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Abstract We formalize in the proof assistant Isabelle essential basic notions
and results in financial mathematics. We provide generic formal definitions
of concepts such as markets, portfolios, derivative products, arbitrages or fair
prices, and we show that, under the usual no-arbitrage condition, the existence
of a replicating portfolio for a derivative implies that the latter admits a unique
fair price. Then, we provide a formalization of the Cox-Rubinstein model and
we show that the market is complete in this model, i.e., that every derivative
product admits a replicating portfolio. This entails that in this model, every
derivative product admits a unique fair price. In addition, we provide Isabelle
functions to compute the fair price of some derivative products.

Keywords Proof assistants · Financial mathematics · Discrete pricing ·
Isabelle/HOL

1 Introduction

The basic securities that are traded on financial markets (such as shares on
the equity market or bonds on the fixed-income market) have a price that
is submitted to the law of supply and demand, and depends on the needs of
financial actors. Things are not that simple for all securities traded on finan-
cial markets, and in particular, determining the price of so-called derivative
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products can be a far from trivial task. A derivative product is a security the
value of which depends on that of one or several underlying securities; a typical
example is a vanilla call on a share, which gives its holder the right, but not
the obligation, to buy the share on a predetermined date at a predetermined
price. Obviously, the price of a derivative product should depend on that of
its underlyings, but what exactly is this dependency? In fact, is there even a
unique price for any derivative? An intuitive answer to the second question is
that, similarly to basic securities, the price of a derivative should be unique:
if this were not the case, an investor could buy the derivative at the lower
price and simultaneously sell it at the higher price, making a profit without
investing any money or taking any risks. The investor would have exploited
what is called an arbitrage opportunity (see, e.g., [14]), and although such op-
portunities do exist on financial markets, they are exploited by financial actors
called arbitragists and tend to disappear quickly. This is the reason why many
results in quantitative finance rely on a no-arbitrage hypothesis. Such a hy-
pothesis also permits to provide a more precise definition of what a price for
a derivative should be: this should be any value that is neither so high as to
induce an arbitrage opportunity for the seller of the derivative, nor so low as
to induce an arbitrage opportunity for the buyer. Any price satisfying these
conditions is called a fair price for the derivative.

One of the most important results in financial mathematics is the proof by
Black, Scholes and Merton [4,17] that, in the so-called Black-Scholes model of
an equity market, every derivative admits a unique fair price, as well as a for-
mula permitting to compute this price. This model is based on the assumption
that the price of a risky security can be modeled using so-called Brownian mo-
tions. Along with the no-arbitrage hypothesis, the authors also suppose that
(1) the market is frictionless, meaning that securities can be bought or sold
with no transaction costs, and (2) investors can buy and sell any amount of the
securities, meaning that the quantity of a security held in a portfolio can be
any real number, even a negative one if the security has been sold short (i.e.,
sold by an investor not owning the asset). Since then, there have been a wide
variety of mathematical models devised for the pricing of derivative products,
adapting the hypotheses of the Black-Scholes-Merton model or modeling other
markets, such as the foreign-exchange or commodities markets.

A discrete-time model of an equity market was introduced by Cox, Ross
and Rubinstein [6]. This model is based on hypotheses similar to those of the
Black-Scholes-Merton model, in which time is continuous, and can actually be
viewed as a discrete-time approximation of this model. Evaluating the price of
a derivative in this model is more complex than in the continuous time model
since no explicit price formula exists. This entails that the CRR model is
not frequently used for the pricing of simpler derivatives. But several financial
institutions still rely on this model for the pricing of more complex derivatives,
such as American options, which can be exercised by their buyer at any time
until the option expires.

In this paper, we present a formalization in Isabelle/HOL [20] of (1) ba-
sic notions in financial mathematics such as markets, portfolios etc. (2) the
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definition of fair prices for derivative products on equity financial markets,
(3) the proof of the uniqueness of fair prices when a replicating portfolio exists
in a viable market, and (4) an algorithm to compute fair prices under a risk-
neutral probability space. We also formalize the Cox-Ross-Rubinstein model
and prove that in this model, every European derivative admits a replicating
portfolio, i.e., a portfolio with a value identical to the payoff of the derivative.
This work can be viewed as the start of a broader effort to formalize financial
mathematics. This first step already contains a large amount of financial no-
tions that are necessary for any advanced financial modeling. It also contains
fundamental results on fair prices that, although they may seem intuitive, re-
quire an advanced background in Probability theory to be stated formally. The
entire formalization is over 13000 lines long. The work presented here strictly
subsumes the formalization carried out in [9], which was mainly devoted to
the proof that in the model of a market defined by Cox, Ross and Rubinstein
[6], every derivative product admits a replicating portfolio. The results pre-
sented in this paper can be found in many financial mathematics textbooks
[21,15,3], with one main difference. Almost all derivative products expire at
some point in time (this time is called the maturity of the product); in most
textbooks, results are presented by considering an arbitrary derivative with a
given maturity T , and taking the finite probability space with outcomes con-
sisting of all sequences of T coin tosses. Here we formalize a setting in which
any derivative can be priced, and use Isabelle’s codatatypes [5] to consider
non-denumerable probability spaces with outcomes consisting of all infinite
streams of coin tosses. This could pave the ground for the handling of deriva-
tives with infinite maturity, such as so-called perpetual American options, see,
e.g., [21, Sect. 5.4].

Related work. Many results related to financial mathematics have already been
formalized in Isabelle. Large parts of Probability theory have been formal-
ized, building up on [11]; and results and concepts frequently used in financial
mathematics such as Markov processes or the Central Limit Theorem are also
available in Isabelle [12,1]. Broadly speaking, this work can be viewed as part
of an effort on the formalization of concepts in Economy. Several notions and
theorems have been formalized in Social Choice Theory [18,23,8], as well as
in Game Theory [22] and Microeconomics [16]. To the best of our knowledge,
other than [9], there has been no formalization of financial mathematics itself.

Organization. This paper is organized as follows. Section 2 contains basic fi-
nancial notions as well as a summary of the notions from Probability the-
ory that will be used throughout the paper and are already formalized in
Isabelle. In Section 3 we define equity markets in discrete time, introducing
the notions of portfolios and their values, as well as trading strategies which
represent the only reasonable portfolios that can be constructed. Arbitrage
opportunities are introduced in Section 4, they permit to define the notion of
a fair price for a derivative, and we show that if a derivative admits a repli-
cating portfolio, i.e., a portfolio whose value at maturity is identical to the
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derivative payoff, then the fair price for this derivative is unique. Section 5 is
devoted to the definition of risk-neutral probability spaces, which are based
on the existence of martingales, and permit to represent the fair price of a
derivative as an expectation. In Section 6, these results are applied to the
Cox-Ross-Rubinstein model, and an explicit formula for computing the fair
price of any derivative is provided. Section 7 contains a detailed illustrative
example, showing how in the Cox-Ross-Rubinstein model, a replicating port-
folio is computed, and the fair price of a derivative is obtained. The theory
files described in this paper are available on the Archive of Formal Proofs, at
https://www.isa-afp.org/entries/DiscretePricing.html.

2 Preliminary notions

2.1 Some notions in finance

We begin by briefly reviewing some basic standard definitions about equity
markets. This treatment is mainly based on Shreve [21], Vol. 1. An equity
market consists of a set of assets or securities that can be traded at prices
that evolve with time. An actor trading on different assets will own a portfolio
containing different quantities of the traded assets. These quantities are real
numbers that can be positive if the corresponding asset was bought, or nega-
tive if the asset was the object of a so-called short sale (the asset was sold by
an actor not actually owning it). A portfolio can be static if its composition
is fixed once and for all, and dynamic if its composition can evolve over time.
Clearly, most portfolios on markets are dynamic. Among the dynamic port-
folios, those of a particular interest are the trading strategies; these are the
dynamic portfolios for which the composition at time t is a random variable
that only depends on the available information up to time t. In other words,
a trading strategy is one for which investments cannot depend on information
that has not occurred yet. From a financial point of view, trading strategies
are thus meant to represent portfolios for which no insider trading can occur.
A portfolio in which cash is only invested at inception, after which all future
trades are financed by buying or selling assets in the portfolio is a self-financing
portfolio. An arbitrage represents a “free lunch”: it is defined as a self-financing
trading strategy with a 0 initial investment that offers a risk-free possibility
of making a profit. A market is viable if it offers no arbitrage opportunities.

Some of the securities that can be traded are basic securities that are
generally categorized depending to their risk level. Intuitively, the more the
price of an asset fluctuates, the riskier the asset, since it is more difficult to
predict the return an investor would obtain by buying the asset. A class of
securities with no risk is the class of bonds. These are assets based on a debt,

https://www.isa-afp.org/entries/DiscretePricing.html
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such as Treasury bills, that are assumed to guarantee a given return to an
investor1, and are thus considered as risk-free assets.

