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Abstract A method is devised to integrate reasoning by mathematical induction into
saturation-based proof procedures based on Resolution or Superposition. The obtained
calculi are capable of handling formulas in which some of the quantified variables range
over inductively defined domains (which, as is well-known, cannot be expressed in first-
order logic). The procedure is defined as a set of inference rules that generate inductive
invariants incrementally and prove their validity. Although the considered logic itself
is incomplete, it is shown that the invariant generation rules are complete, in the sense
that if an invariant (of some specific form) is deducible from the considered clauses,
then it is eventually generated.

1 Introduction

The most successful first-order theorem provers nowadays are based on saturation. Such
procedures work by refutation: they generate consequences of the initial set of axioms
by applying a set of inference rules, usually the Resolution [25] or/and Superposition [2,
27] calculi, until a contradiction is detected or a saturated set is obtained, from which no
new (non-redundant) consequences can be derived. Saturation proof procedures based
on Resolution or Superposition are sound and complete for first-order logic and form the
basis of the most efficient available theorem provers [26,36,32,34]. However they are not
able to handle theorems relying on mathematical induction. In the present paper, we
extend saturation-based proof procedures to make them capable of refuting inductive
properties. Our method is generic in the sense that no assumption is made on the initial
proof calculus, except for some basic standard properties such as soundness. This new
approach is based on a combination of several features. A constrained proof procedure
is used, in which the terms on which induction is performed are abstracted away,
while standard inference rules are used to handle the remaining part of the formula.
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Candidate inductive lemmata are introduced by a controlled application of Tseitin’s
extension rule, consisting in the introduction of new atoms Tα(x1, . . . , xn) that encode
a formula α with free variables x1, . . . , xn. Rules are devised to derive universal formulas
when the corresponding inductive scheme has been proven and to generate inductive
lemmata automatically and incrementally, exploiting failures of previous attempts.

The principle of our approach is the following. Given a set of clauses S containing a
term t to be interpreted on an inductive domain, the goal is to automatically generate
an inductive consequence ∀xα(x) of S such that the empty clause can be derived
from S ∪ ∀xα(x) with no use of induction, i.e., by a standard inference system that is
complete for refutation. For the sake of simplicity, we assume in this example that α
contains only one free variable to be interpreted on an inductive domain, and that this
inductive domain admits a simple base case a. The goal is to prove that α(t) holds for
all ground terms t on the inductive domain. The generation of the inductive invariant is
performed as follows. By setting t to be equal to the base case a, a standard refutation
of S∪{t ' a} is constructed. An analysis of this refutation permits to extract a formula
α(x), such that ¬α(a) was used to derive the refutation of S ∪ {t ' a}. The formula
α(x) is taken as a candidate inductive invariant, and the goal is to prove that ∀xα(x) is
an inductive consequence of S, so that S is (inductively) unsatisfiable. The verification
that α is indeed an inductive invariant is done by infinite descent, i.e., by showing that
if α(t) does not hold, then there exists a proper subterm s of t such that α(s) does
not hold. If this property cannot be proved, then the candidate inductive invariant is
refined and the infinite descent principle is applied again.

Consider for example the following clause set S:

