
HAL Id: hal-02990396
https://hal.science/hal-02990396v1

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Entailment Checking in Separation Logic with Inductive
Definitions is 2-EXPTIME hard
Mnacho Echenim, Radu Iosif, Nicolas Peltier

To cite this version:
Mnacho Echenim, Radu Iosif, Nicolas Peltier. Entailment Checking in Separation Logic with In-
ductive Definitions is 2-EXPTIME hard. LPAR 2020, 2020, Alicante, Spain. �10.1145/3380809�.
�hal-02990396�

https://hal.science/hal-02990396v1
https://hal.archives-ouvertes.fr

Entailment Checking in Separation Logic with Inductive
Definitions is 2-EXPTIME-hard

Mnacho Echenim1, Radu Iosif2 and Nicolas Peltier1

1 Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble France
2 Univ. Grenoble Alpes, CNRS, VERIMAG, F-38000 Grenoble France

Abstract

The entailment between separation logic formulæ with inductive predicates, also known as sym-
bolic heaps, has been shown to be decidable for a large class of inductive definitions [8]. Recently, a
2-EXPTIME algorithm was proposed [11, 15] and an EXPTIME-hard bound was established in [9];
however no precise lower bound is known. In this paper, we show that deciding entailment between
predicate atoms is 2-EXPTIME-hard. The proof is based on a reduction from the membership problem
for exponential-space bounded alternating Turing machines [5].

1 Introduction
Separation logic is a particular case of the logic of bunched implications [12]. It was introduced in
[14] as an extension of Hoare logic intended to facilitate reasoning on mutable data-structures, and it
now forms the basis of highly successful static analyzers such as, e.g., Infer [4], SLAyer [2] or Predator
[6]. The assertions in this logic describe heaps, that are finite partial functions mapping locations to
tuples of locations (records), intended to model dynamically allocated objects. The usual connectives
of propositional logic are enriched with a special connective, called the separating conjunction, that
permits to assert that two formulæ hold on disjoint parts of the heap, allowing for more concise and
more natural specifications. In this paper, we consider the fragment of separation logic formulæ known
as symbolic heaps, consisting of separated conjunctions of atoms. Such atoms may be equational atoms,
asserting equalities or disequalities between memory locations; points-to atoms asserting that some
location refers to a given record; or may be built on additional predicates that assert that a part of the
memory has some specific shape (such as a tree). For genericity, such predicates are associated with
user-provided inductive definitions that allow one to describe custom data-structures. For example, the
formula x 7→ (y,z)∗ p(y) states that the heap is composed of two disjoint parts: a first location x pointing
to a tuple of locations (y,z) and a second part described by p(y). Given the inductive definition:

p(x)⇐ x 7→ (nil,nil) p(x)⇐∃y1,y2 . x 7→ (y1,y2)∗ p(y1)∗ p(y2)

p(y) states that the considered part of the heap is a binary tree1 the rooted at y.
This logic provides a very convenient way to describe graph-like data-structures. Satisfiability is

EXPTIME-complete for such formulæ [3], but entailment is not decidable in general2 [9, 1]. However,
the entailment problem was proven to be decidable for a large class of inductive definitions, with syn-
tactical restrictions that ensure the generated heap structures have a bounded-tree width [8], using a
reduction to monadic second-order logic interpreted over graphs. An EXPTIME-hard bound was estab-
lished in [9], and very recently, a 2-EXPTIME algorithm has been proposed. Although the algorithm
in [11] (implemented in the system Harrsh) is practically successful, as evidenced by the experimental
results reported in [11] and at https://github.com/katelaan/harrsh, it was discovered in [15]

1For conciseness we omit the rules for the two cases where one of the children is nil but the other one is not.
2Entailment does not reduce to satisfiability since the considered logic has no negation.

https://github.com/katelaan/harrsh

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

that it was incomplete, and some techniques are proposed to fix this issue (a complete description of
the new algorithm is available in the technical report [13]). In this paper, we show that the problem is
2-EXPTIME-hard, even if only entailment between predicate atoms is considered. The proof relies on
a reduction from the membership problem for alternating Turing machines [5] whose working tape is
exponentially bounded in the size of the input. This result gives the tight complexity for the problem,
whose upper bound is 2-EXPTIME [11, 13].

This paper is a thoroughly revised version of a paper that was presented at the workshop ADSL
2020 (with no formal proceedings). Due to space restrictions, the proofs of several technical lemmas
are omitted. They can be found in [7].

2 Separation Logic with Inductive Definitions

For any set S , we denote by ||S || ∈N∪{∞} its cardinality. For a partial mapping f : A⇀ B, let dom(f) def
=

{x ∈ A | f (x) is defined} and rng(f) def
= { f (x) | x ∈ dom(f)} be its domain and range, respectively, and we

write f : A ⇀fin B if ||dom(f)|| <∞. Given integers n,m, we denote by ~n . . m� the set {n,n + 1, . . . ,m}
(with ~n . . m� = ∅ if n > m). By a slight abuse of notation, we write t ∈ t if t = (t1, . . . , tn) and t = ti, for
some i ∈ ~1 . . n�.

Let Var = {x,y, . . .} be an infinite countable set of variables and Pred = {p,q, . . .} be an infinite count-
able set of uninterpreted relation symbols, called predicates. Each predicate p has an arity #p ≥ 1,
denoting the number of its arguments. In addition, we consider a special function symbol nil, of arity
zero. A term is an element of the set Term def

= Var∪{nil}. Let κ ≥ 1 be an integer constant fixed throughout
this paper, intended to denote the number of record fields. The logic SLκ is the set of formulæ generated
inductively as follows:

φ := t0 7→ (t1, . . . , tκ) | p(t1, . . . , t#p) | t1 ≈ t2 | t1 6≈ t2 | φ1 ∗φ2 | ∃x . φ1

where p ∈ Pred, ti ∈ Term, for all i ∈ ~0 . . max(κ,#p)� and x ∈ Var. A predicate-free formula is a
formula of SLκ in which no predicate occurs. A formula of the form t0 7→ (t1, . . . , tκ) [resp. p(t1, . . . , t#p)]
is called a points-to atom [resp. predicate atom]. We write fv(φ) for the set of free variables in φ, i.e., the
variables x that occur in φ outside of the scope of any existential quantifier ∃x. If fv(φ) = {x1, . . . , xn} then
φ[y1/x1, . . . ,yn/xn] denotes the formula obtained from φ by simultaneously substituting each xi with yi,
for i ∈ ~1 . . n�.

To interpret SLκ formulæ, we consider a fixed, countably infinite set Loc of locations and a desig-
nated location nil ∈ Loc. The semantics of SLκ formulæ is defined in terms of structures (s,h), where:
• s : Term→ Loc is a total mapping of terms into locations, called a store, such that s(nil) = nil,
• h : Loc ⇀fin Locκ is a finite partial mapping of locations into κ-tuples of locations, called a heap,

such that nil < dom(h).
A location is allocated in a heap h if it occurs in dom(h). Two heaps h1 and h2 are disjoint iff dom(h1)∩
dom(h2) = ∅, in which case their disjoint union is denoted by h1]h2, undefined if dom(h1)∩dom(h2), ∅.

The satisfaction relation |= between structures and predicate-free SLκ formulæ is defined, as usual,
recursively on the syntax of formulæ:

(s,h) |= t1 ≈ t2 ⇔ h = ∅ and s(t1) = s(t2)
(s,h) |= t1 6≈ t2 ⇔ h = ∅ and s(t1) , s(t2)
(s,h) |= t0 7→ (t1, . . . , tκ) ⇔ dom(h) = {s(t0)} and h(s(t0)) = (s(t1), . . . ,s(tκ))
(s,h) |= φ1 ∗φ2 ⇔ there are disjoint heaps h1 and h2, such that h = h1] h2

and (s,hi) |= φi, for each i = 1,2
(s,h) |= ∃x . φ ⇔ (s[x← `],h) |= φ, for some ` ∈ Loc,

2

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

where s[x← `] is the store mapping x into ` and behaving like s for all t ∈ Term \ {x}. Note that the
semantics of t1 ≈ t2 and t1 6≈ t2 is strict, meaning that these atoms are satisfied only if the heap is empty3.

