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Elliptic blending model: A new near-wall Reynolds-stress turbulence
closure

Rémi Manceau® and Kemal Hanjalic
Department of Applied Physics, Thermofluids Section, Delft University of Technology, Lorentzweg 1,
P.O. Box 5046, 2600 GA Delft, The Netherlands

(Received 19 December 2000; accepted 14 November)2001

A new approach to modeling the effects of a solid wall in one-point second-moment
(Reynolds-stregsturbulence closures is presented. The model is based on the relaxation of an
inhomogeneous(near-wal) formulation of the pressure—strain tensor towards the chosen
conventional homogeneou$ar-from-a-wal) form using the blending functiom, for which an
elliptic equation is solved. The approach preserves the main features of Durbin’s Reynolds-stress
model, but instead of six elliptic equatioffer each stress componegnit involves only one, scalar
elliptic equation. The model, called “the elliptic blending model,” offers significant simplification,
while still complying with the basic physical rationale for the elliptic relaxation concept. In addition
to model validation against direct numerical simulation in a plane channel fer 328, the model

was applied in the computation of the channel flow at a “real-life” Reynolds number &f 10
showing a good prediction of the logarithmic profile of the mean velocity. 2002 American
Institute of Physics. [DOI: 10.1063/1.1432693

I. INTRODUCTION based on constitutive relations and physical constraints such

Modeling the effects of solid walls on adjacent turbulent® real|zabll|ty or two-component limit of turbqlence, have
better theoretical bases but are very seldom—if at all—used

flows has long been—and still is—a major challenge. The ™~ X o . .
problem is equally acute in one-point and two-point statisti-for mdustrlgl z_ippllcatlops because of their complexity.
cal closures, as it is in spectral modeling or large-eddy simu- '€ élliptic relaxation method of Durb?noffers good
lations (LES). Indeed, the hypotheses underlying existingPTOSPects of reconciling the two above-mentioned require-
one-point turbulence closure models, e.g., high Reynold@entsz it en'ables the integration down to Fhe wall, with ac-
number, local isotropy, quasihomogeneity, are not valid incePtable grid density. The method, applied to Reynolds-
the presence of a wall. Hence, near-wall modifications arétress models, has a solid theoretical basis, but implies six
necessary in order to make them comply with the near-walfdditional equations, which impedes its spreading into the
behavior of turbulence. industry. The main problem is not the increased cost due to
Research on this topic is driven by two opposing moti-the number of equations, but rather the complexity of the
vations: a need for simple and convenient models for indusimplementation and the stability problems: the boundary
trial applications, and the requirement for consistency withconditions for the additional equations are a major source of
the physics of the near-wall turbulence. The wall-functionnumerical instability. For industrial applications, Durbin pro-
techniqué is widely used among the industry because it enjosed a version of the model reduced to four equations, the
ables a drastic reduction in the number of grid points, but is?—f model® which has become popular and has begun to
still deficient in nonequilibrium flows, primarily in strong be implemented in commercial software. However, this
pressure gradients, impinging flows, separation, reattachmodel is not fully satisfactory because it still uses the eddy
ment, natural convection, three-dimensional flows, etc. Modviscosity hypothesis.
els based on damping functions, which allow the integration
of equations up to the wall, are much less popular among tha. The physics of wall effects on turbulence
industry since they require a very fine mesh in the vicinity of . . .
the wall and introduce nonlineaftypically exponential A solid wall exert; mult|ple_eff(_ects on fluid flow_anq
functions in the equations, which make their solution moreturbUIenC?' The np—s_llp constramt_mposes the dominating
difficult. Moreover, most of these functions are purely em_role of fluid viscosity in the close V|C|n|ty_ of a wall regard-
pirical and lack theoretical justification. More elaborate mod-€SS Of the bulk-flow Reynolds number. Viscous effects are of
els (e.g., Lumley? Shih and Lumley Craft and Laundéy, _scalar ghargcter and dampen the veloqty fluctuat|o_n§ equally
in all directions. In contrast, the blocking effect originating
from the impermeability constraint suppresses the velocity
dAuthor to whom correspondence should be addressed. Present addrefluctuations primarily in the wall-normal direction, making
Laboratoire d’Eudes Aeodynami i i iti ; ; ; ; i
e e Dalers, P2l e turbulence highly anisotropic and, in the Imit forces the
seneuil Cedex, France; electronic mail: Remi.Manceau@Iea.univ—turbuIence to approach the two-component state at the edge
poitiers.fr of the viscous sublayer. In addition, the wall reflects the pres-
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sure fluctuations and enhances their scrambling effect, thusytion tefm(i)i*j is evaluated fronkf;;, wherek is the turbu-

redistributing the kinetic energy among the componentSience kinetic energy, and the six independent components of