Other securities that are traded are derivative securities. These are securi-
ties that are characterized by their expiry date or maturity, and exercise times,
which are the times when cash is exchanged between the buyer and seller of
the derivatives. The amount of cash to be exchanged is called the payoff of
the derivative product, and it depends on the evolution and values of some un-
derlying securities. In this paper we will focus on European derivatives, which
can only be exercised at the maturity, see, e.g., [14].

An option is an example of a derivative that can be viewed as an insurance:
when it is exercised, it gives its owner the right—but not the obligation—to
trade an asset at a given price. The best-known options are the call and the
put options. A call (resp. put) option gives its owner the right, at time T , to
buy (resp. sell) the underlying security at the so-called strike price K, thus
guaranteeing that there is a cap (resp. floor) on the price that will be payed
(resp. received) at a future time for the security. In practice, when at time T
the price of the underlying security, denoted by ST , is greater than the strike
price K, the buyer of a call receives ST −K from the seller of the option, and
buys the security on the market for ST , in effect only spending K to obtain
it. When ST < K, the seller of the call does not deliver any cash, as the buyer
will directly buy the security on the market for a value that is less than K.
Thus, a call option is a derivative that, at maturity T , delivers a payoff of

(ST −K)+
def
= max(0, ST −K). In a similar way, a put option delivers at time

T a payoff of (K − ST )+.
Once a derivative is sold, the seller is meant to invest the cash by creating

a trading strategy, in order to be able to pay the required amount of money
when the derivative is exercised. The question is then: how much should a
buyer be expected to pay for a given derivative?

– No seller will be willing to sell it at a price so low that there is a risk when
the option expires the seller will lose money paying what is owed: such a
price would be unfair to the seller.

– If this price is so high that it is clear the seller can always pay what is
owed and sometimes even make a profit, the buyer will search for another
actor selling the derivative at a cheaper price. Such a price is unfair to the
buyer.

What it means precisely for a price to be too high or too low will be made
clear later; a price that is neither too high nor too low is a fair price. As
we will see, under some quite natural hypotheses, there is a case where the
answer to this question is straightforward. This is when the seller is capable of
creating a trading strategy that generates at exercise time exactly the payoff of
the derivative. Such a trading strategy is called a replicating portfolio. In this
case, the fair price for the derivative is the investment needed to initiate the

1 It can be argued that this assumption is incorrect because that there is always a nonzero
probability that investors will not be payed what they are owed. But because these bills are
backed by national governments, this probability is very close to 0.
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trading strategy. A market is complete if every derivative admits a replicating
portfolio; in a complete market, every derivative admits a unique fair price.

The construction of replicating portfolios is clearly not straightforward,
and it may not be guaranteed that such portfolios actually exist. An answer
to the existence of replicating portfolios for European options was given by
Fischer Black and Myron Scholes, and by Robert Merton in [4,17], in the so-
called Black-Scholes-Merton model. In their model, the equity market consists
of two assets: A risky asset, the stock, that pays no dividends and whose
evolution is described by a geometric Brownian motion (see, e.g., [14]); and a
risk-free asset with a deterministic price evolution. Their main result is that,
under some simple market hypotheses such as identical bidding and asking
prices and the absence of arbitrage opportunities, a European option over a
single stock can be replicated with a portfolio consisting of the stock and a
cash account. Their proof is based on the construction of a dynamic portfolio,
the composition of which changes continuously (it is called a delta-neutral
portfolio), which is guaranteed to replicate the option under consideration.
Along with the construction of replicating portfolios, the authors provide a
formula that permits to compute the fair price of any European option.

The Cox-Ross-Rubinstein model [6] that we consider in Section 6 of this
paper can be considered as an approximation of the Black-Scholes-Merton
model to the case where time is no longer continuous but discrete; i.e., to the
case where securities are only traded at discrete times 1, 2, . . . , n, . . . In this
setting, the evolution of the stock price is described by a geometric random
walk, which can be viewed as a discrete version of the geometric Brownian
motion: if the stock has a price s at time n, then at time n + 1, this price is
either u · s (upward movement) or d · s (downward movement). The factors
u and d must satisfy the relation: d < 1 + r < u, where r is the rate of
the risk-free asset (meaning that the price of the risky asset can either move
upward or downward relatively to the risk-free asset). The probability of the
price going up is always 0 < p < 1, and the probability of it going down is
1− p. The authors show that under these conditions, the market is complete:
every derivative admits a replicating portfolio.

2.2 Probability theory in Isabelle: existing notions

We briefly present the syntax of the interactive theorem prover Isabelle/HOL;
the tool can be downloaded at https://isabelle.in.tum.de/, along with
tutorials and documentations. Additional material on Isabelle can be found
in [19]. This prover is based on higher-order logic; terms are built using types
that can be:

– simple types, denoted with the Greek letters α, β, . . .
– types obtained from type constructors, represented in postfix notation (e.g.

the type α set denotes the type of sets containing elements of type α), or
in infix notation (e.g., the type α→ β denotes the type of total functions
from α to β).

https://isabelle.in.tum.de/
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Functions are curried, and function application is written without parentheses.
Anonymous functions are represented with the lambda notation: the function
x 7→ t is denoted by λx. t. We will use mathematical notations for standard
terms; for example, the set of reals will be denoted by R.

A large part of the formalization of measure and probability theory in
Isabelle was carried out by Hölzl [11] and is now included in Isabelle’s distri-
bution. We briefly recap some of the notions that will be used throughout the
paper and the way they are formalized in Isabelle. We assume the reader has
knowledge of fundamental concepts of measure and probability theory; any
missing notions can be found in [7] for example. For the sake of readability, in
what follows, a term F t will sometimes be written Ft.

Probability spaces are particular measure spaces. A measure space over a
set Ω consists of a function µ that associates a nonnegative number or +∞ to
some subsets of Ω. The subsets of Ω that can be measured are closed under
complement and countable unions and make up a σ-algebra. The σ-algebra
generated by a set C ⊆ 2Ω is the smallest σ-algebra containing C; it is denoted
in Isabelle by sigma-sets Ω C.

The functions µ that measure the elements of a σ-algebra are positive and
sigma additive2: if A ⊆ 2Ω is a σ-algebra and the sequence (Ai)i∈N consists of
pairwise disjoint elements in A, then µ(

⋃
i∈NAi) =

∑
i∈N µ(Ai). In Isabelle,

measure spaces are defined as follows (where R denotes R ∪ {−∞,+∞} and

B def
= {⊥,>}):

measure-space :: α set→ α set set→
(
α set→ R

)
→ B

measure-space Ω A µ⇔
σ-algebra Ω A ∧ positive A µ ∧ countably-additive A µ

A measure type is defined by fixing the measure of non-measurable sets to 0:

typedef α measure = {(Ω,A, µ) | (∀A /∈ A. µA = 0) ∧ measure-space ΩAµ}

IfM is an element of type α measure, then the corresponding space, σ-algebra
and measure are respectively denoted by ΩM, AM and µM.

The definition of a measure type may seem surprising, especially to math-
ematicians, because setting the measure of a set not in A to 0 can be counter-
intuitive: there is for example no relationship between elements with a measure
0 and negligible elements on a measure space. The reason for this is that in
Isabelle, a function cannot be partial and it is necessary to define the measure
function on every subset of ΩM; the choice of setting these values to 0 may
seem arbitrary, but it does not entail any contradiction. In a similar way, in
Isabelle, division is extended to 0 by letting x/0 = 0. This does not entail any
contradiction and any value could have been chosen, but setting this value to
0 permits to have other basic mathematical theorems to hold unconditionally.

We can associate to any σ-algebra C ⊆ 2Ω a measure space with a uniformly
null measure, (Ω, C, (λx.0)). In Isabelle, this measure space is denoted by
sigma Ω C.