{¬p(x) ∨ p(f(x)), p(a),¬p(b)}

It is clear that S is satisfiable. However, if we assume that b is interpreted as a ground
term of the form fn(a) for some n ∈ N (i.e., that b belongs to the set defined by the
constructors a and f), then it is easy to check by induction on n that S is unsatisfiable.
If the Resolution calculus (see, e.g., [25,3]) is employed to test the satisfiability of
the above clause set then no clause will be derived1. If the domain axiom ∀x (x '
0 ∨ ∃y x ' f(y)) is added, then the only derivable clauses are: x ' 0 ∨ x ' f(g(x))
(by Skolemization) and x ' 0 ∨ ¬p(g(x)) ∨ p(x) (by Paramodulation [27] between
with the previous clause and the first one). In our framework, the clause ¬p(b) will be
encoded as a constrained clause J¬p(x) | b ' xK, meaning that ¬p(x) holds if x = b.
This technique allows to perform inferences on ¬p(b) without having to replace b by a
constructor term, which would require to blindly apply paramodulation inferences into
b. By combining the previous constrained clause with p(a) and ¬p(x)∨p(f(x)) it is easy
to derive the constrained clauses J2 | b ' aK — meaning that S is unsatisfiable if b = a.
Since the only clause involving b that is used to derive this assertion is J¬p(x) | x ' bK,
this suggests that this constrained clause represents the negation of an instance of
the inductive invariant; here, the candidate inductive invariant is therefore ∀x p(x).
Using the clauses ¬p(x) ∨ p(f(x)) and J¬p(x) | b ' xK, we then generate the clause
J¬p(x) | b ' f(x)K — meaning that ¬p(x) is a logical consequence of S if b = f(x).
From this property we deduce that S |= ∃b′ b′ < b ∧ ¬p(b′), where < denotes the
strict subterm ordering. This entails that ∀y(¬p(y)⇒ ∃y′ y′ < y ∧ ¬p(y′)) is a logical
consequence of {p(a),¬p(x) ∨ p(f(x))} (the only clause involving b is asserted as a

1 Provided usual ordering restrictions are used, blocking any inference involving the first
literal of the first clause since it is not maximal.
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hypothesis in the implication so that the term b can be abstracted away and replaced
by a universal variable y). By infinite descent, this means that {p(a),¬p(x)∨p(f(x))} |=
∀x p(x), which yields a contradiction with ¬p(b).

In this case, the inductive invariant is easy to obtain and each inductive case is
proven by a single inference step. However, in general the property p(b) is not a mere
atom, but rather a set of clauses (b may occur in several literals or clauses), and the
proofs of the base and inductive cases may be much more complex. Moreover, these
clauses possibly contain variables other than the variable x denoting b. The goal is then
to determine for which instances of these variables the invariant propagates.

The invariant does not necessarily correspond to the entire set of clauses containing
b either, and may contain clauses not occurring in the initial clause set. Consider for
instance the following clause set (still on the same inductive domain) that can be
handled by our approach:

{¬p(x, c) ∨ p(f(x), c),¬q(x) ∨ q(f(x)), p(a, y) ∨ q(a),¬q(x) ∨ r(x),¬p(b, y),¬r(b)}.

Here induction can only be applied by considering the set {¬p(b, y),¬q(b)}, where
¬q(b) is derived from ¬r(b) and ¬q(x) ∨ r(x) (the clause ¬r(b) must be excluded
since it does not propagate), together with the instantiation y ← c. It is clear that
blindly enumerating all possible candidate invariants and substitutions is impractical
and leaving the burden to the user is also unsatisfactory. We thus devise a calculus that
is able to extract such candidate invariants and prove them automatically. The intuitive
idea is to compute candidate invariants by collecting minimal sets of hypotheses that
are sufficient to prove the base case, and then to exploit failures of previous proof
attempts to refine the considered invariant. If, when trying to prove that an invariant
propagates, it is discovered that an additional hypothesis is needed, then this hypothesis
is added to the current candidate invariant.