which, in turn, leads to the reduction of the turbulence an—fij are obtained by solving the six elliptic differential equa-
isotropy. The latter twdopposing effects, which have a di- jons (1- L2V2)fij:fih' , with boundary conditions enabling
rectional orientation and depend on the wall topography, argye reproduction of the near-wall behavior of the redistribu-
of a kinematic character and are present also in the vicinityjon term. These equations have then the purely geometrical
of an interface(free surfacg between a liquid and gaseous effect, with a unique length scale. Their role is to enforce the
fluid. A physically consistent model ought to account separyegistribution terms to comply with their near-wall limiting
rately for each of the effects mentioned, something that iehavior. It is, therefore, expected that the same effect could
difficult to achieve with a limited number of flow and turbu- be reproduced with On|y one e|||pt|c equation_ A Straightfor-
lence parameters that are at one’s disposal in one-point tufyard idea is to generalize the concept of scalar redistribution
bulence models, regardless of their level. functionf used in the2— f model. A scalar functiofican be
Most models of near-wall turbulence do not distinguishdefined byf=$¥M,,, choosing an appropriate tensi,
the viscous from nonviscous effects and usually apply em¢e g., the anisotropy tensay,), and the pressure—strain term
pirical damplng functions in terms of local turbulence Rey'can be reconstructed fromi*j :fNij , Where NI] is another
nolds numbers and often of wall distance by which to aC-yell-chosen tensor. Unfortunate|y' no Choicemil and NI]
count for the total wall effect. Needless to say, such m0d9|§an rigorous|y ensure the exact reconstructionqiﬁf [m
cannot perform well in situations where one or the othergther words, the equatios; = (¢ My)N;j cannot be satis-
effect is absent or is of less importaneg., viscous and fied by any tensor,, and N;;, except obviously whei;;
transitional regions in flows away from a solid wall unaf- is set toN;; = ¢%/(¢{;My), which is of no interegt and this
fected by blocking, or flows with liquid—gas interface Wheretype of model can hence be based only on an approximate
the kinematic blocking is the sole cause of turbulence modireconstruction. A survey of different possibilities, through
fication). priori tests and computations in a channel flow, have led us
Several approaches to model viscous and nonviscoug the conclusion that this approach cannot give correct pre-
wall effects separately have been reported in the literaturelictions of the stress anisotropy in the near-wall region with-
Craft and Laundérapply nonlinear models for the pressure— out using complex, nonlinear tensorial expressionsMaqy
strain term in which the coefficients are determined byandN;;. Now, one of the major purposes of the elliptic re-
imposing—among others—the two-component turbulenceéaxation approach is to avoid the use of such nonlinear for-
limit, which is the major consequence of wall blockage, mulations, and the appeal of such an approach, compared to
while also introducing some functions to model the viscousnonlinear low-Reynolds-number models, diminishes if the
effects. Hanjalicet al.” model the viscous effects with func- level of nonlinearity is not reduced.
tions of turbulence Reynolds number defined solely in terms  Therefore, in the present article, another approach is
of turbulence kinetic energy and its dissipation rétence used based on a blending of near-wall and far-from-the-wall
invariany. Recognizing the fact that the turbulence anisot-forms of the redistribution tensor, the ellipticity being pre-
ropy in the near-wall region is primarily caused by wall served by solving an elliptic equation for the blending func-
blockage, the turbulent-stress and dissipation-rate anisotrogdion «. The model, called the elliptic blending mod&BM),
invariants are used to model this nonviscous effect. Durbin'preserves the main features of Durbin’'s Reynolds-stress
concept of elliptic relaxation, both in the eddy-viscosity andmodel, but involves only one additional, scalar, elliptic equa-
Reynolds-stress models, accounts in fact for the kinematition, rather than six. We believe that this approach offers a
wall blocking, which adjusts the wall effect on pressure-reasonable compromise between simplicity and consistency
redistribution, stress anisotropy, and stress dissipation ratewjth the physics.
while the viscous effects are introduced by imposing the  The article is divided into five sections: after the Intro-
Kolmogorov scales as the lower bounds to the conventionaduction, the constraints to be satisfied by a near-wall turbu-

large-eddy time and length scales. lence model are described. In the next section we outline the
derivation of the model. A model validation in the channel
B. The present contribution flow at Re=590, using direct numerical simulatigbNS)

. . data, is described. Finally, some comments on the grid sen-
We propose to reduce the number of equations INiivity issue are given
Durbin’s Reynolds-stress model and thus to reduce the com- y g '
plexity of the model. Moreover, one of the main purposes of

this modification is to suppress the previously mentioned null- REYNOLDS-STRESS BUDGETS IN THE VICINITY

merical stiffness induced by the boundary conditions of theOF THE WALL
additional elliptic relaxation equations. It is aimed to meet  In order for a model to be as universal as possible, it
industrial needs for a simple and robust model, while stillmust be based on true universal constra{ntdike the wall
preserving the elliptic relaxation concept and satisfying thdaws). In the near-wall region, the no-slip boundary condition
main theoretical constraints pertinent to near-wall turbu-and the incompressibility of the fluid impose the limiting
lence. behavior of the fluctuating quantities, and consequently, of
It is first noted that the six elliptic relaxation equations the Reynolds stresses and their budgets. Reproducing these

are somewhat redundant. Indeed, in this model, the redistriaear-wall budgets is the only way to ensure a correct predic-
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TABLE |. Taylor-series expansions of the different terms of the budgets of the Reynolds stresses. The idggtides-2pva,, dpg/dz=2pvc,, Py
=2pvb,, andp,=3pvb; have been used, deriving from the fact that the fluctuating Navier—Stokes equations reduce in the near-wall mgiéx to
= pvd®u; lay>.

