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Vertex partitions of (C3, C4, C6)-free planar graphs

François Drossa, Pascal Ochema

aLIRMM, Université de Montpellier, and CNRS. France

Abstract

A graph is (k1, k2)-colorable if its vertex set can be partitioned into a graph with
maximum degree at most k1 and and a graph with maximum degree at most k2.
We show that every (C3, C4, C6)-free planar graph is (0, 6)-colorable. We also
show that deciding whether a (C3, C4, C6)-free planar graph is (0, 3)-colorable
is NP-complete.

1. Introduction

A graph is (k1, k2)-colorable if its vertex set can be partitioned into a graph
with maximum degree at most k1 and and a graph with maximum degree at
most k2. Choi, Liu, and Oum [1] have established that there exists exactly two
minimal sets of forbidden cycle length such that every planar graph is (0, k)-
colorable for some absolute constant k.

• planar graphs without odd cycles are bipartite, that is, (0, 0)-colorable.

• planar graphs without cycles of length 3, 4, and 6 are (0, 45)-colorable.

The aim of this paper is to improve this last result. Notice that forbidding
cycles of length 3, 4, and 6 as subgraphs or as induced subgraphs result in the
same graph class. For every n > 3, we denote by Cn the cycle on n vertices. So
we are interested in the class C of (C3, C4, C6)-free planar graph.

We will prove the following two theorems in the next two sections.

Theorem 1. Every graph in C is (0, 6)-colorable.

Theorem 2. For every k > 1, either every graph in C is (0, k)-colorable, or
deciding whether a graph in C is (0, k)-colorable is NP-complete.

In addition, we construct a graph in C that is not (0, 3)-colorable in Section 4.
This graph and Theorem 2 imply the following.

Corollary 3. Deciding whether a graph in C is (0, 3)-colorable is NP-complete.

Since we deal with (0, k)-colorings for some k > 2, we denote by the letter 0
the color of the vertices that induce the independent set and we denote by the
letter k the color of the vertices that induce the graph with maximum degree k.
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2. Proof of Theorem 1

The proof will be using the discharging method. For every plane graph G,
we denote by V (G) the set of vertices of G, by E(G) the set of edges of G, and
by F (G) the set of faces of G.

Let us define the partial order �. Let n3(G) be the number of 3+-vertices
in G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if at least
one of the following conditions holds:

• |V (G1)| < |V (G2)| and n3(G1) 6 n3(G2).

• n3(G1) < n3(G2).

Note that the partial order � is well-defined and is a partial linear extension of
the subgraph poset.

We suppose for contradiction thatG is a graph in C that is not (0, 6)-colorable
and is minimal according to �. Let n denote the number of vertices, m the
number of edges and f the number of faces of G. For every vertex v, the degree
of v in G is denoted by d(G). For every face α, the degree of α, denoted d(α),
is the number of edges that are shared between this face and another face, plus
twice the number of edges that are entirely in α. More generally, when counting
the number of edges of a certain type in a face, we will always count twice the
edges that are only in this face. For all d, let us call a vertex of G of degree d, at
most d, and at least d a d-vertex, a d−-vertex, and a d+-vertex respectively. For
all vertex v, a d-neighbor, a d−-neighbor, and a d+-neighbor of v is a neighbor
of v that is a d-vertex, a d−-vertex, and a d+-vertex respectively. For all d, let
us call a face of G of degree d, at most d, and at least d a d-face, a d−-face,
and a d+-face respectively. For all set S of vertices, an S-vertex is a vertex that
belongs to S, and an S-neighbor of a vertex v is a neighbor of v that belongs
to S. For all set S of vertices, let G[S] denote the set of vertices induced by S,
and G− S = G[V (G) \ S]. For convenience, we will note G− v for G− {v}.

Let us first prove some results on the structure of G, and then we will prove
that G cannot exist, thus proving the theorem.

Lemma 4. G is connected.

Proof. If G is not connected, then every connected component of G is smaller
than G and thus admits a (0, 6)-coloring. The union of these (0, 6)-colorings
gives a (0, 6)-coloring of G, a contradiction.