2 This property is also called countable additivity in the literature.
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A function between two measurable spaces is measurable if the preimage of
every measurable set is measurable. In Isabelle, sets of measurable functions
are defined as follow:

measurable :: α measure→ β measure→ (α→ β) set
measurableM N µ =

{
f : ΩM → ΩN

∣∣ ∀A ∈ AN . f−1(A) ∩ΩM ∈ AM
}

In particular, for a function f : ΩM → ΩN , we will consider the smallest mea-
sure space in which f is measurable. This measure space is denoted by M〈f〉
and defined by M〈f〉

def
= (ΩM,B, µM), where B is the σ-algebra generated by

the set
{
f−1(A) ∩ΩM

∣∣A ∈ AN}.
Probability measures are measure spaces on which the measure of Ω is

finite and equal to 1. In Isabelle, they are defined in a locale [2]; this allows
one to delimit a range in which the existence of a measure satisfying the desired
assumptions is assumed, instead of having to explicitly add the corresponding
hypotheses in every theorem, which would be tedious.

locale prob-space = finite-measure + assumes µM(ΩM) = 1

A random variable on a probability space M is a measurable function with
domain ΩM. The average value of a random variable f is called its expectation,

it is denoted by3 EM[f ], and defined by EM[f ]
def
=
∫
ΩM

fdµM. Collections
of random variables are called stochastic processes. In most cases, stochastic
processes are indexed by a totally ordered set, representing time, such as N or
R+.

In what follows, we will consider properties that hold almost surely (or
almost everywhere), i.e., are such that the elements for which they do not hold
reside within a set of measure 0:

lemma AE-iff :

(AEM x. P x)⇔ (∃N ∈ AM. µM(N) = 0 ∧ {x | ¬P x} ⊆ N)

Given measure spaces M and N , we say that N is a subalgebra of M if
ΩM = ΩN and AN ⊆ AM.

3 Modeling equity markets in discrete time

3.1 General definitions

An equity market is characterized by the set of assets that can be traded and
the price at which they are traded4. A subset of these assets represents the

3 The superscript may be omitted if there is no confusion.
4 This is a simplification as in practice, two prices are associated with each asset: a bid

price, which represents the price traders are willing to pay to buy the asset, and an ask
price, which represents the price traders are willing to sell the asset. Bid prices are always
lower than ask prices, but on markets on which high volumes of assets are traded, both
prices are typically very close.
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basic securities that can be traded, these are the stocks. Examples of stocks
are shares on companies like Google, Apple, Facebook or Amazon, which can
be traded on the stock market. The remaining assets are viewed as derivative
products, the value of which typically depends on that of some stocks. Examples
of derivative products are futures on Facebook, which are contracts where two
actors agree to trade a share of Facebook for a given price at a given time; or
basket options on Apple and Google, which are options that give the buyer the
right, but not the obligation, to buy shares of Apple and Google for a given
price at a given time5. The precise definition of these derivative products is not
important at this point, these are assets with a value depending on that of one
or several stocks. The price at which an asset can be traded at each time is a
random variable, this price is thus represented by a stochastic process; and in
this case for which time is discrete, these stochastic processes are indexed by
N. At time n, the random variable associated with an asset thus represents the
value of this asset on time interval [n, n+ 1[. Note that in this general setting,
there is no relationship between the price processes of derivative products and
that of stocks. As we are concerned with computing fair prices for the former,
equity markets are defined in such a way that there always exists at least one
derivative product.

stk-strict-subs :: β set→ B
stk-strict-subs S ⇔ S 6= UNIV

Equity markets are defined as a type, from which the stocks S and price
processes P can be obtained:

typedef (α, β) discrete-market =
{(S :: β set, P :: β → N→ α→ R) | stk-strict-subs S}

The type β represents the products that can traded and the type α represents
the random outcome. In Isabelle, the typedef command permits to ob-
tain two morphisms for handling the discrete-market type: An abstraction
morphism

Abs-discrete-market :: (β set× (β → N→ α→ R))→
(α, β) discrete-market

and a representation morphism

Rep-discrete-market :: (α, β) discrete-market→
(β set× (β → N→ α→ R))

We may thus use the representation morphism to retrieve the set of stocks
and the price process from a given market:

stocks :: (α, β) discrete-market→ β set

stocks Mkt = fst (Rep-discrete-market Mkt)

5 Note that buying a basket option on Apple and Google is not the same as buying a call
on Apple and another one on Google.
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prices :: (α, β) discrete-market→ β → N→ α→ R
prices Mkt = snd (Rep-discrete-market Mkt)

We next consider quantity processes. These are used to represent the fact
that assets can be bought and sold; in particular, it is possible on financial
markets to sell an asset that is not held: when this occurs, we say the seller
is short on the asset (or holds a short position on the asset) and owns a
negative amount of the asset. When the holder owns a positive amount of
the asset, we say the holder is long on the asset (or holds a long position on
the asset). In several textbooks on financial mathematics, quantity processes
and portfolios are represented using vectors. Such a representation permits
a compact notation, and using notions such as scalar product, allows one
to represent financial notions such as value processes concisely. We chose to
formalize quantity processes differently to avoid importing theories that are
not necessary, and fixing the set of assets used to construct quantity processes
as well as their order.

We assume that any portion of an asset may be traded, thus the quantity
withheld is a real number. Quantity processes are formalized as functions that
associate a stochastic process to each asset. By convention, for n > 0, if q is
a quantity process and a is an asset, then q a n w represents the quantity
(positive if we are long the asset and negative if we are short the asset) of
asset a withheld on the time interval ]n− 1, n] for scenario w. The value of a
quantity process at time 0 is thus unimportant. Intuitively, the reason for such
a convention is that, at time n, a quantity process is meant to only depend
on the information available up to time n− 1. More formally, in both discrete
and continuous-time models, quantity processes of interest will be required
to be predictable processes, and the convention on quantity processes allows
for a uniform presentation. We define the following operators that permit to
construct and combine quantity processes6.

– No components

qty-empty :: β → N→ α→ R
qty-empty = (λx n w. 0)

– Single component

qty-single :: β → (N→ α→ R)→ β → N→ α→ R
qty-single asset qt-proc = qty-empty(asset := qt-proc)

– Sum quantities

qty-sum :: (β → N→ α→ R)→ (β → N→ α→ R)→
β → N→ α→ R

qty-sum q1 q2 = (λx n w. (q1 x n w) + (q2 x n w))

6 For the definition of qty-single, we use the notation f(a := b), which in Isabelle
represents an update of function f so that the image of a becomes b.
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Table 1 Table of quantity values for Example 1

Time 1 2 3 4

Apl quantity 1 2 3 4
Goog quantity -1 -2 -3 -4

– Multiply quantities

qty-mult-comp :: (β → N→ α→ R)→ (N→ α→ R)→
β → N→ α→ R

qty-mult-comp q prd = (λx n w. (q x n w) · (prd n w))

– Remove component

qty-rem-comp :: (β → N→ α→ R)→ (N→ α→ R)→
β → N→ α→ R

qty-rem-comp q asset = q(asset := (λn w.0))

Intuitively, qty-empty represents the quantity process in which no asset is
bought or sold, and qty-single is the process for which a single asset is
potentially bought or sold. The other operators permit to respectively add
quantity processes, to multiply all of them by another process, and to nullify
the quantity of an asset.

Related to the notion of a quantity process is that of its support set, which
consists of all the assets that are potentially bought or sold at some point for
some scenario. This leads to the definition of portfolios, which are quantity
processes that admit a finite support set.

support-set :: (β → N→ α→ R)→ β set

support-set q = {a | ∃nw. q a n w 6= 0}

portfolio :: (β → N→ α→ R)→ B
portfolio p ⇔ finite (support-set p)

In particular, stock portfolios are portfolios for which the support set consists
only of stocks.

stock-portfolio :: (α, β) discrete-market→ (β → N→ α→ R)→ B
stock-portfolio Mkt p ⇔ portfolio p ∧ support-set p ⊆ stocks Mkt

Example 1 Consider a market Mkt with stocks including shares on Apple, Face-
book and Google: {Apl, Fbk, Goog} ⊆ stocks Mkt. We can construct the
following portfolio

p1
def
= qty-sum (qty-single Apl (λ n w.n)) (qty-single Goog (λ n w.−n)).

The summary of the quantities for t = 1, . . . , 4 is given in Table 1. This is
portfolio in which we are long n shares of Apple and short n shares of Google
until time n for all scenarios; it has a support set consisting of Apple and
Google and is thus a stock portfolio.
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We now define value processes and closing value process for portfolios.
Intuitively, the value process of a portfolio at time n represents the total
amount of cash that is necessary at time n to invest in the assets of the
portfolio until time n + 1 , and the closing value process of a portfolio at
time n represents the total amount of cash received/owed when closing out all
positions7 at time n. The closing value process of a portfolio at time 0 can be
defined arbitrarily; a standard practice consists in setting its value to that of
the value process of the portfolio at time 0. Note that if the composition of
the portfolio does not change between times ]n− 1, n] and ]n, n+ 1], then the
value of the closing value process at time n is the same as that of the value
process.

– Value process

val-process :: (α, β) discrete-market→ (β → N→ α→ R)→
N→ α→ R

val-process Mkt p = if ¬(portfolio p) then (λn w. 0) else(
λn w.