—auujlat -G Dij D} i Pij —8i)

— 2 Va—% -2 va_i

u? o(y? o(y?) +12va a5y o(y® —4vajayy o(y®) —8vajayy
+0(y?) +0(y?) +0(y?)
12vb%y? —4vh3y? —8vbsy?

v2 o(y" oy®) +40vbyb,y? o(y®) — 16vb,bgy? oy®) — 24vbybay?
+0(y*) +O(y% +0(yY)

2vc? —2vcf

w? o(y? %) +120C,C5y o(y® —4vCiCoy oy®) —81C,Coy
+0(y?) +0(y?) +0(y?)
6va by —2va by —4vabyy

u o(y® oy +(12vayby+ 12vayh,)y? oy — (6vagby+4va,h,)y? o(y* — (6va ba+ 8vayhy)y?
+0(y°) +0(y?) +0(y?)
2va;cq —2va;cy

uw o(y? o(y?) +(6va,C,+ 6vayc,)y oy?) (—2va,c— 2va,cy)y o(y?) (—4va,c,—4va,c,)y
+0(y?) +0(y?) +0(y?)
6vb,c,y —2vb,ycyy —4vb,cy

ow oy?) O(y* +(120bac, + 120b,¢,)y2 ! — (6vbgCy +4vbycy)y? oY) — (6vb4Cy +8vb,Cy)y2
+0(y?) +0(y® +0O(y?)

tion of the wall-induced anisotropies in general configura-Note that the coefficientd,;, B;, and C; are deterministic

tions. Therefore, this is the main line followed in the deriva-functions, whereas the coefficiengds, b;, c;, andp; are

tion of the elliptic blending model. Note that free surfacesstochastic variables.

are not considered here and, consequently, modifications of The Taylor-series expansion of the Reynolds stresses is

the model are necessary to account for this type of boundarstraightforward

conditions. — 5, —— 2 4
We consider the general case of a wall in a turbulent U =a1y"+2a:8;y°+O(y"),

incompressible flow: contrary to usual descriptions of the — — —

near-wall limiting behavior, the wall here is not necessarily v?=bay*+2bsbay*+ O(y°),

plane a_nd the flow may not be parallel to it. Let us fOCl_JS on v7=c_iy2+2Ey3+ O(y4,

a certain point on the wall: the reference frame can, without

any loss of generality, be chosen such thatytirection be uv =a;b,y3+ (ash,+a ba) y*+ O(y®), )
normal to the wall at this particular point, itself located at _
y=0. The mean velocities), V, W and the fluctuating ve- UW=a;C,y2+ (a;C,+a,cy)y3+ O(y*),

locities u, v, w and pressur@ can be expressed as Taylor- — 3 4 5
series expansions in terms yfThe no-slip boundary condi- vW=D3C1y"+ (b2Cy+b3Cy)y"+ O(y).

tion leads to the canceling of the zeroth-order terms for therhe damping of the components involvingis one of the
velocities, and the continuity equation to the canceling of themajor features a near-wall model must reproduce, in order to

first-order terms folV andv: predict the two-component limit of turbulence.
U=A(x,2,0)y+ Ay(x,2,)y2+ O(y3), < The Reynolds-stress transport equations can be written
iv] v T _
W=Cy(x,2,t)y+Ca(x,2,t)y>+ O(y?), "ot Cit DD T AP ey =0, @
u=ay(x,z,t)y+ay(x,z,t)y>+ O(y3), (1) whereC;;, Djj, DE ¢|’] Pij, ande;; denote convection,
5 3 viscous diffusion, turbulent diffusion, redistribution, produc-
v=by(x,2,1)y"+ O(y"), tion, and dissipation, respectively. Note that the tepifiis

the pressure—velocity gradient correlation, which is pur-
posely not decomposed into traceless and diffusive parts,
P=Po(X,Z,)+ P1(X,Z,1)y+ pa(X,Z,1)y2+ O(y3). since this splitting introduces near-wall behaviors that are

W= C1(X,Z,t)y+Co(X,Z,1) y2+ O(Y3),
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difficult to reproducé:® For convenience¢>i*j is called herein
redistribution, even though it also contains a diffusive part.
The Taylor-series expansions of the terms in &j.are

given in Table 1. It is emphasized again that the general case

is in focus here, i.e., all the derivatives with respeckta,

andt have been taken into account: they do not appear as the

dominant ordergwhich are given explicitly in the tablebut
they are all contained in th@(y")—for instance, the coef-
ficient of they term in the expansion okq; is 8va2
+12va,as+ 2v(day 19x)2+2v(da, 19z)2.
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_2
B3y~ e20=Kf o K (10)
12 2 (11
=—12v—.
y2

