models
(v

2
2 f and Reynolds stress model!, compared to the gain in

accuracy in the log-layer profiles and the friction coefficient,
makes the new proposal attractive. Indeed, considering the
successes achieved previously using only the original turbu-
lent kinetic energy scaling, the results presented here do sug-
gest that extensions to more complex flows will also yield
improved overall predictions in the near-wall region for both
mean and turbulent quantities. Such more complex flows will
be the subject of future studies.

APPENDIX: RESCALED v2
Àf AND REYNOLDS

STRESS MODELS

1. v2
Àf

The v
2
2 f model consists of the transport equations for

the turbulent kinetic energy, the isotropic dissipation rate,
and thev

2 (5t22) normal stress component,

TABLE I. Elliptic relaxation operator and coefficients used for the different formulations of thev
2
2 f model.

Model Lf C«1 C«2 Cm s« sK CL Ch CT A1 C1 C2

Durbin ~Ref. 17! f 2L2¹2f 1.4 1.9 0.22 1.3 1 0.25 85 6 0.045 1.4 0.45
Wizmanet al. ~Ref. 1! f 2¹2(L2f ) 1.44 1.91 0.22 1.3 1 0.35 65 6 0.05 1.8 0.6
Manceauet al. ~Ref. 5! @1116b(¹L)2# f

2L2¹2f 28bL“L•“ f
1.44 1.91 0.22 1.3 1 0.275 85 6 0.045 1.8 0.6

Present f 2L2¹2f 1.44 1.91 0.22 1.3 1 0.38 85 6 0.045 1.8 0.6

TABLE II. Coefficients used for the different formulations of the RSM model. For the form of the elliptic relaxation operatorL, see Table I.

Model C«1 C«2 Cm s« sK CL Ch CT A2 C1 C1* C2 C3 C3* C4 C5

Durbin ~Ref. 4! 1.35 1.83 0.26 1.4 1 0.16 80 6 0.1 3.4 1.8 4.2 0.8 1.3 1.25 0.4
Wizmanet al. ~Ref. 1! 1.35 1.83 0.26 1.4 1 0.29 80 6 0.1 3.4 1.8 4.2 0.8 1.3 1.25 0.4
Manceauet al. ~Ref. 5! 1.35 1.83 0.26 1.4 1 0.28 80 6 0.1 3.4 1.8 4.2 0.8 1.3 1.25 0.4
Present 1.35 1.83 0.26 1.4 1 0.23 80 6 0.12 3.4 1.8 4.2 0.8 1.15 1.25 0.4
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wheren t5Cmv
2T. An elliptic relaxation equation is solved

for the functionf that models the redistributive effect in the
v

2 equation, and is identical to the equation satisfied by the
wall normal componentf 22 of the full Reynolds stress model
in a channel flow,

Lf 5
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~P2212«b22!. ~A4!

Using the Launder, Reece, and Rodi11 model for P i j , and
replacing«/K by 1/T to avoid a singularity at the wall, leads
to
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These equations are then solved subject to the boundary con-
ditions at the solid boundary,
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where the subscript~1! denotes the value at the first interior
computational grid point away from the wall.

Recall that the other formulations applied in this
study1,3,5 use a different scaling. The set of coefficients used
with the different models and the form of the operatorL are
given in Table I.

2. Reynolds stress model

The transport equation for the Reynolds stress
t i j (5u iu j) is given by
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and for the dissipation rate by
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whereP52KbklS lk . The elliptic relaxation equation forf i j

that models the redistributive effect in the Reynolds stress
transport equations is

Lf i j5
1
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The SSG model13 is used forP i j , and«/K is replaced by
1/T to avoid a singularity at the wall. This yields
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These equations are then solved subject to the boundary con-
ditions at the solid boundary:
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where the subscript~1! denotes the value at the first interior
computational grid point away from the wall.

As with the v
2
2 f model, the form of the operatorL

depends on the choice of either the Durbin,3 Wizmanet al.,1

Manceauet al.,2 or present formulations~see Table I!. The
coefficients used with the different elliptic relaxation formu-
lations are given in Table II.
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