Lemma 5. G has no 1-vertex.

Proof. Let v be a 1-vertex and w be the neighbor of v. The graph G− v admits
a (0, 6)-coloring since G − v ≺ G. We get a (0, 6)-coloring G by assigning to v
the color distinct from the color of w, a contradiction.

Lemma 6. Every 7−-vertex of G has a 8+-neighbor.
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Proof. Let v be a 7−-vertex with no 8+-neighbors. The graph G − v admits a
(0, 6)-coloring since G− v ≺ G. If there is a neighbor w of v with no neighbor
colored 0, then we color w with 0. Thus, we can assume that every neighbor of v
that is colored k has a neighbor colored 0 in G−v, and thus at most 5 neighbors
colored k in G−v. Also, we can assume that v has at least one neighbor colored
0, since otherwise v can be colored 0. Thus, v has at most 6 neighbors colored
k and v can be colored k, a contradiction.

Lemma 7. Every vertex with degree at least 3 and at most 7 has two 8+-
neighbors.

Proof. Suppose for contradiction that G contains a d-vertex v such that 3 6
d 6 7 and such that v has at most one 8+-neighbor. By Lemma 6, v has exactly
one 8+-neighbor w. Let w1, . . . , wd−1 be the other neighbors of v. Let H be the
graph obtained from G−v by adding d−1 2-vertices v1, . . . , vd−1, such that for
every i ∈ {1, d− 1}, vi is adjacent to w and wi.

Notice that H ≺ G since n3(H) = n3(G)−1. Moreover, every cycle of length
` in H is associated a cycle of length ` or ` − 2 in G. Therefore H ∈ C, so H
has a (0, 6)-coloring.

If w is colored 0, then every vi is colored k, coloring v with k leads to a
(0, 6)-coloring of G, a contradiction. Therefore w is colored k.

While at least one of the wi’s has no neighbor colored 0 in G− v, we color it
0, and color the corresponding vi with k if it was colored 0. By doing this, we
keep a (0, 6)-coloring of H. We can thus assume that in G− v, every wi that is
colored k has a neighbor colored 0 and thus at most five neighbors colored k. If
at least one of the vi’s is colored k, then w has at most five neighbors colored k
in G− v, and assigning k to v gives a (0, 6)-coloring of G. Otherwise, every vi
is colored 0, every wi is colored k, and w is colored k. Thus we assign 0 to v to
obtain a (0, 6)-coloring of G, a contradiction.

Lemma 8. No 3-vertex is adjacent to a 2-vertex.

Proof. Let w be a 3-vertex adjacent to a 2-vertex v, let x1 and x2 be the other
two neighbors of w, and let u be the other neighbor of v. Let H be the graph
obtained from G− {v, w} by adding five 2-vertices v1, v2, w1, w2, and x which
form the 8-cycle uv1w1x1xx2w2v2. It is easy to check that H is in C. By
Lemmas 6 and 7, u, x1, and x2 are 8+-vertices in G and thus are 9+-vertices in
H. Since w is in G but not in H, n3(H) = n3(G)− 1, so H ≺ G. Therefore H
has a (0, 6)-coloring.

Suppose that v1 and v2 are both colored 0. Then w1, w2, and u are colored
k. We color v with 0 and w with k. The number of neighbors of x1 (resp. x2)
colored k in G is at most the number of neighbors of x1 (resp. x2) colored k
in H. Thus we have a (0, 6)-coloring of G, a contradiction. Now we assume
without loss of generality that v1 is colored k. We color w with the color of x
and we color v with k. The number of neighbors of u (resp. x1, x2) colored k in
G is at most the number of neighbors of u (resp. x1, x2) colored k in H. Thus
we have a (0, 6)-coloring of G, a contradiction.
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Figure 1: A special face (left) and a special configuration (right).