This complies with Eq.(4), and thus leads to the correct
medl_ctlon of the limiting behavior of?=y*. In the case of
u?, w?, anduw, kf; ij is negligible as compared with;;,
and, thus the dn‘ference()IJ g;; reduces to—esu;u;/k,

It can be seen that, for all the components, convectionyhich ensures the correct limiting behaV|orvl2u /y

turbulent dlf‘fUSIon prOdUCtlon as well as the time denVa-Hence for these Components Eq) is Sa“sﬂed Wh|Ch en-
tive, are all negligible to the two first dominant orders in the gres the correct prediction af, w? anduwocy

wall region. Shown in Table | is that the behaworu}tj in
the vicinity of the wall is related to its limiting budget, wh|ch
can be written, whatever the component, as

2Uin Uin
——n(n+ l)V7

<

oy"), 4
with n=1 foru_ w? anduw; n=2 for uy andow; andn
=3 for v2. The solution of this second-order differential
equation is
C

Byn+1+ y +O(yn+2) (5)
whereC=0 sinceu;u; iuj is zero at the wall. Thus, it appears
that the correct behavior cm‘u in y"** can only be repro-

However, a problem arises wnh; andvw. Indeed, for
these componentﬂ;IJ &;; has the same behavior as io?r
and accordingly, it leads to the predlctlonsu:f andvw
«y*instead ofy®. Hence, one may wonder why such bound-
ary conditions are used fdi, andf,3: the reasohis simply
that no boundary condition can ensure a behavioSirand
that y* is preferable toy?, in order that the turbulent shear
stress remain negligible compared to the viscous shear stress
in the near-wall budgets of the mean velocities.

To summarize, it is worth noting that the prediction of
the two-component state of turbulence in the vicinity of the
wall by the elliptic relaxation model is a consequence of the
correct reproduction ofqﬁi’]—sij for the diagonal compo-
nents, which is obtained by imposing appropriate boundary
conditions to the elliptic equations fd{l This is obtained

duced in computations by respectlng the limiting behavior of;ithout spoiling the predictions in regions far from the wall,

i

Durbir® is expected to fulfill this requirement isee, e.g.,
Durbir® or Manceat for detail9: first, by using the model

Uin

gjj in n(n+1)vu;y; /y

The way the eII|pt|c relaxation model proposed by number model:kf:

oij—eij=kfij— & (6)
and, second, by solving differential equations fgr
1 2 uiu;
_ h |
fij_szzfij_E ¢ij_§85ij+T8 , (7)

called “elliptic relaxation equations{other formulations of
the elliptic relaxation operator were propo%&dt). The
wall boundary conditions fof;; are

fn,:_Z(ivz% for 1, f15, and 3,
f}"j’z—%f‘g’z for f4, and %, ®
fia=
and fore
e=2v5. ©
y

Thus, in the near-wall budget of, using Egs(8) and
(9), ¢f; —&i; becomes

since the model degenerates to a standard high-Reynolds
i~ eij— ¢l — 388, where ¢f} can be
any high-Reynolds number pressure—strain model, depend-
ing on the user’s choice.

Ill. DERIVATION OF THE ELLIPTIC BLENDING MODEL

The main drawback of the Reynolds-stress elliptic-
relaxation model is that it involves six additional equations
for the independent components of the tensqgr, with
boundary conditiong8), involving 14*, which induce nu-
merical stiffness. The aim of this paper is to provide a sim-
pler model, while preserving the main qualities of the elliptic
relaxation model, which are: the reproduction of the limiting
wall behavior oqui*j —&;; and, consequently, of the Reynolds
stresses; the ellipticity of the model, which is necessary to
account for the nonlocal blocking effect of the walthe
linearity of the model, or, more precisely, the fact that the use
of the elliptic relaxation strategy does not increase the level
of nonlinearity of the modelmainly due to the modebihj for
the redistribution term Our proposal is to model the redis-
tribution term by

¢ =(1=ka) gj +kag], (12
and the dissipation by
Uy 2
=(1—-Aka) —8+Aka 85” , (13

k
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w 1 w . w €, w 1 wo.
¢11:_§¢22, ¢22:_5EU ) ¢33:_§¢221