∑
a∈support-set p((prices Mkt) a n w) ∗ (p a (n+ 1) w)

)
– Intermediate function for the closing value process

tmp-cl-val :: (α, β) discrete-market→
(β → N→ α→ R)→ N→ α→ R

tmp-cl-val Mkt p 0 = val-process Mkt p 0
tmp-cl-val Mkt p (n+ 1) =(

λw.
∑
a∈support-set p((prices Mkt) a (n+ 1) w) ∗ (p a (n+ 1) w)

)
– Closing value process

cls-val-process :: (α, β) discrete-market→
(β → N→ α→ R)→ N→ α→ R

cls-val-process Mkt p = if ¬(portfolio p) then (λn w. 0) else
(λn w. tmp-cl-val Mkt p n w)

Example 2 Assume the Apple and Google shares have deterministic prices
given in Table 2. Then the value process and closing value process of portfolio
p1 defined in Example 1 are given in the same table.

Example 3 Still under the assumption that Apple and Google shares have
deterministic prices recalled in Table 3, assume p′1 is a static portfolio (i.e.,
one for which the quantity processes are constant) in which we are always long
2 shares of Apple and short 2 shares of Google. Then the value process and
closing process of p′1 is given in the same table.

7 Closing out all positions means getting rid of all the assets in a portfolio, i.e., selling
those with a long position, and buying back those with a short position.



Cox-Ross-Rubinstein pricing in Isabelle 13

Table 2 Quantities and portfolio values for Example 2

Time 0 1 2 3

Apl quantity - 1 2 3
Goog quantity - -1 -2 -3

Apl value 100 98 96 98
Goog value 90 92 98 95.5

val-process Mkt p1 10 12 -6 10
cls-val-process Mkt p1 10 6 -4 7.5

Table 3 Quantities and portfolio values for Example 3

Time 0 1 2 3

Apl quantity - 2 2 2
Goog quantity - -2 -2 -2

Apl value 100 98 96 98
Goog value 90 92 98 95.5

val-process Mkt p′1 20 12 -4 5
cls-val-process Mkt p′1 20 12 -4 5

Table 4 Deterministic price of Facebook share for Example 4

Time 0 1 2 3

Fbk 5 4 4 5

Self-financing portfolios are portfolios in which no cash is invested except
possibly at inception. A portfolio is self-financing if its closing value and value
at time n+ 1 are identical; this means that the value of the portfolio may be
affected by the evolution of the market but not by the changes in its compo-
sition.

self-financing :: (α, β) discrete-market→
(β → N→ α→ R)→ B

self-financing Mkt p ⇔
∀n. val-process Mkt p (n+ 1) = cls-val-process Mkt p (n+ 1)

A simple example of a self-financing portfolio is a static portfolio. Since its
composition never changes, no cash is ever invested or withdrawn from it. A
self-financing portfolio with initial value v0 can be obtained starting from an
arbitrary portfolio, provided the market contains an asset that never admits
a price equal to 0, by buying (resp. selling) the required quantity of the asset
with the extra (resp. missing) cash.

Example 4 Portfolio p1 of Example 1 is not self-financing. Assume the stock
price of Facebook is deterministic and given in Table 4. Then we can construct
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Table 5 Self-financing portfolio for Example 4

Time 0 1 2 3 4

Apl quantity - 1 2 3 4
Goog quantity - -1 -2 -3 -4
Fbk quantity - -2 -3.5 -3 -3.5

Apl value 100 98 96 98 -
Goog value 90 92 98 95.5 -
Fbk value 5 4 4 5 -

val-process Mkt p2 0 -2 -18 -7.5 -
cls-val-process Mkt p2 0 -2 -18 -7.5 -

a self-financing portfolio p2 with initial value 0, that has the same quantity
processes as p1 for Apple and Google. The quantities of stocks and the value
and closing value processes of p2 are given in Table 5. For instance, at time
0, the holder buys a share of Apple for 100e and sells a (borrowed) share
of Google for 90e, creating a portfolio for a total cost of 10e. To make the
portfolio self-financed with initial value 0, this cost is compensated by selling
2 (borrowed) shares of Facebook at 5e each, the total cost of the created
portfolio is then 0e.

3.2 Modeling time-dependent information

Filtrations are used to represent information accumulated over time. Formally,
they are defined as a collection of increasing subalgebras over a totally ordered
set with a minimal element ⊥ –typically N or R+.

class linorder-bot = linorder + bot

filtration :: α measure→ ((ι :: linorder-bot)→ α measure)→ B
filtrationM F ⇔ (∀t. subalgebraM Ft) ∧

(∀s t. s ≤ t⇒ subalgebra Ft Fs)

In general, when a filtration F representing available information is pro-
vided, we will mainly be interested in stochastic processes that depend on
this information. There are two categories of such stochastic processes of in-
terest for our purpose: adapted stochastic processes, that at time n are Fn-
measurable; and predictable stochastic processes, that at time n > 0 are Fn−1-
measurable. The definition of adapted stochastic processes in the more general
case is a straightforward generalization of that in the discrete case, which is the
one that is formalized below. We also introduce abbreviations for stochastic
processes with a range in a Borel measure space.

– Adapted stochastic processes

adapt-sp :: (ι→ α measure)→ (ι→ α→ β)→
β measure→ B

adapt-sp F X N ⇔ ∀t. Xt ∈ measurable Ft N
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abbreviation borel-adapt-sp F X ≡ adapt-sp F X borel

– Predictable stochastic processes

predict-sp :: (N→ α measure)→ (N→ α→ β)→
β measure→ B

predict-sp F X N ⇔ X0 ∈ measurable F0 N∧
∀n. Xn+1 ∈ measurable Fn N

abbreviation borel-predict-sp F X ≡ predict-sp F X borel

In our context, filtrations are meant to represent the currently available
information. A standard filtration used in financial mathematics is the one
defined as follows: for all n ≥ 0, Fn is the smallest subalgebra of M in which
for any stock s and time k ≤ n, the price process (prices Mkt) s k is Borel-
measurable. It is straightforward to verify that F is indeed a filtration. In
particular, at time 0, there is no information available, thus the measure space
F0 = F⊥ is trivial. Filtrations satisfying such a requirement are called initially
trivial filtrations.

init-triv-filt :: α measure→ (ι→ α measure)→ B
init-triv-filtM F ⇔ filtrationM F ∧ sets F⊥ = {∅, ΩM}

We define a locale for discrete equity markets by fixing a market and consid-
ering a probability space equipped with an arbitrary filtration that is initially
trivial.

locale init-triv-prob-space = prob-space +
fixes F :: N→ (α measure)
assumes init-triv-filt F

locale disc-equity-market = init-triv-prob-space +
fixes Mkt :: (α, β) discrete-market

Most of the assets that will be considered in this locale are those that
have an adapted price process w.r.t. the given filtration. Quantity processes in
which only assets with an adapted price process are bought or sold are called
support-adapted quantity processes.

support-adapt :: (α, β) discrete-market→
(β → N→ α→ R)→ B

support-adapt Mkt qt-proc⇔ ∀a ∈ support-set qt-proc.
borel-adapt-sp F (prices Mkt a)

The only portfolios that it is reasonable to consider are those with a com-
position that depends only on the information available at the current time.
More precisely, these are the portfolios for which the amounts that are bought
or sold of each asset on the time interval ]n, n + 1] is known at time n. This
means that the quantity of each asset is a predictable process; such portfolios
are called trading strategies.
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trading-strat :: (β → N→ α→ R)→ B
trading-strat p ⇔ portfolio p ∧

(∀a ∈ support-set p. borel-predict-sp F (p a))

In particular, the value process of a support-adapted trading strategy is
itself an adapted process:

lemma trading-strategy-adapted
assumes trading-strat p
and support-adapt Mkt p
shows borel-adapt-sp F (val-process Mkt p)

Since the filtration F is assumed to be initially trivial, such a strategy neces-
sarily admits a constant value at inception:

lemma trading-strategy-init
assumes trading-strat p
and support-adapt Mkt p
shows ∃c. ∀w ∈ ΩM. val-process Mkt p 0 w = c

We denote by init-value p the constant value equal to the value process of
a support-adapted trading strategy at time 0.