A special face is a 5-face with three 2-vertices and two non-adjacent 8+-
vertices. See figure 1, left. A special configuration is three 5-faces sharing a
common 3-vertex adjacent to three 8+-vertices, such that all the other vertices
of these faces are 2-vertices. See figure 1, right. We say special structure to
speak indifferently about a special face or a special configuration.

Let us define a hypergraph Ĝ whose vertices are the 8+-vertices of G and the
hyperedges correspond to the sets of 8+-vertices contained in the same special
structure. For every vertex v of Ĝ, let d̂(v) denote the degree of v in Ĝ, that is
the number of hyperedges containing v.

Lemma 9. Let α be a special stucture, with the notations of Figure 1. Consider
a (0, 6)-coloring of α.

We can change the color of the xi’s, yi’s and u such that the vi’s have no
more neighbors colored k than before, and for all i, if vi is colored k, then vi has
a neighbor colored 0.

Proof. If all of the vi’s are colored 0, then there is noting to do. If they are
all colored k, then we assign 0 to u. If one of the vi’s, say v0, is colored 0 and
another one, say v1, is colored k, then u and x0 are colored k and we assign 0
to y0. Moreover, if α is a special configuration and v2 is colored k, then y2 is
colored k and we assign 0 to x2.

Lemma 10. For every vertex v in Ĝ, d(v)− d̂(v) > 7.

Proof. Let v be a vertex that does not verify the lemma, i.e. such that d(v) −
d̂(v) 6 6. As v is an 8+-vertex, d̂(v) > 1. Let α be a special structure incident
to v in Ĝ. We use the notations of Figure 1, with say v = v0. The graph
G − x0 is smaller than G, thus it admits a (0, 6)-coloring. Since G does not
admit a (0, 6)-coloring, v0 is colored k and y0 is colored 0. By Lemma 9, we can
assume that v has a neighbor colored 0 in each of its special structures distinct
from α. If v1 is colored 0, then y0 is colored k, a contradiction. Thus v1 is
colored k. If α is a special face, or if v2 is colored k, then we assign 0 to u.
If α is a special configuration and v2 is colored 0, then x2 is colored k and we
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assign 0 to y2. In both cases, v has at least d̂(v) neighbors colored 0. Thus v
has at most d(v) − d̂(v) 6 6 neighbors colored k and we can assign k to v, a
contradiction.

Lemma 11. Every component of Ĝ has at least one vertex v such that d(v)−
d̂(v) > 8.

Proof. Suppose the lemma is false, and let C be a component of Ĝ that does
not verify the lemma. If C has only one vertex, then this vertex is an 8+-
vertex, which verifies d(v)− d̂(v) > 8. Therefore C has at least one hyperedge,
which corresponds to a special structure α of G. By Lemma 10, every vertex
of C verifies d(v) − d̂(v) = 7. We use the notations of Figure 1. The graph
G− {x0, y0} is smaller than G, thus it admits a (0, 6)-coloring. Since G admits
no (0, 6)-coloring, v0 and v1 are colored k. If α is a special configuration and
v2 is colored 0, then x2 and y1 are colored k and we can color y2 and x1 with
0. Otherwise, we can color u with 0. Note that v0 and v1, as well as v2 if it
exists and is colored k, all have six neighbors colored k, and by Lemma 9, we
can assume that they all have at least one neighbor colored 0 in each of their
special structures besides α.

If one of the vi’s, say v0, has an additional neighbor colored 0, it verifies
d(v0) − d̂(v0) > 8, a contradiction. Thus, for every vi, either vi is colored 0 or
vi has no neighbor colored 0 outside of its special structures and at most one
neighbor colored 0 in each special structure besides α.

We uncolor u and all the xi’s and yi’s, and let H equal to G where u, the xi’s
and the yi’s are removed. By symmetry, we only consider the vertex v0. The
following procedure either assigns 0 to v0 or ensures that v0 has two neighbors
colored 0 in one of its special structures:

• For each special structure β containing v0 and completely contained in
H, we use the notations of Figure 1, keeping the same vertex for v0, but
changing the other ones for the vertices in β, and do the following:

– By Lemma 9, we can assume that every vi colored k has a neigh-
bor colored 0 in each of its special structures that are completely
contained in H.