(17)
W:_sf . Wzo. W:_SE
®12 K UUs $15=0; ¢33 K oW

Several important remarks about E@.7) should be

made
(i) With the above wall values, the diﬁerentﬁ‘j—sij
o o N has strictly the same behavior as that given by the
o1 1 1o 100 elliptic relaxation model. The near-wall budgets of the
y* Reynolds stresses are thus exactly the same as those
FIG. 1. Apriori tests in a channel flow at Re590. DNS from Moser, Kim described .In .S.ec. I an(.j the Reyn0|ds stresses have
and Mansour(Ref. 16. Anisotropy of the dissipation tensatjj=¢;; /e . the S_ame I|m|t.|ng behavior. )
—%5”-. Symbols:ons (O dyg; O dyp; A d39. ——— d;; obtained using (i)  For v? the difference¢,— &5, is correctly repro-
ey=etu/k. - d; obtained usinge;=(1—ka)etu/k+ka2es;. duced near the wall but not eaah}, and &2, sepa-
d,; obtained usin@”:(1—Aka)sm/k+Aka§sa‘” _ ra_tely: this will not cause any pr(_)blem since only Fhelr
difference appears in the equations; however, this can
be a source of discrepancies when comparing term by
term predictions with th@Ns data.
whereA is Lumley’s flatness parametesee the Appendix (i) As for the elliptic relaxation model, the near-wall
The ellipticity of the model is preserved by solving an ellip- budgets ofuv andvw are not correct, leading to be-
tic differential equation fory, similar to Eq.(7) solved forf;; haviors «y* instead ofy®. This could have been
in the elliptic relaxation model avoided by choosing ¢!,= —Zﬁﬁ and ¢
1 =—2w, allowing Eq.(4) to be satisfied and thus
a—LZVZaIE, (14) leading to the correct limiting behaviory®. This
possibility has been investigated, but surprisingly it
with the boundary conditioar=0 at the wall. The reason for \(Af;;siinp?r;?;rrsgu'ts in a channel flow. Therefore, Eq.
using 1k as the source term of EGL4) and multiplyinga by (v) The values Ofd’\ﬁ. and ¢, have been chosen such that

k in Egs.(12) and(13) is that it ensures a behavior &fv
=y in the vicinity of the wall, which makes the second term
on the right-hand sides of Eq&l2) and (13) negligible in
this region. The factoA has been introduced in the blending
function used fok;; in order to delay the transition from the
near-wall form ofe;; to its far-from-the-wall form, as shown
in Fig. 1. Note also that the solution of E(L4) exhibits a
singularity aty=0 due to the behavior dfxy?: in order to
suppress this singularitig,is replaced in this equation kyT,
where, following Durbirf T is bounded by the Kolmogorov
time scale

k

€ 'CT<

T= ma>{

The length scalel is also bounded by the Kolmogorov
length scale

(19

v 1/2
&

k3/2 V3/4
L=C, ma{T,CWW . (16)

gb}’JV is traceless. This does not mean that what is mod-
eled is the deviatoric part of the velocity—pressure
gradient correlatiorii.e., the pressure—strain ternif

the velocity—pressure gradient correlation is split into
pressure—strain and pressure diffusion, the latter also
must be modeled in the near-wall region, since it be-
comes dominant in the budget of.° Equation(4) is
then valid only if the pressure diffusion is taken into
account. Thus, what is modeled here, i.e., the term
balancing D{j+e;;, is definitely the velocity—
pressure gradient correlation. The choice §df; and

¢35 is only made in order to ensure that the Reynolds-
stress transport equation contracts to the stan#ard
equation(except for turbulent diffusion This avoids
the necessity of modifying the standard coefficients of
the model too much, and in particular those of the
equation. This implies tha$}; and ¢35 are not cor-
rectly modeled, but this is of minor importance, since
they are small compared tg, ande sz, respectively.

Obviously, Eq.(17) needs to be written in a general,

In order to preserve the main feature of Durbin’s model,frame-independent form. To achieve this, it is necessary to

which is the correct prediction o{i)i*]——sij, the near-wall

identify somehow the direction normal to the wall. However,

redistribution terme;; must be chosen in such a way that the use of a topological wall-normal vector must be avoided,

#ii/k tend to the values of}’JY given in Eq. (8). This is
achieved by choosing

since such a quantity is often not well defined in complex
geometries. We propose here to use the fact that the gradient



Phys. Fluids, Vol. 14, No. 2, February 2002 Elliptic blending model: A new near-wall 749

T Y T T T Y T T T T

FIG. 4. Channel flow at Re=590. Dissipation rateO pns. ——— Elliptic

FIG. 2. Channel flow at Re-590. Mean velocityO pns. ——— Elliptic  'elaxation model. Elliptic blending model.
relaxation model. Elliptic blending model.

walls present in the domain, contrary to the usual definitions,
of the blending functionr is normal to the wall in its vicin-  which favor the closest wall. Equatid7) can then be gen-
ity, since the wall corresponds to tlae= 0 isovalue contour. eralized to
Thus, the vector

e[—— R 11—
Va (18) (ﬁ\iﬂj’:_SE(UiUknjﬂk+UjUknink_EUkU|nkn|
n=ro—r,
IV al
can be used as a unit vector representing the “wall-normal” X(ninj= ;) | (19
direction everywhere inside the domamcannot be defined _ . _
only where|V «|=0, but this certainly happens only suffi- Concerning the far-from-the-wall parg;; any high-

ciently far from the wall, where the factor (dke) makes Reynolds-number model can be used. Two possibilities have
the near-wall term negligible in E12). Some virtues of the been investigated: the RottaP model;*** and the Spe-
use of this vector to identify the wall-normal direction can beziale, Sarkar, and Gatski mode(SSG. The latter leads to
noted: it avoids the discontinuity of the wall-normal vector Somewhat better predictions and has been here selected as
across the bisector of a corner angle that appears with tH&e preferred choice. Note that the coefficigit (see the
usual geometrical definitions; it suppresses the need for déippendiy has been set to 1.9 instead of 1.3: this has an
termining the ambiguous “closest wall point,” which can be influence mainly in the near-wall region, since it is in front of
multiply defined along a curved wall; it is sensitive to the the square root of the second anisotropy invariant, which
curvature of the wall; it accounts automatically for all the exhibits a peak in this region. The nonlinear return tégn
term) can cause numerical stiffness and is often suppressed
from the SSG model. However, it is necessary to predict
correctly the return to isotropy problenicf. Speziale
, , , , , : et al.®: hence, it is kept in the present model. If this term
i | causes numerical difficulties, it can be suppressed: in that
case, the coefficiert,, should be set t&€,,=1.88.