2.1 Unfolding Trees
We now extend the previous semantics to handle formulæ containing predicate atoms. We assume that
such predicates are associated with a set S of rules of the form p(x1, . . . , x#p)⇐ ρ, where ρ is an SLκ

formula such that fv(ρ) ⊆ {x1, . . . , x#p }. We refer to p(x1, . . . , x#p) as the head, and to ρ as the body of the
rule. A rule is a base rule if its body is a predicate-free formula. We write p(x1, . . . , x#p)⇐S ρ if the rule
p(x1, . . . , x#p)⇐ ρ belongs to S. In this section, we consider a given set of rules S.

The above semantics is extended to formulæ that are not predicate-free, by recursively replacing
predicate symbols by the body of a defining rule until a predicate-free formula is obtained, in a finite
number of steps. For technical convenience, we place the steps of an unfolding sequence in a tree, such
that the descendants of a node represent the unfoldings of predicate atoms produced by the unfolding
of that particular node. Formally, a tree t is defined by a set of nodes nodes(t) and a function mapping
each node w ∈ nodes(t) to its label, denoted by t(w). The set nodes(t) is a finite prefix-closed subset
of N∗, where N∗ is the set of finite sequences of non-negative integers, meaning that if w and wi are
elements of nodes(t) for some i ∈N\ {0}, then so is w j for all j ∈ ~0 . . i−1�. We write |w| for the length
of the sequence w and λ for the empty sequence, so that |λ| = 0. The root of t is λ, the children of a
node w ∈ nodes(t) are the nodes wi ∈ nodes(t), where i ∈ N, and the parent of a node wi with i ∈ N is
w (hence, λ has no parent). The subtree of t rooted at w is denoted by t↓w; it is formally defined by
nodes(t↓w) def

= {w′ | ww′ ∈ nodes(t)} and t↓w (w′) def
= t(ww′), for all w′ ∈ nodes(t↓w). For simplicity, we

define unfolding trees below only for predicate atoms4:

Definition 1. An unfolding tree of a predicate atom p(t1, . . . , t#p) is a tree u, such that, for all w ∈
nodes(u), we have u(w) = (q(s1, . . . , s#q),ψ), for a predicate atom q(s1, . . . , s#q) and a formula ψ, where:

1. if w = λ then q(s1, . . . , s#q) = p(t1, . . . , t#p),
2. ψ = ρ[s1/x1, . . . , s#q/x#q], for a rule q(x1, . . . , x#q)⇐S ρ, and
3. there exists a bijective mapping from the set of occurrences of predicate atoms in ψ and the

children5 of w, such that if an atom r(v1, . . . ,v#r) is mapped to wi, for some i ∈ N, then u(wi) is of
the form (r(v1, . . . ,v#r),ψi), for some formula ψi.

We denote by TS(p(t1, . . . , t#p)) the set of unfolding trees for p(t1, . . . , t#p).

Given an unfolding tree u ∈ TS(p(t1, . . . , t#p)) such that u(λ) = (p(t1, . . . , t#p),ψ), we define its charac-
teristic formula inductively, as the predicate-free formula Υ(u) obtained from ψ by replacing each occur-
rence of an atom q(s1, . . . , s#q) by Υ(u↓i), where i denotes the child of w that q(s1, . . . , s#q) is mapped to6

by the bijection of point (3) in Definition 1. More precisely, if ψ = ∃y1 . . .∃yn . ϕ ∗∗m
i=1 qi(si

1, . . . , s
i
#qi

),
where ϕ is predicate-free, then Υ(u) = ∃y1 . . .∃yn . ϕ∗∗m

i=1 Υ(u↓i).
Given an SLκ formula φ and a structure (s,h), we write (s,h) |=S φ if and only if (s,h) |= ψ for some

formula ψ is obtained from φ by syntactically replacing each occurrence of a predicate atom p(t1, . . . , t#p)
in φ with a formula Υ(u), for some unfolding tree u ∈ TS(p(t1, . . . , t#p)). A structure (s,h) such that
(s,h) |=S φ is called an S-model of φ, or simply a model of φ, when S is clear from the context.

We may now define the class of entailment problems, which are the concern of this paper:
3This semantics avoids using boolean conjunction: φ∧ x = y⇔ φ ∗ x ≈ y, where x = y iff x and y are assigned the same

location.
4An unfolding tree for a generic SLκ formula can be obtained by joining the unfolding trees of its predicate atoms under a

common root.
5In particular, ψ is a predicate-free formula iff w is a leaf.
6Note that the bijection between atoms and children is not necessarily unique. However, it is easy to check that all these

mappings will eventually yield the same formula, up to a permutation of atoms.

3

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

Definition 2. Given a set of rules S and two SLκ formulæ φ and ψ, is it the case that every S-model of
φ is an S-model of ψ? Instances of the entailment problem are denoted φ |=S ψ.

3 A Decidable Class of Entailments
In general, the entailment problem is undecidable [9, 1]. Thus we consider a subclass of entailments for
which decidability (with elementary recursive complexity) was proved in [8] and provide a 2-EXPTIME
lower bound for this problem. The decidable class is defined by three restrictions on the rules used for
the interpretation of predicates, namely progress, connectivity and establishment, recalled next.

First, the progress condition requires that each rule adds to the heap exactly one location, namely
the one associated with the first parameter of the head. Second, the connectivity condition requires that
all locations added during an unfolding of a predicate atom p(t) form a connected tree-like structure.

Definition 3. A set of rules S is progressing if and only if the body ρ of each rule p(x1, . . . , x#p)⇐S ρ
is of the form ∃z1 . . .∃zm . x1 7→ (y1, . . . ,yκ) ∗ψ and ψ contains no occurrence of a points-to atom. If,
moreover, each occurrence of a predicate atom in ψ is of the form q(yi,u1, . . . ,u#q−1), for some i ∈ ~1 . . κ�,
then S is connected.

The progress and connectivity conditions induce a tight relationship between the models of predicate
atoms and their corresponding unfolding trees, formalized below:

Definition 4. Given a heap h and a tree t, an embedding of t into h is a bijection Λ : nodes(t)→ dom(h)
such that Λ(wi) ∈ h(Λ(w)), for each node wi ∈ nodes(t), where i ∈ N.

The following lemma states that every unfolding tree of a predicate atom can be embedded into the
heap of a model of its characteristic formula.

Lemma 5. Let S be a progressing and connected set of rules and (s,h) be a structure such that (s,h) |=S
p(t1, . . . , t#p). Then there exists an unfolding tree u ∈ TS(p(t1, . . . , t#p)) such that (s,h) |= Υ(u), and an
embedding of u into h.

The embedding whose existence is stated by Lemma 5 provides a way of decorating the al-
located locations in a heap by the predicate symbols that caused their allocation. Given a struc-
ture (s,h) such that (s,h) |=S p(t1, . . . , t#p) a predicate decoration of h w.r.t. p(t1, . . . , t#p) is a function
∆ : dom(h)→ Pred defined as ∆(`) def

= q if and only if u(Λ−1(`)) = (q(s1, . . . , s#q),ψ), for some unfold-
ing tree u ∈ TS(p(t1, . . . , t#p)) such that (s,h) |= Υ(u) and some embedding Λ of u into h. Note that the
unfolding tree u and function Λ are not unique, hence predicate decorations are not unique in general.