– Suppose that one of the 8+-vertices of β distinct from v0, say v1,
has two neighbors colored 0 in a special structure distinct from β or
a neighbor colored 0 outside of its special structures. Since d(v1) −
d̂(v1) = 7, v1 has at most five neighbors colored k outside of β if β
is a special face, and at most four neighbors colored k outside of β
if β is a special configuration. We assign k to y0 k and 0 to x0. If
v2 exists and is colored 0, then we assign 0 to y2, and otherwise we
assign 0 to u. We end the procedure.

– We uncolor the 7−-vertices of β and remove them from H.
– For every 8+-vertex w 6= v0 in β colored k, we apply the procedure

with w instead of v0. Now w is colored 0 or has two neighbors colored
0 in the same special structure.
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– We add back to H the 7−-vertices of β. If v0 is colored 0, then we
give them color k if they are adjacent to a vertex colored 0 and we
assign them 0 otherwise, and we end the procedure. If β is a special
face and v1 is colored k, or if β is a special configuration and v1 and
v2 are colored k, then we color u and x0 with 0, we color the other
2-vertices with k, and we end the procedure. Suppose β is a special
configuration, either v1 or v2, say v1, is colored k, and the other one
is colored 0. We assign 0 to x0, x1, and y2, and k to u, y0, y1, and
x1, and we end the procedure. Now all of the vi’s distinct from v0
are colored 0. We color x0 and y2 (if it exists) with 0 and we color
the other 7− vertices in β with color k.

• Now in each special structure containing v0 and completely contained in
H, all of the 8+-vertices distinct from v0 is colored 0. We assign 0 to v0
and k to all of the neighbors of v0.

Let us prove that the previous procedure terminates. It always calls itself
iteratively on a graph with fewer vertices, thus the number of nested iterations
is bounded by the order of the initial graph. Furthermore, each iteration of the
procedure only does a bounded number of calls to the procedure (at most two).
That proves that the procedure terminates.

In the end, if one of the vi’s is colored k, then it has at most five neighbors
colored k outside of α if α is a special face, and at most four neighbors colored
k outside of α if α is a special structure. If every vi is colored k, then color u
with color 0 and the other 7−-vertex of α with color k. Otherwise, assign k to
u, and do the following:

• If every vi is colored 0, then assign k to the xi’s and the yi’s.

• If α is a special face and one of the vi’s, say v0, is colored 0 while the other
one is colored k, then assign k to x0 and 0 to y0.

• If α is a special structure, then assign k to the yi’s, and for all i ∈ {0, 1, 2},
if vi is colored k, then assign 0 to xi, and if vi is colored 0 then assign k
to xi.

In all cases, we get a (0, 6)-coloring of G, a contradiction.

For each component C of Ĝ, we choose a vertex v in C such that d(v)−d̂(v) >
8 as the root of C. We then choose an orientation of the edges of Ĝ such that
the only vertices with no incoming edges are the roots (for example do a breadth
first search from the root of each component). For each 8+-vertex v, v is said
to sponsor all of the special faces that correspond to its outgoing edges in Ĝ.

We are now going to give some weight on the vertices and faces of the graph.
Initially, for all d, every d-vertex has weight d− 4, and every d-face has weight
d− 4. Thus every face and every 4+-vertex has non-negative initial weight.

We apply the following discharging procedure.
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1. Every 8+-vertex gives weight 1
2 to each of its 7−-neighbors, to each spe-

cial face it sponsors, and to the 3-vertex of each special configuration it
sponsors. Additionally, for every edge vw where v and w are 8+-vertices,
v and w each give 1

4 to each of the faces containing the edge vw, and 1
4

more to the face containing vw if there is only one face containing vw.
2. For each 3+-vertex v with degree at most 7 in G, v gives 1

2 to each of its
2-neighbors. Moreover, it gives 1

2 to each of its 5-faces where it is adjacent
to two 8+-vertices and where there are two 2-vertices.