4 The notion of a fair price

4.1 Definitions

We define the notion of a fair price, which is meant to represent the price at
which a derivative available on the market should be bought or sold. Intuitively,
a fair price for an asset is one that does not allow a buyer or seller of the asset
to make a risk-free profit with this transaction. Making a risk-free profit is
called an arbitrage. We begin by formally defining this notion. An arbitrage is
a self-financing trading strategy with a zero initial value, that at some point in
time is almost surely positive and with a strictly positive probability of making
a gain. Arbitrage opportunities exist in real financial markets, however they
tend to be quickly exploited, which makes them vanish. In fact, there is an
entire category of traders on markets with the goal of detecting and exploiting
arbitrages as quickly as possible. Arbitrage opportunities are thus viewed by
researchers in financial mathematics as glitches in the financial systems that
appear and disappear almost immediately. In our context, the no-arbitrage
assumption is used as a theoretical tool to define the notion of a fair price;
intuitively it ensures that products that are essentially equivalent have the
same price. Almost all pricing results in financial mathematics are based on a
no-arbitrage assumption.
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arbitrage-process :: (α, β) discrete-market→
(β → N→ α→ R)→ B

arbitrage-process Mkt p ⇔
(∃m ∈ N.

(trading-strat p) ∧ (self-financing p) ∧
(∀w ∈ ΩM. (val-process p) 0 w = 0) ∧
(AEM w. (cls-val-process p) m w ≥ 0) ∧
(P({w ∈ ΩM | (cls-val-process p) m w > 0}) > 0))

Next we define the notion of a price structure for a derivative. Derivatives
are characterized by their maturity (i.e., their expiry date) and the payoff they
deliver at maturity; a price structure is a stochastic process with a constant
initial value that coincides with the payoff of the derivative almost everywhere
at maturity. The initial value of a price structure will represent the price of
the derivative under consideration.

price-struct :: (α→ R)→ N→ R→ (N→ α→ R)→ B
price-struct κ T π pr ⇔ (∀w ∈ ΩM. pr 0 w = π) ∧

(AEM w. pr T w = κ w) ∧
(pr T ∈ borel-measurable FT )

In order to formalize the notion of a fair price for a derivative, we need
to formalize the fact that buying or selling the derivative at price π does not
lead to any arbitrage opportunity. More precisely, it should not be possible to
obtain an arbitrage process using only stocks from the market and an asset
with a price process identical to a price structure of the derivative, with an
initial value π. In order to guarantee the existence of such an asset, we define
the notion of coincidence between two markets.

coincides :: (α, β) discrete-market→
(α, β) discrete-market→ β set→ B

coincides Mkt Mkt′ A ⇔ stocks Mkt = stocks Mkt′ ∧
∀a. a ∈ A⇒ prices Mkt a = prices Mkt′ a

fair-price :: (α, β) discrete-market→ R→ (α→ R)→
N→ B

fair-price Mkt π κ T ⇔ (∃pr. price-struct κ T π pr∧
(∀a Mkt′ p. a /∈ stocks Mkt⇒

(coincides Mkt Mkt′) ∧
(prices Mkt′ a = pr) ∧
(portfolio p) ∧
(support-set p ⊆ stocks Mkt ∪ {a})⇒

¬arbitrage-process Mkt′ p))

4.2 Replicating portfolios

We prove the central result that, for a market satisfying a so-called viability
condition defined below, under the hypothesis that a replicating portfolio exists
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for a given derivative, the latter admits a fair price that is unique. A replicating
portfolio for a given derivative is a self-financing trading strategy that consists
of stocks only, and that at maturity, has a value identical to the payoff of the
derivative almost everywhere. If such a portfolio exists, then the derivative is
attainable, and if every derivative available on a market is attainable, then the
market is complete:

replic-pf :: (β → N→ α→ R)→ (α→ R)→ N→ B
replic-pf p κ T ⇔ (stock-portfolio Mkt p) ∧

(self-financing p) ∧ (trading-strat p)∧
(AEM w. cls-val-process Mkt p T w = κ w)

attainable :: (α→ R)→ N→ B
attainable κ T ⇔ (∃p. replic-pf p κ T )

complete-market :: B
complete-market⇔ ∀T. ∀κ ∈ (borel-measurable FT ). attainable κ T

The existence of a replicating portfolio by itself is not sufficient to guarantee
the existence of a fair price: indeed, if for example it is already possible to
construct an arbitrage process on the market using only stocks, then there
clearly cannot be any fair price for any derivative product. It is thus necessary
to forbid arbitrage opportunities using only stocks from the market. This is
captured by the notion of a viable market.

viable-market :: (α, β) discrete-market→ B
viable-market Mkt ⇔ ∀p. stock-portfolio p ⇒

¬arbitrage-process Mkt p

We first show that, if the market is viable, then every derivative admitting
a replicating portfolio has a fair price that is the initial value of the replicating
portfolio.

lemma replicating-fair-price
assumes viable-market Mkt

and replic-pf p κ T
and support-adapt Mkt p
shows fair-price Mkt (init-value p) κ T

The proof of this result goes as follows. If p is a replicating portfolio for a
derivative κ, then clearly the closing value process of p is a price process for
κ. Assume the initial value of this process, π, is not a fair price. Then there
must exist an arbitrage constructed using only stocks and an asset x whose
price coincides with the closing value of p. But then it is possible to construct
another arbitrage using only stocks, by replacing the quantities of x by iden-
tical quantities of the replicating portfolio. This is an arbitrage consisting of
stocks only, and we obtain a contradiction since the market is assumed to be
viable.



Cox-Ross-Rubinstein pricing in Isabelle 19

We also provide a proof of the uniqueness of a fair price for attainable
derivatives based on the existence of a stock on the market with a strictly pos-
itive price process. The proof could also be carried out assuming the existence
of a stock on the market with a strictly negative price process, but that does
not really make sense from a financial point of view: the owner of such a share
would receive a negative amount of money by selling the share, i.e., would be
paying to be rid of the share. We also assume that the price processes of all
stocks in the market are adapted to the filtration under consideration.

locale disc-mkt-pos-stock = disc-equity-market +
fixes pos-stock :: β
assumes pos-stock ∈ stocks Mkt

and ∀n w. prices Mkt pos-stock n w > 0
and ∀ a ∈ stocks Mkt. borel-adapt-sp F (prices Mkt a)

lemma replicating-fair-price-unique
assumes replic-pf p κ T
and fair-price Mkt π κ T
shows π = (init-value p)

The principle of the proof is as follows. Assume for example that π >
(init-value p), where p is a replicating portfolio for derivative κ. Then the
derivative can be sold for price π, the amount (init-value p) can be invested
to construct the replicating portfolio p and the amount π−(init-value p) in-
vested in the strictly positive stock (typically a money market account8). The
initial value of the corresponding portfolio is 0, and at maturity, the closing
value of p can be used to pay the derivative’s payoff. The amount invested in
the positive stock is untouched, hence an arbitrage was constructed, contra-
dicting the fact that π is a fair price. The proof when π < (init-value p) is
similar, this time the derivative is bought to create an arbitrage.

5 Risk-neutral probability spaces

The results of Section 4.2 show that when a replicating portfolio exists for a
given derivative, the fair price for this derivative is unique and equal to the
initial value of the portfolio. In this section we prove that this initial value can
be computed without explicitly constructing any replicating portfolio under
the hypothesis of the existence of a risk-neutral probability space.

5.1 Interest rates and discounted values

We begin by defining the notion of interest rates. The existence of an interest
rate is modeled by assuming that the market contains a stock with a deter-
ministic return. The price process of this stock is parameterized by an interest

8 A money market account represents a deposit account on which any amount of cash can
be deposited/withdrawn at each time.
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rate r. In this setting, the interest rate is constant, although there exist more
general models in which the interest rate can be time-dependent, and even
stochastic. For simplicity, it is common to assume that the initial value of the
asset is 1.

disc-rfr-proc :: R→ N→ α→ R
disc-rfr-proc r 0 w = 1
disc-rfr-proc r (n+ 1) w = (1 + r).(disc-rfr-proc n w)

We call an asset a risk-free if a is such that prices Mkt a = disc-rfr-proc r
for some rate r, and define a locale for a market containing a risk-free asset.

locale risk-free-stock-market = disc-equity-market +
fixes rf-asset :: β
and r :: R
assumes − 1 < r
and rf-asset ∈ stocks Mkt

and prices Mkt rf-asset = disc-rfr-proc r

Having a risk-free asset as a stock in a market makes it possible to deposit
(by buying the asset) or borrow (by shorting the asset) cash on this market.

Example 5 Assume there is a risk-free asset with an annual rate of 2% on the
market. This means that buying 100e worth of the asset today entails receiving
102e by selling the asset in one year. Assuming the time lapse between times n
and n+1 is a day and there are 252 business days in one year, the daily rate r in
the definition of disc-rfr-proc then satisfies the equation (1 + r)252 = 1.02,
so we have r ≈ 7.85.10−5.