The third condition ensuring decidability requires that all the existentially quantified variables intro-
duced during an unfolding can only be associated with locations that are allocated in the heap of any
model of the formula (the condition given below is equivalent to the one given in [8]).

Definition 6. A set of rules S is established if and only if, for each rule p(x1, . . . , x#p)⇐S ∃z1 . . .∃zm . ψ
and for each S-model (s,h) of ψ, we have s(z1), . . . ,s(zm) ∈ dom(h).

Checking establishment is co-NP-hard [10]. In the following, we consider only sets of rules that
are progressing, connected and established (PCE). The interest for PCE sets of rules is motivated by the
following decidability result, proved in [8]:

Theorem 7. Given a PCE set of rules S and two formulæ φ and ψ the problem φ |=S ψ belongs to
ELEMENTARY.

The rest of this paper is concerned with proving that the entailment problem φ |=S ψ, for PCE sets
of rules S, is 2-EXPTIME-hard. Previously, an EXPTIME-hard lower bound for this problem was
established in [9].

4

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

4 Alternating Turing Machines
The proof of 2-EXPTIME-hardness relies on a reduction from the membership problem for alternating
Turing machines. We recall some basic definitions below.

Definition 8. An Alternating Turing Machine (ATM) is a tuple M = (Q,Γ, δ,q0,g) where:
• Q is a finite set of control states,
• Γ = {γ1, . . . ,γN ,b} is a finite alphabet, b is the blank symbol,
• δ ⊆ Q×Γ×Q× (Γ \ {b})×{←,→} is the transition relation, (q,a,q′,b,µ) ∈ δ meaning that, in state

q, upon reading symbol a, the machine moves to state q′, writes b , b to the tape7 and moves the
head by one to the left [resp. right] if µ =← [resp. µ =→],

• q0 ∈ Q is the initial state, and
• g : Q→{∨,∧} partitions the set of states into existential (g(q) =∨) and universal (g(q) =∧) states.

A configuration of an ATM M = (Q,Γ, δ,q0,g) is a tuple (q,w, i) where q ∈ Q is the current
state, w : N → Γ represents the contents of the tape and is such that ||{ j ∈ N | w(j) , b}|| < ∞, and
i ∈ ~0 . . max { j ∈ N | w(j) , b}+ 1� is the current position of the head on the tape. We denote by ε
the empty word over Γ. For any tape w and integer i, we denote by w[i← a] the tape w′ such that
w′(i) = a and w′(j) = w(j) for all j , i. In the following, we write i← def

= i− 1 if i > 0 (0← is undefined)
and i→ def

= i+1. Note that, since 0 denotes the leftmost position on the tape, no transition moves the head
left of 0.

The step relation of M is the following relation between configurations: (q,w, i)
(q,a,q′ ,b,µ)
−−−−−−−→ (q′,w′, j)

if and only if there exists a transition (q,a,q′,b,µ) ∈ δ such that w(i) = a, w′ = w[i ← b] and j = iµ

is defined, i.e., either i > 0 or µ ,←. We omit specifying the transition (q,a,q′,b,µ) when it is

not important. An execution is a sequence (q0,w0,0)
(q0 ,a0 ,q1 ,b0 ,µ0)
−−−−−−−−−−→ (q1,w1, i1)

(q1 ,a1 ,q2 ,b1 ,µ1)
−−−−−−−−−−→ . . . Note

that an execution is entirely determined by the initial configuration (q0,w0,0) and the sequence
(q0,a0,q1,b0,µ0), (q1,a1,q2,b1,µ1), . . . of transition rules applied to it.

Given a function f : N→ N, an execution is f -space bounded if and only if |wi| ≤ f (|w0|), for all
i > 0. The ATM M is exponential-space bounded if there exists a constant c such that every execution is
f -space bounded, where f (x) = c ·2g(x) for some constant c and some univariate polynomial function g.

Definition 9. A derivation of an ATM M = (Q,Γ, δ,q0,g), starting from a configuration (q0,w0,0), is a
finite tree t, whose nodes are either:

1. branching nodes labeled with configurations (q,w, i) ∈ Q×Γ∗×N, or
2. action nodes labeled with tuples (a,b,µ) ∈ Γ×Γ\ {b}×{←,→}, where a is the symbol read, b is the

symbol written and µ is the move of the head at that step,
such that the root of t is a branching node t(λ) = (q0,w0,0) and, moreover:
a. each branching node labeled by (q,w, i) such that g(q) = ∨ has exactly one child, which is an action

node labeled by (a,b,µ), where a = w(i) and (q,a,q′,b,µ) ∈ δ; the child of which is a branching node

labeled by (q′,w′, j), such that (q,w, i)
(q,a,q′ ,b,µ)
−−−−−−−→ (q′,w′, j);

b. each branching node labeled by (q,w, i) such that g(q) = ∧ has exactly one child for each tuple
(q,a,q′,b,µ) ∈ δ such that a = w(i); this child is an action node labeled by (a,b,µ), the child of which

is a branching node labeled by (q′,w′, j), where (q,w, i)
(q,a,q′ ,b,µ)
−−−−−−−→ (q′,w′, j).

We say that M accepts w if and only if M admits a derivation starting from (q0,w,0).

Note that the leaves of such a tree are necessarily branching nodes labeled by a triple (q,w, i) such
that g(p) = ∧ and there is no transition (q,a,q′,b,µ) with a = w(i).

7A machine never writes blank symbols, that are used only for the initially empty tape cells.

5

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

(q0, ε,0)

(b,a,→)

(q1,a,1)

(b,a,←)

(q0,aa,0)

(b,b,→)

(q2,b,1)

Figure 1 Derivation of ATM in Example 10

Example 10. Consider an ATM M = (Q,Γ, δ,q0,g), where: Q = {q0,q1,q2}, Γ = {a,b,c,b), δ =

{(q0,b,a,q1,→), (q0,b,b,q2,→), (q0,b,b,q2,→), (q0,b,b,q1,→), (q0,c,c,q2,→), (q1,b,a,q0,←)}, g(q0) =

q(q2) = ∧ and g(q1) = ∨. A derivation for M, starting from an empty tape ε, is depicted in Figure 1 (the
ATM contains additional transitions not used here, they will be useful in upcoming examples). The run
is on a tape of length 2, hence the position is encoded by a single digit. �

Definition 11. The membership problem (M,w) asks the following: given an ATM M = (Q,Γ, δ,q0,g)
and a word w ∈ (Γ \ {b})∗ does M accept w ?

The complexity class AEXPSPACE is the class of membership problems where M is exponential-
space bounded. It is known that AEXPSPACE = co-AEXPSPACE = 2-EXPTIME [5], where co-
AEXPSPACE is the complement class of AEXPSPACE8.

In the following, we shall consider only the membership problem (M, ε). This is without loss of
generality; indeed, let (M,w) be any instance of the membership problem, and let c and g be the constant
and polynomial function witnessing the fact that M is exponential-space bounded. Let Mw be an ATM
that produces w starting from input ε. Clearly, Mw uses at most |w| working space, thus the machine
Mw; M, which runs Mw on the empty word and then continues with M, runs in space c ·2g(|w|) and accepts
ε if and only if M accepts w. If N ≥ log2(c) + g(w), then Mw; M runs in space 2N and moreover, (M,w)
and (Mw, ε) have the same answer. Therefore, we assume from now on that M = (Q,Γ, δ,q0,g) is an
ATM started in the configuration (q0, ε,0) and that M runs in space at most 2N on the empty input word,
where N is bounded by a polynomial in the length of w.