3. Each face f gives 1
4 to its 3+-vertices with degree at most 7 that are

consecutive to an 8+-vertex, for each time they appear consecutively to
an 8+-vertex in the boundary of f .

4. Each 5-face gives 1
4 to each of its 2-vertices with no 2-neighbor and 5

8 to
its 2-vertices with a 2-neighbor.

5. Each 7+-face gives 3
4 to each of its 2-vertices that belong to a 5-face and

have no 2-neighbors, 7
8 to each of its 2-vertices that belong to a 5-face

and have a 2-neighbor, 1
2 to each of its 2-vertices that do not belong to a

5-face and have no 2-neighbors, and 3
4 to each of its 2-vertices that do not

belong to a 5-face and have a 2-neighbor.

Let ω be the initial weight distribution, and let ω′ be the final weight distri-
bution, after the discharging procedure.

Lemma 12. Every vertex v verifies ω′(v) > 0.

Proof. Let v be a vertex of degree d. We have ω(v) = d− 4.

• Suppose first that d > 8. The vertex v gives 1
2 to each of its 7−-neighbors

and two times 1
4 for each of its 8+-neighbors in Step 1, for a total of d

2 .
As d > 8, we have ω(v) = d − 4 > d

2 , therefore if v sponsors no special
structure, then ω′(v) = d− 4− d

2 > 0.
Suppose v sponsors a special structure. If v sponsors all of its special
structures, then v is the root of its component in Ĝ, thus d − d̂(v) > 8,
and thus ω′(v) = d − 4 − d̂(v)

2 − d
2 = d − d̂(v) − 4 − d−d̂(v)

2 > 0. If
v does not sponsor all of its special structures, then d − d̂(v) > 7, and
ω′(v) = d− 4− d̂(v)−1

2 − d
2 = d− d̂(v)− 7

2 −
d−d̂(v)

2 > 0.

• Suppose now that 4 6 d 6 8. By Lemma 7, v has at least two 8+-
neighbors. The vertex v only gives weight in Step 2. Moreover, it gives
at most 1

2 to each of its 2-neighbors plus 1
2 for each pair of consecutive

8+-vertices in Step 2. If v has only 8+-neighbors, then it receives d
2 in

Step 1, and gives at most d
2 in Step 2, so ω′(v) > ω(v) = d − 4 > 0.

Suppose v has at least one 7−-neighbor. Let d′ > 2 be the number of
8+-neighbors of v. The vertex v receives d′

2 in Step 1. It gives at most
d−d′
2 to the 2-vertices and at most d′−1

2 to the faces for a total of at most
d−d′
2 + d′−1

2 = d
2 −

1
2 in step 2. It receives at least d′

4 in Step 3. We have
ω′(v) > d− 4− d

2 + 3d
′

4 + 1
2 > 0, since d′ > 2 and d > 4.

7



• Suppose that d = 3. By Lemma 7, v has at least two 8+-neighbors, and
by Lemma 8, v has no 2-neighbors. If v has exactly two 8+-neighbors,
then it receives 1 in Step 1, gives 1

2 in Step 2, and receives 3
4 in Step 3,

therefore ω′(v) > 1
4 > 0. If v has three 8+-neighbors, then v receives 3

2
in Step 1 and an additional 3

4 in Step 3, and it gives at most 1 in Step 2
unless it is in a special configuration, in which case it gives at most 3

2 in
Step 2 and receives 2 in Step 1. Therefore if v has three 8+-neighbors,
then ω′(v) > 1

4 > 0.

• Suppose that d = 2. Note that v cannot be in two 5-faces since G ∈ C.

– If v is in a 5-face and adjacent to another 2-vertex, then it receives
1
2 from its 8+-neighbor in Step 1, 5

8 from its 5-face in Step 4, and 7
8

from its other face in Step 5.

– If v is in a 5-face and adjacent to no other 2-vertex, then it receives
1 from its 3+-neighbors in Steps 1 and 2, 1

4 from its 5-face in Step 4,
and 3

4 from its other face in Step 5.