The model equations faru; are finally closed with the
low-Re-number version of the transport equation dor

&8+U de CglP—C€28+ d [C, T de
at - Kax, T ox | o, UmE
. e ie k—( 6°U;
V&Xkaxk 83V8ujuk an(;X|
( 92U, 20
0 100 00 0 a0 50 60 IXIX( )’
+
Yy with the boundary conditiof®). The term involving second-

FIG. 3. Channel flow at Re-590. Reynolds stresses. Symbotsss order derivatives of the mean velocity is known to be nu-
(OUZ; Tv%; AW?; *up). ——— Elliptic relaxation model. Elipiic  Merically stiff and can require a very fine mesh in the buffer
blending model. zone close to a wall, but can play an important physical role
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FIG. 5. Channel flow at Re=590. Budgets of the Reynolds stress(em?; (b) v (o w2, (d) u. Symbols:dns (A ProductionP;; ; * Redistributiond;i*j ;

V Dissipation—g;; ; O Total diffusion Di”j+DiTj). Elliptic blending model.

in some situations, since it is a model for a term that appears:5. Note that such a small value ¢t for the first calcula-
in the exacte transport equation. An alternative version of tion point is not necessary: a value upyto=3 can be used
the model is proposed in the Appendix, which does not usevithout spoiling the predictions too much.

this term but a variablé:sl coefficient: the latter version Profiles of mean velocity, Reynolds stresses, and dissi-
contains a bit less physics but is easier to compute. pation rate, obtained by the elliptic blending model, are plot-
The complete model equations are summarized in théed in Figs. 2, 3, and 4, compared with thes and Durbin’s
Appendix. elliptic relaxation modet. It can be seen in Fig. 2 that the
predictions of the mean velocity profile by both models are
IV. CHANNEL FLOW COMPUTATIONS similar and reasonably close to tbas, even though it ap-

pears that the slope in the logarithmic layer with both models

.The fully developeq plang chapnel flow at | 25. 90, for is slightly underestimated. This seems to be an effect of the
which abNs database is availabt8,is used to calibrate the .

i . : ow Reynolds number, which may not have been fully cap-
model. The computations were performed with a simple 1 . . . .
. . . . tured with the model of the viscous effects—induced by im-
finite difference code, which allows one to impose the cor- "
posing the Kolmogorov length scale as the lower bound, Eq.

rect value of Re. It is worth noting that the implementation 16). H Fig 8 sh h hiah R Id b
of the model is very easy and that the numerical stiffness ié ). However, Fig. 8 shows that, at high Reynolds number,

considerably reduced compared to the elliptic relaxatior{h,e elliptic blending model reproduces correctly the logarith-

model, whose boundary conditio®) are major sources of ™MC "'?‘W' ) _
numerical instability because of the denominatoyn Figure 3 shows that the anisotropy is globally well pre-

A very fine grid with 300 points across the flow is used, dicted. When comparing with the elliptic relaxation model,
in order to avoid any numerical inaccuracy. The first nearthe peak ofu’ is not as well captured, but its profile in the
wall point inside the domain is located wt =0.1, and the logarithmic layer is better reprCEucedgiis slightly under-
size of the largest cell in the center of the channehis estimated too, but the profiles o anduv are almost per-
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FIG. 6. Elliptic blendi del: different contributi et B
(SSG mo(;gtlcmke:(b:]ng-; T_ci_e__,_ I(;vre_n_io_n Ell_uklzr;fbvtfgz Ziz FIG. 8. Channel flow at Re1C®. Mean velocity profiles obtained with three
= 2 2 2 different grids. Fine grid(500 point3; ——— Medium grid (100

— _ w h . *
=(1—ka) ps+kadh,; O ¢, from theons. points; @ Coarse grid50 points, represented by the symbpis- Log law:

Ut=«k"tIny"+5.7, with k=0.41.