5 The Reduction
This section describes the reduction of the membership problem (Definition 11) for exponential-space
bounded ATMs to the entailment problem (see Definition 2) for PCE sets of rules (Definitions 3 and 6).
The main idea of the reduction is the following. Since the membership problem is existential (asking
for the existence of a derivation) and the entailment problem is universal (every model of the left-hand
side is a model of the right-hand side), a direct reduction is not possible. Instead, we reduce from the
complement of the membership problem (M,w) (there is no derivation of M on w) to an entailment
problem instance pM(x) |=SM cM(x), where pM(x), cM(x) are predicate atoms and SM is a PCE set of
rules derived from the description of M. Intuitively, pM(x) defines all heaps with a predicate decoration
that simulates the control structure of M (i.e. the branching and action nodes alternate and the control
states given by the predicate decoration are consistent with the transitions of M), with no regard to the
tape contents or the position of the head. Then cM(x) defines only those heaps that encode derivations

8Every ATM can be complemented in linear time, by interchanging the existential with the universal states, thus all alternating
classes are closed under complement.

6

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

violating the correctness of some tape contents or that of some position of the head. Consequently,
pM(x) |=SM cM(x) holds if and only if M has no derivation on w. Since M is space bounded by 2N,
where N is bounded by a polynomial in the length of the input word w, we reduce from an arbitrary
co-AEXPSPACE problem to the entailment problem for PCE sets of rules. Because co-AEXPSPACE
= AEXPSPACE = 2-EXPTIME, we obtain the lower bound on the entailment problem for PCE sets of
rules.

5.1 Syntactic Shorthands
Before giving the definitions of pM , cM and SM , we introduce several syntactic shorthands that simplify
the presentation. To simplify notations, we shall assume in the remainder of the paper that all heaps and
unfolding trees are defined on the extended syntax. For instance, although the final encoding uses only
binary heaps, i.e. for κ = 2, we shall actually write formulæ in which points-to atoms refer to arbitrary
tuples, with the convention that these tuples are always encoded as binary heaps. More precisely, we
shall write h(`) = (`1, `2, `3) to state that ` refers to a pair (`1, `

′
1) where `′1 itself refers to (`2, `3), and

this additional location `′1 will never be explicitly referred to. Similarly, unfolding trees will also be
defined by taking into account this syntactic extension, i.e., points-to atoms with arbitrary tuples will be
allowed to occur in the labels of the unfolding trees, bearing in mind that such atoms will actually yield
additional unfolding steps, which will not be explicitly considered in the tree.

Encoding Tuples Let t = (t1, . . . , tn) be a tuple of terms, with n > 2. Let ψ = ψ1 ∗ · · · ∗ψn be a (possibly
empty) separated conjunction of predicate atoms, where the first argument of every predicate atom in ψi
is ti. By writing:

p(x)⇐∃y1 . . .∃yr . x1 7→ (t1, . . . , tn)∗ψ

we denote the rules:

p(x) ⇐ ∃z1∃y1 . . .∃yr . x1 7→ (t1,z1)∗ψ1 ∗ p̃1(z1, x,y1, . . . ,yr)
p̃i(zi, x,y1, . . . ,yr) ⇐ ∃zi+1 . zi 7→ (ti+1,zi+1)∗ψi+1 ∗ p̃i+1(zi+1, x,y1, . . . ,yr), for i ∈ ~1 . . n−2�

p̃n−2(zn−1, x,y1, . . . ,yr) ⇐ zn−1 7→ (tn−1, tn)∗ψn

where p̃1, . . . , p̃n−1 are fresh pairwise distinct predicate symbols.
The intuition is that the tuple (t1, . . . , tn) is represented by a binary tree of the form (t1, (. . . , (tn−1, tn) . . .))

of depth n− 1. This allows one to encode records of various, non-constant lengths n by using only a
constant number of record fields (here, κ = 2). Note that the obtained rules are progressing, and, by
definition of ψ1, . . . ,ψn, they are connected. Moreover they are established when the initial rule is es-
tablished, since the variables y1, . . . ,yr are allocated in ψ and every variable zi is allocated by p̃i. In the
following the term (sn, t) will be a shorthand for (s, . . . , s︸ ︷︷ ︸

n times

, t) and [t]n will stand for (niln, t). The inter-

est of such special tuples will be explained later (essentially we will need to introduce “dummy” cells
(nil, . . . ,nil) to ensure that all rules are progressing).

Global Variables We assume the existence of the following global variables that occur free in each
formula: 0,1,γ1, . . . ,γN . The variables 0 and 1 denote binary digits, and the variable γi (1 ≤ i ≤ N)
denote non-blank symbols from the alphabet Γ9. These variables will always be assigned pairwise
distinct allocated locations, as required by the following rules:

Const(x) ⇐ x 7→ (0,1,γ1, . . . ,γN)∗a(0)∗a(1)∗∗N
i=1a(γi) (1)

a(x) ⇐ x 7→ (nil,nil) (2)
9Since any membership problem is equivalent to a membership problem on a binary alphabet, via a binary encoding of Γ,

having just 0 and 1 suffices. We consider distinct alphabet symbols γ1, . . . ,γN only to avoid clutter.

7

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

Considering global variables is without loss of generality in the following, because these variables can
be added to the parameter list of each head in the system (at the expense of cluttering the presentation).

Binary Choices We introduce a special symbol • which, when occurring in the body of a rule, ranges
over the global variables 0 and 1. Thus any rule of the form:

p(x1, . . . , x#p)⇐∃z1 . . .∃zn . x1 7→ (•,y)∗ψ

stands for the following two rules:

p(x1, . . . , x#p) ⇐ ∃z1 . . .∃zn . x1 7→ (0,y)∗ψ
p(x1, . . . , x#p) ⇐ ∃z1 . . .∃zn . x1 7→ (1,y)∗ψ

and similarly for rules of the form p(x1, . . . , x#p)⇐ ∃z1 . . .∃zn . x1 7→ (y,•) ∗ψ. The elimination of the
occurrences of • must be done after the encoding of tuples by binary trees, so that the number of rules
is increased by a constant κ2 = 22. Note also that the fact that each rule allocates only one cell and that
κ = 2 (more generally that κ is a constant) is essential here, since otherwise the elimination of • would
yield an exponential blow-up.

Example 12. A rule p(x)⇐ x 7→ (•4) is first transformed into:

p(x)⇐∃x1 . x 7→ (•, x1)∗ p1(x1) p1(x1)⇐∃x2 . x1 7→ (•, x2)∗ p2(x2) p2(x2)⇐ x2 7→ (•,•)

Afterwards, the symbol • is eliminated, yielding:

p(x) ⇐ ∃x1 . x 7→ (0, x1)∗ p1(x1) p(x) ⇐ ∃x1 . x 7→ (1, x1)∗ p1(x1)
p1(x1) ⇐ x1 7→ (0, x2)∗ p2(x2) p1(x1) ⇐ x1 7→ (1, x2)∗ p2(x2)
p2(x2) ⇐ x2 7→ (0,0) p2(x2) ⇐ x2 7→ (0,1)
p2(x2) ⇐ x2 7→ (1,0) p2(x2) ⇐ x2 7→ (1,1)

We obtain 4∗2 = 8 rules. If the first transformation is omitted then we get 24 = 16 rules. �

Binary Variables A binary variable b is understood as ranging over the domain of the interpretation
of 0 and 1, namely the locations assigned to 0 and 1 by the formula Const (1). Additionally, for
each binary variable b, we consider the associated variable b, intended to denote the complement of
b. More precisely, the formula ∃b . ψ is to be understood as ψ[0/b,1/b]∨ψ[1/b,0/b]. However, this
direct substitution of the (existentially quantified) binary variables by 0 and 1 within the rules of an
established system would break the establishment condition (Definition 6), because 0 and 1 are not
necessarily allocated within the body of the rule10. This problem can be overcome by passing 0 and 1
as parameters to a fresh predicate. More precisely, a rule of the form (with 1 ≤ i ≤ m):

p(x1, . . . , x#p)⇐∃b1 . . .∃bi∃y1 . . .∃yn . x1 7→ [t]m ∗ψ (3)

is a shorthand for the following set of rules:

p(x1, . . . , x#p) ⇐ ∃y . x1 7→ (nil,y)∗ p′(y, x1, . . . , x#p,0,1)
p(x1, . . . , x#p) ⇐ ∃y . x1 7→ (nil,y)∗ p′(y, x1, . . . , x#p,1,0)

p′(y, x1, . . . , x#p,b1,b1) ⇐ ∃b2 . . .∃bi∃y1 . . .∃yn . y 7→ [t]m−1 ∗ψ

Clearly, the elimination of the binary existential quantifiers from the rule (3) adds 2 · i rules to the set.
Note that the hat [t]m, of height m ≥ i decreases at each step of the elimination which ensures that the

10In fact they are allocated by the side condition Const.