– If v is not in a 5-face and is adjacent to another 2-vertex, then it
receives 1

2 from its 8+-neighbor in Step 1, and 3
2 from its faces in

Step 5.

– If v is in a 5-face and adjacent to no other 2-vertex, then it receives 1
from its 3+-neighbors in Steps 1 and 2, and 1 from its faces in Step 5.

In all cases, v receives 2 over the procedure, and thus ω′(v) = 2−4+2 = 0.

Lemma 13. Every face α satisties ω′(α) > 0.

Proof. Let α be a vertex of degree d. We have ω(α) = d− 4.

• Suppose d = 5. If α is a special face, then it receives 1
2 in Step 1 and gives

1
4 + 2 · 58 = 3

2 in Step 4.

If α has no two consecutive 2-vertices, then it gives at most 1
4 to its small

vertices over Steps 3 and 4, and does not actually give anything unless
one of its vertices is an 8+-vertex, and thus gives at most 1 overall.

If α has two consecutive 2-vertices and its three other vertices are 8+-
vertices, then it receives 1 in Step 1 and gives at most 2 · 5

8 = 5
4 6 2

overall.

The only remaining case is when α has, in this consecutive order, two
2-vertices, an 8+-vertex, a 3+-vertex with degree at most 7, and another
8+-vertex. In this case, α receives 1

2 in Step 2, and gives 2 · 58 + 1
4 = 3

2
over Steps 3 and 4.

In all cases, ω′(α) > 1− 1 = 0.
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• Suppose d = 7. Note that if there are two adjacent 2-vertices in α, then
these two vertices are not in a 5-face, otherwise there would be a cycle
of length 6 in G. The face α has an initial charge of 3, gives at most 3

4
to its 7−-vertices that are adjacent to an 8+-vertex in α and nothing to
its other vertices. There can be at most four of these vertices. Therefore
ω′(α) > 3− 4 · 34 = 0.

• Suppose d = 8. Note that at most one pair of adjacent 2-vertices is in a
5-face, otherwise there would be a cycle of length 6 in G. The face α has
an initial charge of 4, gives at most 7

8 to its 7−-vertices that are adjacent
to an 8+-vertex in α, and nothing to its other vertices. There can be at
most five of these vertices, and at most two are given 7

8 , the other being
given at most 3

4 . Therefore ω
′(α) > 4− 2 · 78 − 3 · 34 = 0.

• Suppose d = 9. Note that at most two pairs of adjacent 2-vertices are in a
5-face, otherwise there would be a cycle of length 6 in G. The face α has
an initial charge of 5, gives at most 7

8 to its 7−-vertices that are adjacent
to an 8+-vertex in α, and nothing to its other vertices. There can be at
most six of these vertices, at most four are given 7

8 , and the others are
given at most 3

4 . Therefore ω
′(α) > 5− 4 · 78 − 2 · 34 = 0.

• Suppose d > 10. The face α has an initial charge of d− 4, gives at most 7
8

to its 7−-vertices that are adjacent to an 8+-vertex in α, and nothing to
its other vertices. There can be at most d− 4 of these vertices, therefore
ω′(α) > d− 4− (d− 4) · 78 > 0.

By Euler’s formula, since G is connected by Lemma 4 and has at least one
vertex, n + f − m = 2. The initial weight of the graph is

∑
v∈V (G) ω(v) +∑

α∈F (G) ω(α) =
∑
v∈V (G)(d(v) − 4) +

∑
α∈F (G)(d(α) − 4) =

∑
v∈V (G) d(v) +∑

α∈F (G) d(α) − 4n − 4f = 4m − 4n − 4f = −8 < 0. Therefore the initial
weight of the graph is negative, thus the final weight of the graph is negative.
Since by Lemmas 12 and 13, the final weight of every face and every vertex is
non-negative, we get a contradiction. This completes the proof of Theorem 1.