Remark 6 Observe that if the market is viable, then all risk-free assets must
have the same rate9. Indeed, if there exist two risk-free assets with interest
rates r1 < r2 then an arbitrage can be constructed: it suffices to buy 1 share
of the second asset and sell 1 share of the first one. The initial investment
is 1 − 1 = 0, and at any time n > 0 the closing value of the portfolio is
(1 + r2)n − (1 + r1)n > 0.

We also define the discounted value of a stochastic process. This notion is
related to that of the present value of a future cash-flow, given an interest
rate.

discount-factor :: R→ N→ α→ R
discount-factor r n w = inverse (disc-rfr-proc r n w)

discounted-value :: R→ (N→ α→ R)→ N→ α→ R
discounted-value r X = λn w. (discount-factor r n w).(Xn w)

9 Recall that the model of an equity market does not model foreign-exchanges with several
currencies, although more sophisticated models for this setting do exist. The latter are closer
to reality, since they permit to account for, e.g., the fact that national banks may have
different risk-free rates
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Example 7 Assume we have a viable market that contains a risk-free asset with
a rate of 2% per year, and that the price of a share of Apple today is 95e.
Consider a forward contract for buying a share of Apple stock at a strike price
of 98e in two years. The fair price for this contract is obtained by computing
the discounted value of the strike and subtracting it from the current price of a
share today. Here the discounted value of the strike is 98.(1 + 0.02)−2 ≈ 94.19,
hence the fair price of this contract is 0.81e. Indeed, this amount of money
can be used to construct a replicating portfolio as follows.

1. Borrow 94.19e today.
2. Use the cash, along with the 0.81e received at the sale of the contract to

buy a share of Apple stock today.
3. Wait for two years.
4. Sell the share of Apple stock to the buyer of the forward contract for 98e.
5. Use this to reimburse the cash that was borrowed at the start and is now

worth 94.19 · (1 + 0.02)2 ≈ 98e.

5.2 Conditional expectations and martingales

From a financial point of view, assets carry different levels of risk. The more
risky an asset, the higher the return buyers will be expecting when investing
in the asset. This additional return is called the market price of risk. A risk-
neutral probability space is meant to represent a world in which investors do
not expect an increased return for a more risky asset: they are neutral to risk
and expect the returns of all assets to be identical.

The expected returns of assets are modeled using the notion of conditional
expectations. A conditional expectation is meant to represent the best ap-
proximation of a random variable given the currently available information.
Formally, a conditional expectation of a random variable X given a measure
space N that is a subalgebra of M is any random variable XN that is N -
measurable, and such that for any set N ∈ N ,

∫
N

XNdµM =

∫
N

XdµM.

A conditional expectation of X given N always exists as long as X is in-
tegrable, and is almost surely unique, meaning that two conditional expec-
tations of X given N are identical almost everywhere. In what follows, we
will therefore refer to the conditional expectation of X given N , and denote
it by EM [X | N ] (or simply by E [X | N ] if there is no possible confusion).
Conditional expectations are already formalized in Isabelle. One property of
conditional expectations that is particularly useful in our setting is that, for
an initially trivial filtration, the conditional expectation of a random variable
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at time 0 coincides with its expectation:

lemma trivial-subalg-cond-expect-eq
assumes subalgebraM N
and sets N = {∅, ΩM}
and integrableM X
shows ∀x ∈ ΩM. E [X | N ] (x) = E[X]

Conditional expectations are used to define martingales. Martingales are
an essential tool in risk-neutral pricing, and we refer the reader to [21, Chapter
2] for a gentle introduction to this notion. Given a filtration F , martingales
are stochastic processes (Xt)t such that for all t ≤ s, Xt is the best estimation
of Xs given the information Ft. In other words, Xt and E [Xs | Ft] are equal
almost everywhere.

martingale :: α measure→ (ι→ α measure)→ (ι→ α→ R)→ B
martingaleM F X ⇔

(filtrationM F) ∧ (borel-adapt-sp F X)∧
(∀t. integrableM Xt) ∧ (∀t s. t ≤ s⇒ (AEM w. Xt w = E [Xs | Ft] w))

Because the risk-free asset we defined has a deterministic price process
with a constant return rate, it is straightforward to verify that the discounted
value of this price process is constant, and is trivially a martingale. In a risk-
neutral probability space, the martingale property holds for all the stocks of
the market:

risk-neutral-prob-space :: α measure→ B
risk-neutral-prob-space N ⇔ prob-space N ∧
∀a ∈ (stocks Mkt). martingale N F (discounted-value r (prices Mkt a))

5.3 Filtration-equivalence

If there were no relationship whatsoever between a risk-neutral probability
space and the actual probability space, the former would not be of much use.
In general, both spaces are assumed to be equivalent, meaning that they agree
on the events that have a zero probability. Most textbooks rely on the notion
of equivalence, but it turns out that when there is a filtration associated with a
probability space, this notion can be relaxed into that of filtration-equivalence,
which is sufficient for our purpose.

filt-equiv :: (ι→ α measure)→ α measure→ α measure→ B
filt-equiv F M N ⇔ filtrationM F ∧AM = AN ∧
∀i A. A ∈ AFi

⇒ (µM(A) = 0⇔ µN (A) = 0)

An advantage of filtration-equivalence which is used in this formalization is
that it can be much simpler to prove that two probability spaces are filtration-
equivalent, especially when the underlying space ΩM is infinite. When proba-
bility spaces are filtration-equivalent, almost everywhere properties propagate
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from one space to the other. In particular, a replicating portfolio for a deriva-
tive in one given probability space will necessarily be a replicating portfolio
for the derivative in a filtration-equivalent probability space, even if the prob-
abilities assigned to different events may differ.

lemma filt-equiv-borel-AE-eq
assumes filt-equiv F M N
and f ∈ borel-measurable Fi
and g ∈ borel-measurable Fi
and AEM w. f w = g w
shows AEN w. f w = g w

The following result states that, in a filtration-equivalent risk-neutral prob-
ability space, the closing value of any self-financing trading strategy must be
a martingale. The only necessary hypothesis to obtain this result is an inte-
grability condition on the assets of this trading strategy.

lemma self-fin-trad-strat-mart
assumes filt-equiv F M N
and risk-neutral-prob-space N
and trading-strat p
and self-financing Mkt p
and stock-portfolio Mkt p
and ∀n. ∀a ∈ support-set p. integrable N

(λw. (prices Mkt a n w)(p a (n+ 1) w))
and ∀n. ∀a ∈ support-set p. integrable N

(λw. (prices Mkt a (n+ 1) w)(p a (n+ 1) w))
shows martingale N F (discounted-value r (cls-val-process Mkt p))

We obtain the following result, which in a viable market, provides an ef-
fective way of computing the fair price of an attainable derivative. When a
filtration-equivalent risk-neutral probability space exists, this fair price can be
computed by considering the discounted value of the derivative payoff, and
returning its expectation in the risk-neutral probability space.

lemma replicating-expectation
assumes filt-equiv F M N
and risk-neutral-prob-space N
and κ ∈ borel-measurable FT
and replic-pf p κ T
and ∀n. ∀a ∈ support-set p. integrable N

(λw. (prices Mkt a n w)(p a (n+ 1) w))
and ∀n. ∀a ∈ support-set p. integrable N

(λw. (prices Mkt a (n+ 1) w)(p a (n+ 1) w))
and viable-market Mkt

and AF0 = {{} , ΩM}
shows fair-price Mkt EN [discounted-value r κ T ] κ T
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The proof of this result goes as follows. If portfolio p is a replicating port-
folio for derivative κ under probability space M, then it is also a replicating
portfolio for κ under the probability space N , since N and M are filtration-
equivalent. By Lemma replicating-fair-price-unique, the initial value of
p is the unique fair price of κ. By Lemma self-fin-trad-strat-mart the
discounted closing value process of p is an N -martingale, thus, by Lemma
trivial-subalg-cond-expect-eq we have

init-value p = EN [discounted-value r (cls-val-process Mkt p) T | F0]
= EN [discounted-value r (cls-val-process Mkt p) T ]
= EN [discounted-value r κ T ] .