8

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

definition is well-founded. It is easy to check that the resulting rules are progressing and connected.
Furthermore, they are also established, if the variables y1, . . . ,yn are allocated in ψ. The rule (3) is
equivalent to 2i rules of the form p(x1, . . . , x#p)⇐∃y1 . . .∃yn . x1 7→ [t]m ∗ψ where every b j is replaced
by 0 or 1 and b j is replaced by the complement of b j. However, adding the variables b j and b j one by
one as parameters to the predicate allows one to represent these rules concisely, using only 2 · i additional
rules. This comes with a cost: since the progress condition requires each rule to allocate exactly one
location, the vector t must be embedded into a tuple [t]m of length at least i.

Next, we introduce a syntactic shorthand to denote disequality constraints on vectors of binary vari-
ables. For a vector b = (b1, . . . ,bn) of binary variables, we denote by b the vector (b1, . . . ,bn). The
following rule:

p(x1, . . . , x#p)⇐∃c1 . . .∃cn∃y1 . . .∃ym . x1 7→ t ∗ψ | (c1, . . . ,cn) 0 (b1, . . . ,bn) (4)

where each ci (1 ≤ i ≤ n) occurs at most once in t and does not occur in ψ and b1, . . . ,bn ∈ {x1, . . . , x#p},
is a shorthand for the following set of rules:

p(x1, . . . , x#p)⇐∃y1 . . .∃ym . x1 7→ (t[bi/ci]) [•/c j] j∈~1. .n�\{i} ∗ψ, i ∈ ~1 . . n� (5)

Intuitively, rule (4) introduces new binary variables c1, . . . ,cn, such that not all of them are equal to the
complements of b1, . . . ,bn, respectively. In other words, one ci must be equal to bi, for some i ∈ ~1 . . n�,
and the other c j for j , i are arbitrary (hence they can be replaced by • since they occur only once in t).
Note that expanding rule (4) as described above (see rule (5)) results in at most n rules of the form (3),
hence the full elimination of binary variables from the system is possible in polynomial time. This is
mainly because in our reduction, described next, both i (in (3)) and n (in (4)) are bounded by N, which
in turn, is polynomially bounded by the length of the input to the membership problem.

5.2 Pseudo-derivations as Heaps
In this section, we show how to encode the general structure of a derivation as a heap and define a set
of rules that generates exactly the structures corresponding to these derivations. Importantly, since M
starts on the empty word ε, the tape contents in a branching node can be derived from the sequence of
actions along the path from the root to that node. For this reason, we shall not explicitly represent tape
contents within the configurations and simply label branching nodes with pairs (q, i) ∈ Q×~0 . . 2N−1�.
We first define pseudo-derivations, in which the conditions on derivations are relaxed by removing all
the constraints related to the content of the tape and the position of the head (such conditions will
be considered in Section 5.3). In other words, in a pseudo-derivation, the ATM is treated as a mere
alternating automaton, enriched with arbitrary (and possibly inconsistent) read/write/move actions on
the tape. More formally:

Definition 13. A pseudo-derivation of M = (Q,Γ, δ,q0,g) is a tree t, whose nodes are either:
1. branching nodes labeled with pairs (q, i) ∈ Q×N, or
2. action nodes labeled with tuples (a,b,µ) ∈ Γ×Γ\ {b}×{←,→}, where a is the symbol read, b is the

symbol written and µ is the move of the head at that step,
such that the root of t is a branching node, t(λ) = (q0,0) and, moreover:
a. each branching node labeled by (q, i), such that g(q) = ∨, has exactly one child that is an action node

labeled by (a,b,µ), where (q,a,q′,b,µ) ∈ δ, the child of which is a branching node labeled by (q′, j)
such that (q,a,b,q′,µ) ∈ δ and j ∈ N;

b. each branching node labeled by (q, i) where g(q) = ∧ has exactly one child for each tuple
(q,a,q′,b,µ) ∈ δ; this child is an action node labeled by (a,b,µ), the child of which is a branching
node labeled by (q′, j), where j ∈ N.

9

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

(q0,0)

(b,b,→)

(q2,0)

(b,b,→)

(q1,1)

(b,a,←)

(q0,0)

(c,c,→)

(q2,1)

Figure 2 Pseudo-derivation of
ATM in Example 10

Definition 13 is similar to Definition 9 except that all the condi-
tions related to the content of the tape and to the position of the head
have been removed (i.e., one does not check that the symbol a occurs
at position i in the tape or that j = iµ). Any derivation starting from an
empty tape ε can be associated with a pseudo-derivation, simply by re-
placing the label (q,w, i) of the branching nodes by (q, i). Conversely,
for some pseudo-derivations, we may obtain an isomorphic derivation
by inductively replacing the labels of the branching nodes from the
root to the leaves as follows. Initially, the label (q0,0) of the root of
the tree is replaced by (q0, ε,0). Afterwards, if a branching node is
relabeled by (q,w, i) and is followed by an action node ω labeled by
(a,b,µ), then the label (q′, i′) of the branching node following ω is re-
placed by (q′,w[i← b], i′). If the obtained tree is a derivation, then
we say that the pseudo-derivation yields a derivation. Note that this is
not always the case, because the conditions on the read actions and on
the moves in the tape are not necessarily satisfied: a branching node
(q,w, i) may be followed by an action (a,b,µ) such that a , w[i], and the latter node may be followed by
a branching node (q′,w′, i′) with i′ , iµ. Figure 2 gives an example of a pseudo-derivation yielding no
derivation, for the ATM of Example 10. The parts of the labels that do not fulfill the desired properties
are underlined (the symbols b and c do not match the symbols read on the tape, and 0 does not match
the position of the head). The conditions ensuring that a pseudo-derivation yields a derivation will be
given in Section 5.3.