Previous and Related Work

The automation of inductive reasoning has been thoroughly investigated in the context
of rewriting (see, e.g., [9,7,8,33,12]). The goal is to prove universal queries of the form
∀x1, . . . , xn φ, where φ is a quantifier-free formula (usually an equation or a disjunction
of equations) containing functions defined by rewrite rules and x1, . . . , xn range over
the set of ground terms. Heuristics have been proposed to guide the application of
the rewriting rules so that the induction hypothesis can be used and techniques have
been devised to generate inductive lemmata, for instance by strengthening the initial
conjecture or by using enumeration-based algorithms (see, e.g., [13]). The drawback
of the rewriting approach is that it does not handle arbitrary first-order formulas
(with quantifier alternation). It is worthwhile mentioning that non-validity is usually
semi-decidable in the context of rewriting for canonical rewrite systems. Indeed, it is
possible to enumerate all the ground instances of the theorem and to test them for
validity, provided the rewrite system is terminating. If the theorem is not (inductively)
valid then it admits at least one non-valid ground instance, which can be generated in
finite time, and this is not the case in first-order logic: combining inductive reasoning
and first-order logic makes unsatisfiability testing both non-semi-decidable and non-co-
semi-decidable. Inductionless induction [14] reduces inductive validity to a first-order
satisfiability test using proof by consistency: a formula F is proven if it is consistent with
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a set of axioms. This approach relies on the existence of an axiomatization describing
the set of possible counter-examples and is again restricted to purely universal queries.

Inductive reasoning can be performed by using any first-order prover to prove in-
duction schemes. The problem is then how to construct the relevant inductive invariant.
For instance, in [18] a technique is proposed to extract inductive invariants from in-
stances of the considered theorems. Related approaches have been considered in the
context of Satisfiability Modulo Theories [30]. Although originally designed for han-
dling quantifier-free formulas, SMT solvers are often able to prove first-order formulas
by combining quantifier-instantiation with ground decision procedures. In this context,
inductive properties can be established by proving inductive schemes: when trying to
prove a formula ∀xφ(x), it is possible to assume that φ(y) is true for every y < x.
The focus is again on the automated discovery of inductive lemmata, which can been
done by enumerating candidate invariants, using filtering techniques to discard irrel-
evant or falsified candidates. These techniques have been successfully integrated into
the theorem prover CVC4 [5]. SMT solving has also been combined with the rewriting
approach [19].

Inductive reasoning can also be encoded as cyclic proofs [10]. In this approach, the
standard sequent calculus is extended to handle cycles in proof search, i.e., proofs in
which the goal itself is used as an axiom. Additional criteria are provided to ensure
that soundness is preserved, for instance by showing that some well-founded measure
is strictly decreasing along each cycle. This technique is very powerful and general,
allowing for example nested or mutually recursive proofs and arbitrary quantifier al-
ternation. However, it does not apply to saturation-based procedures which lack the
tree structure of sequent or tableaux calculi. Our method can be seen as a way to gen-
erate cycles from a given inference graph. In our context, the cycle must be defined at
the level of formulas or clause sets, whereas the inference graph is defined on clauses.

Our procedure is based on the use of a constrained calculus: some of the terms are
abstracted away and replaced by variables, while equations are attached as constraints
to the clause to specify the values of these variables. This technique is widely used
when reasoning modulo theories in the Superposition framework, see for instance the
work on hierarchic Superposition calculi [4,6,21].

There have been a few attempts to combine saturation-based procedures with in-
ductive theorem proving. In [21], a Superposition calculus is presented for reasoning
on formulas containing constant symbols interpreted over some fixed domain and de-
fined inductively using a set of constructors. As in our approach, such constants are
abstracted away and replaced by variables so that they can be instantiated by unifi-
cation, instead of having to instantiate them explicitly by using domain axioms. An
inductive rule is defined, encoding the fact that, when trying to refute a formula φ(x)
where x is interpreted over an inductive domain, one may assume that x is the min-
imal element such that φ(x) holds (w.r.t. some well-founded ordering). This entails
that φ(y) is false for all y that are smaller than x. The inductive rule is able to derive
instances of this property for the usual subterm ordering. Note however that this in-
ductive scheme only applies to the initial formula, not on auxiliary inductive lemmata:
indeed, the rule is clearly unsound if applied on a subformula φ that does not contain
all occurrences of x. In [20], this calculus is enriched by a technique that is meant
to ensure termination in some cases. The idea is to compute substitution expressions
(a language constructed by iterations, compositions and disjunctions of substitutions,
related to regular expressions and finite automata) representing the set of values of x
such that φ(x) can be refuted. Then the unsatisfiability problem can be solved by de-
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tecting that this set is equivalent to the entire domain. Strong conditions are required
to ensure termination: the function symbols must be at most unary, the positive lit-
erals cannot contain multiple occurrences of the same variable and the Superposition
calculus must terminate.