3. Proof of Theorem 2

Let k > 3 be a fixed integer. Suppose that there exists a graph in C that is
not (0, k)-colorable. We consider such a graph Hk that is minimal according to
�. By adapting the proofs of Lemmas 4, 5, and 6, we obtain that the minimum
degree of Hk is at least two and every (k + 1)−-vertex in Hk is adjacent to a
(k + 2)+-vertex. Suppose for contradiction that Hk contains no 2-vertex. We
consider the discharging procedure such that the initial chage of every vertex
is equal to its degree and every 5+-vertex gives 1

3 to every adjacent 3-vertex.
Then the final charge of a 3-vertex is at least 3 + 1

3 = 10
3 , the final charge of a

d-vertex with d > k + 2 is at least d− d× 1
3 > 2

d/3 > 2
( k + 2)/3 > 10

3 , and the
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final charge of every remaining vertex is at least 4 > 10
3 . This implies that the

maximum average degree of Hk is at least 10
3 , which is a contradiction since Hk

is a planar graph with girth at least 5. Thus, Hk contains a 2-vertex v adjacent
to the vertices u1 and u5.

By minimality of Hk, Hk−v is (0, k)-colorable, every (0, k)-coloring of Hk−v
is such that u1 and u5 get distinct colors, and the vertex in {u1, u5} that is
colored k has exactly k neighbors that are colored k.

Consider the graph H ′k obtained from Hk − v by adding three 2-vertices u2,
u3, and u4 which form a path u1u2u3u4u5. Notice that H ′k is (0, k)-colorable
and that in every (0, k)-coloring of H ′k is such that u3 is colored k and is adjacent
to exactly one vertex colored k. It is easy to see that H ′k is in C.

We are ready to prove that deciding whether a graph in C is (0, k)-colorable
is NP-complete. The reduction is from the NP-complete problem of deciding
whether a planar graph with girth at least 9 is (0, 1)-colorable [2]. Given in
instance G of this problem, we construct a graph G′ ∈ C, as follows For every
vertex v in G, we add k − 1 copies of H ′k and we add an edge between v and
the vertex u3 of each these copies. Notice that G′ is in C since G′ is planar and
every cyle of length at most 8 is contained in a copy of H ′k which is in C. Notice
that a (0, 1)-coloring of G can be extended to a (0, k)-coloring of G′. Conversely,
a (0, k)-coloring of G′ induces a (0, 1)-coloring of G. So G is (0, 1)-colorable if
and only if G′ is (0, k)-colorable.

4. A graph in C that is not (0, 3)-colorable

Consider the graph Fx,y depicted in Figure 2. Suppose for contradiction that
Fx,y admits a (0, 3)-coloring such that all the neighbors of x and y are colored
0 (the white vertices in the picture). Then the neighbors of those white vertices
are colored k. We consider the 8 big vertices. Each of them is colored k and
is ajacent to two vertices colored k. For every pair of adjacent red vertices, at
least one of them is colored k. Notice that every red vertex is adjacent to a big
vertex. Since there are 9 pairs of adjacent red vertices, there exists a big vertex
that is adjacent to at least two red vertices colored k. This big vertex is thus
adjacent to four vertices colored k, which is a contradiction.

In the graph depicted in Figure 3, every dashed line represent a copy of
Fx,y such that the extremities are x and y. Suppose for contradiction that this
(C3, C4, C6)-free planar graph admits a (0, 3)-coloring. Each of the two drawn
edges has at least one extremity colored k. Thus, there exist two vertices u and
v colored k that are linked by 7 copies of Fx,y. Since at most 3 neighbors of u
and at most 3 neighbors of v can be colored k, one these 7 copies of Fx,y is such
that all the neighbors of x and y are colored 0. This is contradiction proves
Theorem 2.

Following the proof above, we see that if we remove the green parts in Fig-
ures 2 and 3, we obtain a planar graph with girth 7 that is not (0, 2)-colorable.
A graph with such properties is already known [3], but this new graph is smaller
(184 vertices instead of 1304) and the proof of non-(0, 2)-colorability is simpler.

10



x y

Figure 2: The forcing gadget Fx,y . Figure 3: The non-(0, 3)-colorable graph in C.
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