We represent the pseudo-derivations of M as tree-shaped heaps generated by a set of rules where,
intuitively, each predicate q(x) allocates a branching node labeled by a pair (q, i) and each predicate
q(x,a,b,µ) allocates an action node labeled (a,b,µ). In our representation, the state q will actually be
omitted (see, e.g., Rule (6)), because it is implicitly defined by the unfolding tree. Further, we represent
each position i ∈ ~0 . . 2N − 1� on the tape succintly, by an N-tuple of binary digits bin(i) ∈ {0,1}N and
encode the left and right moves as ←̃ def

= 0 and →̃ def
= 1. Let τ(q,a) def

= δ∩ ({q}× {a}×Q×Γ \ {b}× {←,→})
be the set of transitions of M with source state q, reading symbol a from the tape. We consider the
following rules, for each state q ∈ Q and symbol a ∈ Γ:

q(x) ⇐ ∃x′ . x 7→ (•N, x′)∗q′(x′,a,b, µ̃) (6)
if g(q) = ∨ and (q,a,q′,b,µ) ∈ τ(q,a)

q(x) ⇐ ∃y1 . . .∃yn . x 7→ (•N,y1, . . . ,ym)∗
m
∗
j=1

q j(y j,a,b j, µ̃ j) (7)

if g(q) = ∧ and τ(q,a) = {(q,a,q1,b1,µ1), . . . , (q,a,qm,bm,µm)}

q(x,y,z,u) ⇐ ∃x′ . x 7→ (y,z,u, x′)∗q(x′) (8)

The heaps defined by the above rules ensure only that the control structure of a derivation of M is
respected, namely that the branching and action nodes alternate correctly, and that the sequence of
control states labeling the branching nodes on any path is consistent with the transition relation of M.
In other words, these trees encode pseudo-derivations of M. Further, we introduce a top-level predicate
pM(x) that allocates the special variables 0,1,γ1, . . . ,γN and ensures that the initial state q0 of M is the
first control state that occurs on an path of a pseudo-derivation:

pM(x) ⇐ ∃y∃z . x 7→ (y,z)∗ p′M(y)∗Const(z) (9)

p′M(y) ⇐ ∃z′ . y 7→ [z′]N ∗q0(z′) (10)

10

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

`0 (q0)

0 `1 (q1)

b a 1 (→) `2 (q1)

1 `3 (q0)

b a 0 (←) `4 (q0)

0

`5 (q2)

b b 1 (→) `6 (q2)

1

Figure 3 A heap encoding the derivation of Figure 1

The hat [z′]N above ensures that every heap generated by p′M begins with a tuple [z′]N def
= (

N︷ ︸︸ ︷
nil, . . . ,nil,z′).

The use of this tuple will be made clear in Section 5.3. For now, let SM be the set consisting of the
rules above. In the following, we stick to the convention that predicate symbol q represents a branching
node, whereas a represents an action node. The definition below formalizes the encoding of a pseudo-
derivation by a structure:

Definition 14. A structure (s,h) such that (s,h) |=SM pM(x) encodes a pseudo-derivation t of M, written
as (s,h)B t, if and only if there exists a predicate decoration ∆ of h w.r.t. pM(x), two heaps h1 and h2 and
a bijection f : nodes(t)→ dom(h2) such that, for all w ∈ nodes(t), the following hold:

1. h = h1] h2,
2. (s,h1) |= ∃y∃z∃z′ . x 7→ (y,z)∗Const(z)∗ y 7→ [z′]N,
3. If w is a branching node with label t(w) = (q, i) and children w0, . . . ,wn, then ∆(f (w)) = q and
h2(f (w)) = (`1, . . . , `N, f (w0), . . . , f (wn)), where ` j = s(bin(i) j), for all j ∈ ~1 . . N�,

4. If w is an action node with label t(w) = (a,b,µ) and only child w0, then we have h2(f (w)) =

(s(a),s(b),s(̃µ), f (w0)).

A heap encoding the derivation of Figure 1 is depicted in Figure 3 (for readability, the part corre-
sponding to the formula ∃y∃z∃u . x 7→ (y,z) ∗Const(z) ∗ y 7→ [z′]N is not depicted, i.e., only the heap h2
of Definition 14 is shown). We also give, for each location `, the corresponding predicate ∆(`).

Lemma 15. (A) For each pseudo-derivation t of M, there exists a structure (s,h) |=SM pM(x) such that
(s,h)B t. (B) Dually, for each structure (s,h) |=SM pM(x), there exists a pseudo-derivation t of M such
that (s,h)B t.

5.3 Encoding Complement Membership as Entailment Problems
In this section, we show how to encode the conditions that ensure that a pseudo-derivation is a derivation,
namely that the considered pseudo-derivation also fulfills all the conditions related to the tape contents
and the position of the head. More precisely, we recall that a pseudo-derivation of M yields a derivation
of M if the contents of the tape and the head’s position are consistent with the sequence of actions
leading to that particular configuration. This is the case if the following conditions hold:

11

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

I. If a branching node labeled (q, i) is followed by an action node labeled (a,b,→) [resp. (a,b,←)],
itself followed by a branching node labeled (q′, i′) then necessarily i′ = i+1 [resp. i = i′+1], i.e. the
position of the head changes according to the action executed between the adjacent configurations
(for instance, in Figure 2, the position 0 does not fulfill this condition).

II. For every i ∈ ~0 . . 2N−1�, if along a path from a branching node labeled (q, i) followed by an action
node labeled (a,b,µ), to another branching node labeled (q′, i) followed by an action node labeled
(a′,b′,µ′), there is no branching node labeled (q′′, i), then necessarily a′ = b. Indeed, the symbol
read on position i must be the one previously written, since it was not changed in the meantime
(e.g., in Figure 2, the symbol c does not fulfill this condition).

III. For every i ∈ ~0 . . 2N−1�, if along a path from the root to a branching node labeled (q, i), followed
by an action node labeled (a,b,µ), there is no branching node labeled (q′, i), then necessarily a = b,
i.e. the tape is initially empty (e.g., this condition is violated by the symbol b in Figure 2).

In the following, we shall not check that the above conditions hold for some derivation of M, but
rather the opposite: that for each pseudo-derivation of M, at least one of the above conditions is broken.
In other words, we reduce from the complement of the membership problem (M, ε) to an entailment
problem, defined next. This does not change the final 2-EXPTIME-hardness result, because, as previ-
ously mentioned, 2-EXPTIME = AEXPSPACE = co-AEXPSPACE.

To this end, we consider a predicate cM and a set of rules SM containing rules for pM(x) and cM(x)
such that the entailment pM(x) |=SM cM(x) holds if and only if every pseudo-derivation of M violates at
least one of the conditions (I), (II) or (III); in other words, if and only if M, started on input ε, admits no
derivation.

Let B def
= maxq∈Q,a∈Γ ||τ(q,a)|| be the maximum branching degree (i.e. the maximum number of chil-

dren of a node) of a derivation of M. We define an auxiliary predicate r(x) that generates all tree-shaped
heaps in which branching nodes correctly alternate with action nodes, with no regard for the labels of
those nodes:

r(x) ⇐ ∃y1 . . .∃yn . x 7→ (•N,y1, . . . ,yn)∗∗n
j=1 r(y j), for each n ∈ ~0 . .B�

r(x) ⇐ ∃y . x 7→ (a,b,•,y)∗ r(y), for each a ∈ Γ and b ∈ Γ \ {b}

First, we define the heap encodings of those pseudo-derivation trees that violate condition (I). To this
end, we guess a vector b in {0,1}N, encoding a position on the tape i ∈ ~0 . . 2N −1�, a shift µ ∈ {←,→},
encoded by µ̃ ∈ {0,1} and get the binary complement of the (encoding of the) position reached from b
by applying µ. Here we distinguish two cases, depending on the choice of µ:

(a) If µ is → then we guess bin(i) = b def
= (b1, . . . ,bn,0,1N−1−n) for some n ∈ ~0 . . N− 1� and let c def

=

(b1, . . . ,bn,0,1N−1−n) be the complement of bin(i + 1) = (b1, . . . ,bn,1,0N−1−n).
(b) Otherwise, bin(i) = b def

= (b1, . . . ,bn,1,0N−1−n) and let c def
= (b1, . . . ,bn,1,0N−1−n) be the complement

of bin(i−1) = (b1, . . . ,bn,0,1N−1−n).