6 Fair prices in the Cox-Ross-Rubinstein model

The Cox-Ross-Rubinstein model (or CRR model) is a discrete-time model
consisting of a market in which there are two stocks, a risk-free asset and a
risky one. At every time n, the risky asset can only move upward or down-
ward with respective probabilities p and 1− p. This means that the evolution
of the risky asset price can be modeled by tossing at each time n a coin
that lands on its head with a probability p, and having the price move up-
ward at time n + 1 exactly when the coin lands on its head. The evolution
of this price is thus controlled by sequences of coin tosses. In most introduc-
tory textbooks on the CRR model, these sequences are finite as the results
are presented for a given derivative with a finite maturity. We choose to con-
sider infinite sequences—or streams—of coin tosses for the sake of generality.
Since at time n no event other than the outcome of the coin toss is required,
this outcome can be represented by a Bernoulli distribution of parameter p.
In Isabelle, because discrete probability distributions and probability mass
functions are isomorphic, the type of probability mass functions are defined
as a subtype of measures [13], along with an injective representation function
measure-pmf :: α pmf→ α measure. The Bernoulli distribution is thus defined
as measure-pmf (bernoulli-pmf p). The measure space for infinite sequences
of independent coin tosses is isomorphic to the infinite product of Bernoulli
distributions with the same parameter. In Isabelle, this measure space is de-
fined using the function stream-space :: α measure → (α stream) measure.
The measure space thus defined is the smallest one in which the function
nth :: α stream → N → α such that (nth s n) is the nth element of stream s
is measurable [12]. The measure spaces we consider are defined as follows:

bernoulli-stream :: R→ (B stream) measure
bernoulli-stream p = stream-space (measure-pmf (bernoulli-pmf p))

We define a locale in which we impose that 0 ≤ p ≤ 1, and thus obtain a
probability space:

locale infinite-coin-toss-space =
fixes p and M
assumes 0 ≤ p ≤ 1 and M = bernoulli-stream p
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The fact that an infinite coin toss space is a probability space is expressed
using the sublocale keyword:

sublocale infinite-coin-toss-space ⊆ prob-space

The maximal amount of information that should be available at time n is
the outcome of the first n coin tosses, and we define a filtration Fnat accord-
ingly: intuitively, in this filtration, two streams of coin tosses with the same
first n outcomes cannot occur in distinct sets that are measurable in Fnat. In
our setting, each restricted measure space Fnat

n can be defined as generated
by an arbitrary measurable function which maps all streams that agree on the
first n coin tosses to the same element. We thus considered the sequence of
so-called pseudo-projection functions (π>n )n∈N, where:

π>n : ΩM → ΩM
(w1, · · · , wn, wn+1, · · · ) 7→ (w1, · · · , wn,>,>, · · · )

These functions are measurable and permit to define a sequence of restricted
measure spaces which is indeed a filtration:

Fnat :: N→ (B stream) measure
Fnat n =M〈π>

n 〉

We can thus define a locale for the infinite coin toss space along with this
filtration:

locale infinite-cts-filtration = infinite-coin-toss-space +
fixes F assumes F = Fnat

Because the information available at time n is the outcome of the first n coin
tosses, Fnat is initially trivial:

sublocale infinite-cts-filtration ⊆ init-triv-prob-space

Any other considered filtration on this probability space will be a sub-filtration
of the natural filtration.

An important feature of the natural filtration is that the expectation
of any Fnat

n -measurable function is very similar to that of a function on

a finite probability space: for w = w1, · · · , wn, · · · and i ∈ N, if νi(w)
def
=

if wi then p else 1− p, then we have

lemma expect-prob-comp
assumes f ∈ borel-measurable Fnat

n

shows E [f ] =
∑
w∈π>

n (ΩM) (
∏n
i=1 νi(wi)) · f(w)

In the CRR model, the price of the risky asset is modeled by a geometric
random walk with parameters specifying the upward and downward move-
ments as well as the price of the asset at time 0:

geom-rand-walk :: R→ R→ R→
(N→ (B stream)→ R)

(geom-rand-walk u d v) 0 w = v
(geom-rand-walk u d v) (n+ 1) w = (if wn then u else d) ·

((geom-rand-walk u d v) n w)
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Fig. 1 Example of a geometric random walk

Example 8 Figure 1 depicts the first values of the geometric random walk
process (geom-rand-walk 1.2 0.8 10). This is a process with a deterministic
initial value 10. Intuitively, at time 1, if the outcome of a coin toss is a head,
then this process has a value of 12, and if the outcome is a tail, then it has a
value of 8. If at time 2 the first two outcomes are a head then a tail, then the
value is 9.6, etc.

The geometric random walk process is an adapted process, in the infinite
coin toss space equipped with its natural filtration, since its value at time n
depends only on the outcome of the first n coin tosses:

lemma geom-rand-walk-borel-adapted :
borel-adapt-sp (geom-rand-walk u d v)

We define a locale in which there is a stochastic process that is a geometric
random walk:

locale prob-grw = infinite-coin-toss-space +
fixes geom-proc and u and d and v
assumes geom-proc = geom-rand-walk u d v

The locale for the market in the CRR model is defined as follows:

locale CRR-hyps = prob-grw + risk-free-stock-market+
fixes S
assumes stocks Mkt = {S, rf-asset}
and prices Mkt S = geom-proc

and 0 < v and 0 < d < u
and 0 < p < 1
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In particular, we require that 0 < p < 1 and u 6= d, so that S is indeed a risky
asset. Note that we do not postulate that d < 1 or u > 1.

The filtration associated with this probability space is meant to represent
the fact that the information available at time n is the price evolution of the
risky asset up to time n. We thus define a function that associates a filtration
to a stochastic process X, such that at time n, the corresponding measure
space is the smallest subalgebra for which Xk is measurable for all k ≤ n.

stoch-proc-filt :: α measure→ (N→ α→ β)→ β measure→
N→ α measure

stoch-proc-filtM X N n = sigma ΩM
⋃
k≤n

{
X−1k (A) ∩ΩM

∣∣A ∈ AN}
In the locale below, we denote by G the filtration such that at time n, Gn

is the smallest subalgebra for which prices Mkt S k is Borel-measurable for
all k ≤ n.

locale CRR-market = CRR-hyps+
fixes G
assumes G = stoch-proc-filtM geom-proc borel

In order to compute fair prices, the CRR market is required to be viable.
We have the following result:

lemma viable-iff
shows viable-market Mkt ⇔ (d < 1 + r < u)

Proof (Outline) The left-to-right implication is straightforward to prove. For
example, if the risky asset always has a return greater than the risk-free rate
(i.e., 1 + r ≤ d), then an arbitrage can be obtained as follows. At time 0,
borrow v, the initial value of the risky asset, and use the cash to buy one
share of the risky asset. This results in a portfolio with initial value 0. At time
1, the closing value of the portfolio is either dv − (1 + r)v or uv − (1 + r)v;
in both cases this value is positive, and it is strictly positive with probability
p > 0. The market can therefore not be viable.

Assume that d < 1 + r < u and that there exists a stock portfolio p
that is also an arbitrage process. Then the initial value of p is 0 and there
is a time m at which its closing value is almost surely positive, and strictly
positive with a nonzero probability. Consider an element y ∈ ΩM such that
cls-val-process p m y > 0, and define

n0
def
= min {n ≤ m | cls-val-process p n y > 0} .

Intuitively, once there is a scenario at which the closing value of a portfolio is
negative at a given time, there necessarily exists a scenario at which its closing
value at the following time is also strictly negative. Because by definition
cls-val-process p (n0−1) y ≤ 0, there must exist an element x′ ∈ ΩM such
that cls-val-process p m x′ < 0. Now if z ∈ ΩM has the same prefix as x′

up to time m, then cls-val-process p m z = cls-val-process p m x′. The
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set of elements in ΩM with the same prefix as x′ up to time m has a nonzero
measure, we therefore deduce that

P({w ∈ ΩM | (cls-val-process p) m w < 0}) > 0,

contradicting the fact that the closing value of p is almost surely positive.

We may thus define a locale for a viable CRR market:

locale CRR-market-viable = CRR-market+
assumes viable-market Mkt

Next, we provide a necessary and sufficient condition for the existence of a
risk-neutral bernoulli stream space that is filtration-equivalent to M.

lemma risk-neutral-iff
assumes N = bernoulli-stream q
and 0 < q < 1
shows risk-neutral-prob-space G Mkt r N ⇔ q = 1+r−d

u−d

We finally prove that every derivative is attainable in the CRR model:

lemma CRR-market-complete :
shows complete-market

The result is proven by constructing a replicating portfolio for any GT -measurable
payoff κ : α → R and exercise time T . Note that the fact that function κ is
GT -measurable ensures that the payoff only depends on information available
up to time T . The principle of the construction of the portfolio is explained in
details on an example in Section 7.

