Vertex partitions of ($C 3 , C 4 , C 6$) -free planar graphs
Résumé
A graph is (k 1 , k 2)-colorable if its vertex set can be partitioned into a graph with maximum degree at most k 1 and and a graph with maximum degree at most k 2. We show that every (C 3 , C 4 , C 6)-free planar graph is (0, 6)-colorable. We also show that deciding whether a (C 3 , C 4 , C 6)-free planar graph is (0, 3)-colorable is NP-complete.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|