For every n ∈ ~0 . . N−1�, m ∈ ~0 . .B� and i ∈ ~1 . . m�, we consider the following rules:

c1(x) ⇐ ∃b1. . .∃bn∃y . x 7→
(
[y]N

)
∗d1(y,1,b1 . . .bn,0,1N−n−1︸ ︷︷ ︸

b

,b1 . . .bn,0,1N−n−1︸ ︷︷ ︸
c

) (11)

c1(x) ⇐ ∃b1. . .∃bn∃y . x 7→
(
[y]N

)
∗d1(y,0,b1 . . .bn,1,0N−n−1︸ ︷︷ ︸

b

,b1 . . .bn,1,0N−n−1︸ ︷︷ ︸
c

) (12)

12

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

d1(x,u, b, c) ⇐ ∃y1 . . .∃ym . x 7→ (•N,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗d1(yi,u, b, c) (13)

d1(x,u, b, c) ⇐ ∃y1 . . .∃ym . x 7→ (b,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗ e1(yi,u, b, c) (14)

d1(x,u, b, c) ⇐ ∃y . x 7→ (a,b,•,y)∗d1(y,u, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (15)

e1(x,u, b, c) ⇐ ∃y . x 7→ (a,b,u,y)∗ f1(y, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (16)

f1(x, b, c) ⇐ ∃y1 . . .∃ym∃e . x 7→ (e,y1, . . . ,ym)∗
m
∗
j=1

r(y j) | e 0 c (17)

For a graphical depiction of the idea behind the encoding of violations of condition (I), we refer to
Figure 4 (I). Intuitively, rules (11) and (12) choose the move µ ∈ {←,→} (encoded by 0 or 1) and the
binary vectors b, c ∈ {0,1}N, according to the cases (a) and (b) above, respectively. Note that we use the
hat [y]N to eliminate the binary variables b1, . . . ,bn, as n < N, according to the elimination procedure
described in §5.1. Then a path to the branching node, labeled (q′, i′), that violates condition (I) is
non-deterministically chosen, by alternating the branching and action nodes allocated by rules (13) and
(15), respectively. The offending branching node is allocated by rule (17) and its predecessors are the
branching and the action nodes, labeled with (q, i) and (a,b,µ), such that i′ , iµ. These latter nodes are
allocated by rules (14) and (16), respectively.

The pseudo-derivations of M that violate condition (II) are encoded by the tree-structured heaps
defined by the rules below. To this end, we guess a binary vector b ∈ {0,1}N denoting the position of a
write action that has an inconsistent read descendant and let c be its binary complement. Then, for every
m ∈ ~0 . .B� and i ∈ ~1 . . m�, we consider the rules below (explanations will be provided afterward):

c2(x) ⇐ ∃b1 . . .∃bN∃y . x 7→
(
[y]N

)
∗d2(y,b1, . . . ,bN︸ ︷︷ ︸

b

,b1, . . . ,bN︸ ︷︷ ︸
c

) (18)

d2(x, b, c) ⇐ ∃y1 . . .∃ym . x 7→ (•N,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗d2(yi, b, c) (19)

d2(x, b, c) ⇐ ∃y . x 7→ (a,b,•,y)∗d2(y, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (20)
d2(x, b, c) ⇐ ∃y . x 7→ (a,b,•,y)∗ e2(y,γ, b, c), for each a ∈ Γ, γ ∈ Γ \ {b} (21)

e2(x,γ, b, c) ⇐ ∃y1 . . .∃ym . x 7→ (b,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗ f 2(yi,γ, b, c) (22)

f 2(x,γ, b, c) ⇐ ∃y . x 7→ (a,b,•,y)∗ f2(y,γ, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (23)
f 2(x,γ, b, c) ⇐ ∃y . x 7→ (a,b,•,y)∗g2(y,γ, b, c), for each a ∈ Γ, b ∈ Γ \ {b} (24)
f2(x,γ, b, c) ⇐ ∃y1 . . .∃ym∃e . x 7→ (e,y1, . . . ,ym)∗∗

j∈~1. .m�\{i}
r(y j)∗ f 2(yi,γ, b, c) | e 0 c (25)

g2(x,γ, b, c) ⇐ ∃y1 . . .∃ym . x 7→ (b,y1, . . . ,ym)∗∗
j∈~1. .m�\{i}

r(y j)∗g2(yi,γ) (26)

g2(x,γ) ⇐ ∃y . x 7→ (γ,b,•,y)∗ r(y), for each b ∈ Γ \ {b} (27)

For a depiction of the idea behind the encoding of violations of condition (II), we refer to Figure
4 (II). Rule (18) uses the hat [y]N to choose the tuple of binary variables b = (b1, . . . ,bN) and their
complements c = (b1, . . . ,bN). First, the path to a branching node labeled by the binary position b is
non-deterministically chosen by an alternation of branching and action nodes allocated by the the rules
(19) and (20), respectively, until the node and its predecessor are allocated by rules (22) and (21),
respectively. We also guess a symbol γ, distinct from the symbol written on the tape at position b, and
store it in the second parameter of e2(x,γ, b, c). Next, a path to a second branching node labeled by
the binary position b is non-deterministically chosen by an alternation of branching and action nodes

13

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

bin(iµ) , bµ

r

r

r

d1

d1

r

r

r

c1 choice of µ, b and c = bµ

f1

.

.

.

d1

e1 apply µ
bin(i) = b

(I)

bin(i) , b

r

r

r

r

r

r

r

r

r

r

r

r

c2 choice of b and c = b

d2

d2

.

.

.

r

r

r

g2 w[i] , b

g2 bin(i) = b
f 2

f2

d2 w[i]← b

e2 bin(i) = b
f 2

.

.

.

(II)

Figure 4 Pseudo-derivations violating conditions (I) and (II)

allocated by the the rules (25) and (23) respectively, while checking that no branching node with the
same position b occurs on this second path (due to the side condition e 0 c of Rule (25) and the fact
that b = c) . At the end, we reach the offending branching node (26), whose predecessor is allocated by
rule (24). At this point, we check that the symbol read by the last action node is γ (i.e. is different than
the symbol previously written at position b, by rule (21)). This check is done by rules (26) and (27),
ensuring that condition (II) is violated.

Next, we define the tree-structured heap encoding of the derivation trees that violate condition (III).
To this end, we guess a binary vector b ∈ {0,1}N denoting the position where a symbol different from b
has been read, with no previous write action at that position and let c be its complement. We consider
the rules below, for every m ∈ ~0 . .B� and i ∈ ~1 . . m�:

c3(x) ⇐ ∃b1 . . .∃bN∃y . x 7→ ([y]N)∗d3(y,b1, . . . ,bN︸ ︷︷ ︸
b

,b1, . . . ,bN︸ ︷︷ ︸
c

) (28)

d3(x, b, c) ⇐ ∃y1 . . .∃ym∃e . x 7→ (e,y1, . . . ,ym)∗ ∗
j∈~1. .m�\{i}

r(y j)∗d3(yi, b, c) | e 0 c (29)

d3(x, b, c) ⇐ ∃y . x 7→ (a,b,•,y)∗d3(y, b, c), for all a ∈ Γ, b ∈ Γ \ {b} (30)
d3(x, b, c) ⇐ x 7→ (a,b,•,y)∗ e3(y, b, c), for all a ∈ Γ, b ∈ Γ \ {b} (31)
e3(x, b, c) ⇐ ∃y1 . . .∃ym . x 7→ (b,y1, . . . ,ym)∗ ∗

j∈~1. .m�\{i}
r(y j)∗ f 3(yi) (32)

f 3(x) ⇐ ∃y . x 7→ (a,b,•,y)∗ r(y), for all a,b ∈ Γ \ {b} (33)

After the initial guess of the binary position b, by rule (28), a path to a branching node labeled by b
is non-deterministically guessed, by an alternation of branching and action nodes corresponding to the
rules (29) and (30), respectively, while checking that no branching node labeled with position b occurs
on this path. Once this node is reached, by rule (31), we check that its action node child reads a symbol
different than b, by rules (32) and (33), which is in violation of condition (III).