We obtain the final result:

lemma CRR-market-fair-price :
assumes κ ∈ borel-measurable GT
and N = bernoulli-stream 1+r−d

u−d
shows fair-price Mkt[∑

w∈π>
T (ΩM)

(∏T
i=1 νi(wi).(discounted-value r κ w)

)]
κ T

7 A complete example

The entry https://www.isa-afp.org/entries/DiscretePricing.html con-
tains functions for computing the fair prices of a few standard options. For
example, it contains a function that permits to compute the fair price of a
lookback option (see, e.g., [10]). A lookback option is characterized by a matu-
rity T , and at this maturity, pays max0≤i≤T Si−ST . In other words, instead of
having a payoff that only depends on the value of the risky asset at maturity,
a lookback option has a payoff that depends on all the values of the risky asset

https://www.isa-afp.org/entries/DiscretePricing.html
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Table 6 Possible outcomes for the lookback option.

Outcomes >> >⊥ ⊥> ⊥⊥
Probability 0.330625 0.244375 0.244375 0.180625

Payoff 0 2.4 0.4 3.6
Disc. payoff 0 2.262 0.377 3.393

Table 7 Possible outcomes for the lookback option when the first coin toss is a head.

Outcomes >> >⊥
Probability 0.575 0.425

Payoff 0 2.4
Disc. payoff 0 2.33

until maturity. It is called a path-dependent option. In Isabelle, the payoff of
such an option with maturity T is represented by lbk-option T .

The function lbk-price is based on Lemma CRR-market-fair-price.
Consider a Cox-Ross-Rubinstein market parameterized by upward movement
u, downward movement d and initial value v. If r denotes the risk-free rate,
then we have the following lemma:

lemma lbk-price :
shows fair-price Mkt

(lbk-price u d v r T ) (lbk-option T ) T

Assume that in the Cox-Ross-Rubinstein market, the risky asset has an
initial value 10, an upward movement u = 1.2 and a downward movement
d = 0.8. The risk-free rate is r = 3% (see Figure 2). Consider a lookback
option with maturity T = 2. Its payoff is depicted on the right-hand side of
the figure. If the outcomes of the first two coin tosses are heads, then the
maximal value of the risky asset is its value at time 2, so that this option does
not pay anything. If the outcomes are first a head then a tail, then the value
of the risky asset at time 2 is 9.6e and the option pays off 2.4e. Note that
if the first two coin tosses are a tail then a head, then the value of the risky
asset at time 2 is also 9.6e, but the option only pays off 0.4e.

The fair price of this option is computed in Isabelle using the command

value lbk-price 1.2 0.8 10 0.03 2

The output is 13345
10609 , which means that the fair price of this option is approx-

imately 1.2579e.
In what follows, we construct a replicating portfolio for this option to give

an intuition of the way the completeness of the CRR model is proved. This
portfolio will be constructed by going backward in time.

First assume the outcome of the first coin toss is a head. In this scenario,
we construct a portfolio that starts at time 1. The fair price of the option is
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Table 8 Possible outcomes for the lookback option when the first coin toss is a tail.

Outcomes ⊥> ⊥⊥
Probability 0.575 0.425

Payoff 0.4 3.6
Disc. payoff 0.38835 3.49515

given using Table 7, from which we deduce that the fair price of the option
(and the initial value of the portfolio under construction starting at time 1) is
approximately 0.9903e. The quantity invested in the risky asset is given by

∆>
def
=
κ>> − κ>⊥
S>> − S>⊥

=
0− 2.4

14.4− 9.6
= −0.5,

where κw1w2 and Sw1w2 respectively denote the payoff of the derivative and the
value of the risky asset at time 2, depending on the outcomes of the first two
coin tosses w1 and w2. The quantity ∆> can be viewed as the discrete version
of the derivative of the payoff w.r.t. the risky asset. This is no coincidence: in
continuous-time models, the derivative of an option’s value w.r.t. an underlying
security is called the delta of the option, and buying/selling this quantity of the
underlying security permits to obtain what is called a delta-neutral portfolio,
the value of which is globally unaffected by price movements of the underlying
security. In discrete- and continuous-time models, the quantity delta is key in
constructing replicating portfolios, and constructing delta-neutral portfolios is
known as delta-hedging.

This means that half a share of the risky asset is sold (a short sell) for 6e.
Since the initial value of the portfolio is 0.9903e, this cash, along with the
one obtained by selling the risky asset for a total of 6.9903e, is invested in the
risk-free rate. At time 2, the cash invested in the risk-free rate is recovered and
worth 6.9903 ∗ 1.03 = 7.2e; the half-share of the risky asset is bought back.

– If the outcome of the second coin toss is a head, then the risky asset is
worth 14.4e, so 7.2e are necessary to buy half the share back. The value
of the portfolio is 0e.

– If the outcome of the second coin toss is a tail, then the risky asset is worth
9.6e, so 4.8e are necessary to buy half the share back. The value of the
portfolio is 2.4e.

Now assume the outcome of the first coin toss is a tail. The fair price of
the option at time 1 in this scenario is given using the Table 8, from which we
deduce that the fair price of the option under this scenario is approximately
1.7087e. The quantity invested in the risky asset is

∆⊥
def
=
κ⊥> − κ⊥⊥
S⊥> − S⊥⊥

=
0.4− 3.6

9.6− 6.4
= −1.

One share of the risky asset is sold for 8e, and the proceeds of this sale, along
with the initial value of the portfolio are invested in the risk-free asset. At time
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Fig. 2 Lookback option settings and payoff. R denotes the risk-free asset and S the risky
one.

2, the amount thus invested is worth 10e, and the share of the risky asset is
bought back.

– If the outcome of the second coin toss is a head, then the risky asset is
worth 9.6e, so the value of the portfolio is 0.4e.

– If the outcome of the second coin toss is a tail, then the risky asset is worth
6.4e, so the value of the portfolio is 3.6e.

We now construct a portfolio with initial value 1.2579e, and worth 0.9903e
if the outcome of the first coin toss is a head, and 1.7087e if the outcome is a
tail. The quantity invested in the risky asset is given by

∆>
def
=

0.9903− 1.7087

12− 8
= −0.1796.

This quantity of the risky asset is sold for 10e, and the proceeds are invested
in the risk-free asset, along with the initial value of the portfolio. At time 1,
the cash thus invested is worth 3.145517e. The quantity of risky asset that
was shorted is bought back.

– If the outcome of the first coin toss is a head, then the risky asset is worth
12e and buying back the quantity that was shorted costs 2.1552e, so the
value of the portfolio is 0.9903e.

– If the outcome of the first coin toss is a tail, then the risky asset is worth
8e and buying back the quantity that was shorted costs 1.4368e, so the
value of the portfolio is 1.7087e.

To recap, the seller of the lookback option sells it for 1.2579e, and con-
structs a replicating portfolio as follows.
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1. The seller receives 1.796e by short selling the risky asset and invests the
3.0539e in the risk-free asset until time 1.

2. If at time 1 the outcome of the first coin toss is a head, then the seller uses
the closing value of the portfolio, 0.9903e, to short half a share of the risky
asset and invest 6.9903e in the risk-free asset. Otherwise, the seller uses
the closing value of the portfolio, 1.7087e, to short one share of the risky
asset and invest 9.7087e in the risk-free asset.

3. At time 2, quantity of risky asset that was shorted is bought back and the
cash invested in the risk-free asset is withdrawn; the closing value of the
portfolio is exactly equal to the payoff of the lookback option.

This construction can be generalized to arbitrary Fnat
T -measurable func-

tions. At any time t < T , the composition of the portfolio is determined in such
a way that its closing value at time t+ 1 matches the value already computed
at time t + 1, for both outcomes of the next coin toss. This yields a system
of two linear equations, one for each possible outcome of the toss coin, with
two variables (the amounts of risk-free and risky assets, respectively). Lemma
viable-iff on Page 28 imposes additional conditions on u, d, r that ensure
that the system admits a unique solution.

8 Discussion

We have formalized a framework for proving financial results in Isabelle. It
permits a formal definition of fair prices in Isabelle, and presents one of the
main pricing results in finance: under a risk-neutral probability, the fair price
of an attainable derivative is equal to the expectation of its discounted payoff.
This formalization is quite extensive, as many financial notions had to be intro-
duced, and it was used to prove that every derivative admits a fair price in the
Cox-Ross-Rubinstein model of an equity market, by proving the completeness
of this market. The proof is constructive and we also provide pricing functions
for a few standard derivatives. As far as future work is concerned, we intend to
work on the pricing in the Cox-Ross-Rubinstein model of American options,
that can be exercised at any time by the buyer until the maturity –and not
simply at maturity, as for European options. Pricing such options will require
the definition of additional notions, such as sub and supermartingales, and our
aim will be to implement a completely certified pricer for such options. We also
intend to pursue our formalization effort of mathematical finance and extend
our results to a continuous-time setting. This is an ambitious and interesting
task, and we hope this first formalization will encourage other researchers,
from computer science and financial mathematics to extend these results in
Isabelle.
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