fect. It must be emphasized here that the elliptic blending

strategy is able to make a high-Reynolds number model ingnderestimated by the elliptic blending model, and overesti-
tegrable down to the wall with only one additional equation,mated by the elliptic relaxation model. Note that, since the
whereas the elliptic relaxation strategy uses six additiona;boundary condition(9) for & depends directly ork, this
gquations. The price to pay for the reqluction of t'hel complexmeans that the second derivativeloét the wall is slightly
ity of the model is a loss of accuracy in the prediction of theynderestimated by the elliptic blending model, and overesti-
anisotropies in the near-wall region. However, since thgnated by the elliptic relaxation model.
model is derived in such a way that the correct near-wall Figure 5 shows the budgets of the Reynolds stresses pre-
balances of the Reynolds-stress transport equations are satieted by the elliptic blending model compared with thes.
fied, the crucial wall-blocking effect is preserved, which al- e budget ofu? [Fig. 5@)] is fairly well reproduced: the
lows the prediction of the two-component limit of turbu- gissipation is overestimated arougd =10 and underesti-
lence. It must also be noted that, in these computations, th§aied in the region below, as a consequence of the predic-
SSG model has been used as the far-from-the-wall M tion of & (Fig. 4. This flaw is compensated by corresponding
of the redistribution term, when the somewhat less elaboratggerestimation and overestimation, respectively, of the dif-
Rottat IP model has been used for the elliptic relaxationfsion.
model. . o _ The budget ob2 [Fig. 5b)] is not as good as that of.

In Fig. 4, itis obsE:rved that the dissipation rates well | particular, it is observed that very close to the wall"(
reproduced between™ =30 and the center of the channel, <2), ¢%, and e,, are not well predicted individually: as

but not below. Indeed, a peak arougd =10 is predicted g onasized in Sec. Ill, only their difference is correctly re-
instead of a plateau, and the limiting value at the wall is

02|

0.1

0.08 -

0.04 —

FIG. 9. Channel flow at Rel(®. Reynolds stress profiles obtained with

5 — — three different grids. Fine gri(b00 point3; ——— Medium grid(100
Akage; +-——+ evik; ——— (1-Aka)ev/k; €22 point9; Symbols: Coarse grit60 points, represented by the symbols, with:
=(1-Aka)ev/k+Aka3e; O &, from the DNS. ® U, M v A W2+ up).

FIG. 7. Elliptic blending model: different contributions &g, . +~--+%s;
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TABLE Il. Characteristics of the grids used for the grid sensitivity analysis. The computation is performed for
a channel flow at Re1C® (Re,~=35,000).n denotes the number of points, apd the location of theth point

of the grid.
n vi Y2 ya Ya Yn—Yn 1
Fine grid 500 0.10 0.21 0.31 0.42 330
Medium grid 100 1.0 2.1 3.3 4.6 1524
Coarse grid 50 25 55 9.0 13.2 2991

produced. In the region betwegr =100 and the center of found with our 1D code, using second-order finite differ-
the channel, all the contributions are well predicted. In theences, that the solution remains reasonably accurate when
region belowy* =100, ¢3, is not very well reproduced, but coarsening the grid. Figures 8 and 9 show results resolved in
at least has the correct order of magnitude, unlike the ona channel flow at Re1C®. Three very different grids are
obtained with the homogeneous, high-Reynolds-numbeused: the characteristics of these grids are summarized in
model alone(see Fig. 8. In the budget, this is again com- Table Il.

pensated by the diffusion term. It is not claimed here that this possibility of using a
The budget ofw? [Fig. 5c)] is well reproduced, except coarse grid can be generalized to other numerical methods,
for the overestimation of the dissipation arounti=10, al- like finite volumes, and to other flows, but the present results

ready noted in the budget of, and its underestimation in are, nevertheless, very encouraging since they contradict the
the region below, compensated by the diffusion. The redisusual belief that the wall region cannot be resolved without
tribution does not have the correct order of magnitude belowssing a first grid point belovy " =1. This behavior of the

y*=10, as a consequence of the modeling#gf described model is probably due to the fact that the near-wall budgets
in Sec. Ill. (4) of the Reynolds stresses are satisfied, which induces,

In Fig. 5(d), it can be seen that the budgetwof is quite ~ Whatever the mesh, the correct behavior of the values at the
well reproduced: at least, the two dominant terms, producfirst two points: for instance, fau?, the discretization of4)
tion and redistribution, are very well predicted. Only the dis-with a second-order accurate finite difference scheme leads,
sipation, and, as a compensation, the diffusion, which are oft the dominant order, ta 0%, /u?,=y y3ly? (where indices 1
minor importance in this case, are not accurately predictedand 2 denote the values at the first and second near-wall