Finally, the predicate cM(x) that chooses the condition (I), (II) or (III) to be violated, is defined by

14

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

the following rules:

cM(x)⇐∃y∃z . x 7→ (y,z)∗ ci(y)∗Const(z), for all i ∈ {1,2,3} (34)

Let SM denote the set of rules introduced so far. The following lemma states the property of the models
of cM(x):

Lemma 16. Given a pseudo-derivation t of M and a structure (s,h), such that (s,h) B t, we have
(s,h) |=SM cM(x) if and only if t is not a derivation of M.

Lemma 17. The entailment pM(x) |=SM cM(x) holds if and only if the membership problem (M, ε) has a
negative answer.

Proof : “⇒” Suppose that M accepts ε. By Definition 9 there exists a derivation t starting from ε. Since
t is a derivation, it is also a pseudo-derivation of M and, by Lemma 15 (A), there exists a structure (s,h)
such that (s,h) |=SM pM(x) and (s,h)B t. By Lemma 16, we obtain (s,h) 6|=SM cM(x), thus pM(x) 6|=SM

cM(x). ”⇐” Suppose that pM(x) 6|=SM cM(x), hence there exists a structure (s,h) such that (s,h) |=SM

pM(x) and (s,h) 6|=SM cM(x). By Lemma 15 (B), there exists a pseudo-derivation t of M such that
(s,h)B t. By Lemma 16, t is a derivation of M, hence (M, ε) has a positive answer. �

We state the main result of this paper below:

Theorem 18. The entailment problem p(x) |=S q(x), where S is a progressing, connected and estab-
lished set of rules and p,q are predicate symbols in Pred that occur as heads in S, is 2-EXPTIME-hard.

Proof : Given an exponential-space bounded ATM M we define a set of rules SM , based on the de-
scription of M, such that pM(x) |=SM cM(x) if and only if (M, ε) has a negative answer (Lemma 17).
Moreover, the set of rules is easy shown to be progressing, connected and established. The reduction is
possible in time polynomial in the size of the standard encoding of M. Indeed, the number of rules in
S is O(||Q|| ·N ·B) and the succint representation of each rule, using binary choices and binary variables
can be generated in time O(||Γ|| ·B ·N). Finally, the complete elimination of binary variables is possible
in polynomial time. Since we reduce from the complement of a AEXPSPACE-complete problem and
co-AEXPSPACE =AEXPSPACE =2-EXPTIME, we obtain the 2-EXPTIME-hardness result. �

6 Conclusion
The entailment problem, for symbolic heaps with inductively defined predicates satisfying some addi-
tional conditions, was shown to be decidable (with elementary recursive time complexity) in [8]. We
showed that this problem has an actual 2-EXPTIME-hard lower bound. In the light of the recent results
of [11, 15, 13], this settles an open problem concerning the tight complexity of what is currently the
most general decidable class of entailments for Separation Logic with inductive definitions. Note that
the 2-EXPTIME-hardness proof relies only on entailments between atoms (more precisely they are of
the form p(x) |=S q(x)) and that inductive rules defining p and q contain no equational atom. Further, the
constructed structures are actually quite restricted: they are directed acyclic graphs, with “almost” a tree
shape, where only a polynomial number of children pointing to (nil,nil) are shared between nodes. Thus,
2-EXPTIME-hardness also holds for systems that are restricted to generate structures of this form. Note
that the existence of these shared children makes the structures non local, in the sense of [9] (entailment
is EXPTIME-complete for local structures). This draws a very precise boundary for the complexity
of the entailment problem in the considered fragment of SLκ, since it is known that the problem is
EXPTIME-complete if the structures are trees (possibly enriched with backward links from children to
parents) [9].

Concerning future work, we are now trying to extend the decidability and complexity results to a
larger class of inductive definitions, by relaxing some of the conditions in Section 3.

15

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

References

[1] Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël Ouaknine. Founda-
tions for decision problems in separation logic with general inductive predicates. In Anca Muscholl, editor,
Foundations of Software Science and Computation Structures - 17th International Conference, FOSSACS
2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, volume 8412 of LNCS, pages 411–425, 2014.

[2] Josh Berdine, Byron Cook, and Samin Ishtiaq. Slayer: Memory safety for systems-level code. In
Ganesh Gopalakrishnan andShaz Qadeer, editor, Computer Aided Verification - 23rd International Confer-
ence, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of LNCS, pages 178–183.
Springer, 2011.

[3] James Brotherston, Carsten Fuhs, Juan Antonio Navarro Pérez, and Nikos Gorogiannis. A decision procedure
for satisfiability in separation logic with inductive predicates. In Thomas A. Henzinger and Dale Miller,
editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)
and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14,
Vienna, Austria, July 14 - 18, 2014, pages 25:1–25:10. ACM, 2014.

[4] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino Luca, Pe-
ter W. O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving fast with software
verification. In Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal Methods - 7th
International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, volume 9058 of
LNCS, pages 3–11. Springer, 2015.

[5] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
doi:10.1145/322234.322243.

[6] Kamil Dudka, Petr Peringer, and Tomás Vojnar. Predator: A practical tool for checking manipulation of
dynamic data structures using separation logic. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Com-
puter Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, volume 6806 of LNCS, pages 372–378. Springer, 2011.

[7] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. Entailment checking in separation logic with inductive
definitions is 2-exptime hard, 2020. arXiv:2004.07578.

[8] Radu Iosif, Adam Rogalewicz, and Jiri Simacek. The tree width of separation logic with recursive definitions.
In Proc. of CADE-24, volume 7898 of LNCS, 2013.

[9] Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Deciding entailments in inductive separation logic with
tree automata. In Franck Cassez and Jean-François Raskin, editors, Automated Technology for Verification
and Analysis - 12th International Symposium, ATVA 2014, Sydney, NSW, Australia, November 3-7, 2014,
Proceedings, volume 8837 of LNCS, pages 201–218. Springer, 2014.

[10] Christina Jansen, Jens Katelaan, Christoph Matheja, Thomas Noll, and Florian Zuleger. Unified reasoning
about robustness properties of symbolic-heap separation logic. In Hongseok Yang, editor, Programming
Languages and Systems (ESOP’17), pages 611–638. Springer Berlin Heidelberg, 2017.

[11] Jens Katelaan, Christoph Matheja, and Florian Zuleger. Effective entailment checking for separation logic with
inductive definitions. In Tomás Vojnar and Lijun Zhang, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part II, volume 11428 of LNCS, pages 319–336. Springer, 2019.

[12] Peter W. O’Hearn and David J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic, 5(2):215–
244, 1999. doi:10.2307/421090.

[13] Jens Pagel, Christoph Matheja, and Florian Zuleger. Complete entailment checking for separation logic with
inductive definitions. Technical report, 2020.

[14] J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of LICS’02, 2002.
[15] Florian Zuleger and Jens Katelaan. Extending the profile abstraction for complete entailment checking of

symbolic heaps of bounded treewidth. In Second workshop of Automated Deduction in Separation Logic,

16

https://doi.org/10.1145/322234.322243
http://arxiv.org/abs/2004.07578
https://doi.org/10.2307/421090

Entailment Checking in Separation Logic with Inductive Definitions is 2-EXPTIME-hard Echenim, Iosif and Peltier

2020.

17

	Introduction
	Separation Logic with Inductive Definitions
	Unfolding Trees

	A Decidable Class of Entailments
	Alternating Turing Machines
	The Reduction
	Syntactic Shorthands
	Pseudo-derivations as Heaps
	Encoding Complement Membership as Entailment Problems

	Conclusion