In summary, one can note that the budgets are in generg@bints, respectively
satisfactory in the region very close to the waji"(<10),
where¢;; ande;; are dominated by their near-wall forrgs;
and eu;u;/k, and far from the wall y+>100) where, in
turn, the far from-the-wall forma&IJ and 386 are dominant. The issue of deriving near-wall models preserving a rela-
In between, a buffer region exists, whepf andsij experi-  tive simplicity has been investigated. It has been shown that
ence a transition between their two forms. This behavior ign order to predict the turbulence anisotropy in the vicinity of
detailed in Figs. 6 and 7 fap}, ande,,, respectively. It can the wall (two-component limix, a model must reproduce the
be seen in Fig. 6 that the SSG model gives a correct predidimiting behavior of ¢i*j —e&jj, the difference between the
tion sufficiently far from the wall, but does not reproduce theredistribution and the dissipation. This requirement is ful-
damping of the redistribution very close to it. In the elliptic filled by the elliptic relaxation model of Durbmbut the
blending model, this damping is partly due to the fadtar, penalty is an increase in the number of closure equations
and partly to the near-wall forn#?,, which is negative, as is from seven to 13, and numerically stiff boundary conditions
the ¢3, given by thepns. Figure 7 shows, similarly, that the for the six additional equations.
isotropic modebe &,; cannot reproduce the near-wall behav- A new Reynolds-stress model, the elliptic blending
ior of the dissipation tensor, and that the correct prediction ofmodel (EBM), has been proposed. This model has been de-
&5, by the model is due to the blending of the near-wall formrived on the basis of the elliptic relaxation model, but aimed
eu;u;/k and the isotropic form. Note also that the transitionat using only one additional closure equatitinus reducing
between the two forms occurs further from the wall g~ the total number to eightwithout sacrificing the main quali-
than for ¢3,, as a consequence of the inclusion of the factoities of Durbin’s Reynolds-stress model. It is noted that the
Ain the blending formula for the former. The location where Six eélliptic relaxation equations are somewhat redundant:
the blending factor reaches the value 0.5 is indgée=30  they all provide a smooth transition between the near-wall
for ka; y"=180 for Aka. and the far-from-the-wall forms of the model depending only
on the geometry and the length scale, which is the same for
all the components. Therefore, a similar effect can be ob-
tained by using blending formulas for the redistributi¢ﬁ

One of the reasons why near-wall models are criticizecand the dissipatios;; , with blending factorka and Aka,
and, eventually, not used at all, is the fact that they ofterrespectively, going to zero at the wall and to 1 far from it. In
require a drastic refinement of the grid close to the wall wherorder to preserve the nonlocal character of the model, which
compared to models using wall functions. However, wereflects the physical nonlocality of the blocking effect, the

VI. CONCLUSION

V. SOME COMMENTS ON GRID SENSITIVITY
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function « is defined as the solution of an elliptic differential
equation, similar to the elliptic relaxation equations used in
Durbin’s model. The boundary condition for this equation at
the wall is simplya=0, which avoids numerical stiffness.
Tests in a channel flow show that the predictions with
the new model are very similar to those of Durbin’s model.
The main difference is a less accurate prediction of the am-
plitude of the peak of the streamwise component of the Rey-

nolds stressi2. The budgets of the Reynolds stresses are in

general satisfactory.

These results are very encouraging, since they show that
the elliptic blending model behavior in a channel flow is very
similar to that of Durbin’s model. Moreover, the strategy
used for the near-wall region leads to only a moderate in-
crease in complexity: it involves only one additional equa-
tion of elliptic type compared to standard Reynolds-stress
models; it does not increase the level of nonlineatifya
linear pressure—strain model is used as the far-from-the-wall
formulation, the model of¢>i*j is fully linear); it seems to
allow the use of a reasonable grid density in the near-wall

region.

We believe that the approach has good prospects of be-
ing applicable to a wide range of situations, since it is based
on true universal physical constraints: the limiting behavior
of the different terms of the Reynolds-stress budgets in the
vicinity of the wall, which have been derived in a general
case, and are thus valid even at separation and impinging

points, in the presence of wall curvature, etc.

The model presented in this paper is certainly not a de-
finitive, widely tested version, and an important effort is still

necessary for testing and calibrating different modeling op-_ coefficients
tions. In the near future, computations of other canonical

tests casegbackstep flow, impinging jet, square cylinder,
etc), as well as more complex flows will be performed for

this purpose.

APPENDIX: THE ELLIPTIC BLENDING MODEL

1. Equations

Duju; -
5r = Piit Dij+Dij+ ¢ —eij. (A1)
De C£1P—C828 1% C# de 9%
— = u|umT +v
Dt T ax, X IX X
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3V Uitk x. (%) \ axeax | (A2)
—L2V2a=i (A3)
eT’
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Elliptic blending model: A new near-wall 753
iy 2
A=1-g(@jaj—aauaa); a;=— 30, (A7)
h . P 1
i =— 91+91 ebjj+0ze bikbkj_gbklbkléij
+ (93— 93 Vbibi ) KS;; + gak| by S+ bjiSix
2
_§b|m5|m5ij + 95K (b Qi+ by i), (A8)
iy Lo o LUy
T2k 3% ST ax; x|’
Q ~1[dU; dU; A9
iJl_2 &Xl &Xi ' ( )
& JR—
qS,] (u Unj Ny Ujugngnge
1—
_Eukulnknl(ninj_éij) : (A10)
Va (A11)
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(A12)
C,,=14; C, =1.85; C,,=0.55; C,=0.22;
1 2 3
o.=1.22;
0=1.0; C =0.45; C,=80.0; C;=6.0;
01=34; g7=18; g,=4.2; g3=0.8; g3 =1.9;
04=1.25; gs=
3. Boundary conditions at the wall
Ui=0; uu=0; e=2v—, a=0.
. y
4. Alternative version of the model for £ equation
For cases where the term involvirﬁg53 turns out to be

unstable,C83 can be set to zero, ar((’.lgl set to

[k
Cslz 14( 1.+0.076 1—ka) ——) . (A13)
u;u;nin;
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