The calculi defined in [1] and [24] are based on similar ideas, but use slightly
different approaches for handling inductive reasoning. In [1] the idea is to detect loops
in the search space, e.g., if a formula φ(y) is derived from φ(y+ k), and if there exists
an x such that φ(x) holds (x, y denote natural numbers), then one can assume that x is
strictly smaller than k. The addition of the condition x < k thus preserves satisfiability,
and if equations of the form x 6= 0, . . . , x 6= k− 1 are derived then the unsatisfiability
of the initial set is established. [24] uses a similar loop detection rule based on infinite
descent: if a formula φ(t) with t < x is derived from φ(x) then necessarily φ(x) is
unsatisfiable. In [23] algorithms are provided to explicitly compute the formula φ from
a given inference graph. This approach is restricted to inductive domains defined by
using monadic constructors only. This limitation is overcome by the present work.

In [16,17], a technique is presented to perform inductive reasoning in Superposi-
tion calculi. In this approach, inductive invariants are constructed as conjunctions of
elementary formulas (called “clause contexts”) extracted from the clause set (or submit-
ted by a user), and conditions ensuring that the invariant propagates are encoded as
a quantified boolean problem. This approach shares some similarity with ours, mainly
the introduction of (albeit purely propositional in this approach) atoms, written TφU,
to denote complex formulas φ. However it strongly relies on the Avatar architecture
[35], where a Superposition theorem prover is tightly integrated with a SAT-solver. Fur-
thermore, it does not handle nested induction or mutually recursive data-structures.

As far as we are aware, the approach described in the present paper is the only
one that can reason by induction on complex terms, possibly containing variables (see
Example 67) in the context of saturation-based theorem proving. This allows one to
prove formulas with arbitrary quantifier alternation, e.g., ∃x∀y∃z φ(x, y, z), where y
is interpreted in an inductive domain; after negation and skolemization, we get a for-
mula ∀x, z ¬φ(x, f(x), z), and the proof must be done by induction on f(x). Other
approaches are restricted to formulas of the form ∀∗∃∗φ.

Structure of the Paper

In Section 2 we briefly review usual definitions and define the syntax and semantics of
the logic we are considering. A calculus for inductive reasoning is described in Section
3, and examples of applications are provided in Section 5. Section 6 contains some
restricted completeness results and Section 7 concludes the paper and provides some
lines of future work.

2 Preliminaries

2.1 Basic Definitions

We first briefly review and adapt standard definitions. We adopt a multi-sorted frame-
work. The symbols S and Σ respectively denote the sets of sort and function symbols
(with bool ∈ S), and each element in Σ is associated with a unique profile of the form
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s1 × · · · × sn → s, such that s1, . . . , sn, s ∈ S, n ≥ 0 and ∀i ∈ [1, n], si 6= bool. We
write f : s1 × · · · × sn → s to state that f has profile s1 × · · · × sn → s. The arity of
a symbol f of profile s1 × · · · × sn → s is n. A predicate symbol is a function of profile
s1 × · · · × sn → bool.

The set of terms is built inductively from Σ and a set of variables V. Each variable
in V is mapped to a unique sort and the sort of a term is defined as usual. Given
Σ′ ⊆ Σ, a Σ′-term is a term built from Σ′ and V.

The set of first-order formulas is built using the set of logical symbols ∨,∧,¬,∃, ∀,
from atoms of one of the following forms:

– p(t1, . . . , tn), where p is a predicate symbol of profile s1 × · · · × sn → bool, and
t1, . . . , tn are terms of sort s1, . . . , sn respectively;

– t ' s where t and s are terms of the same sort;
– t ≺ s, where t and s are arbitrary terms, possibly of different sorts.

As we shall see, ' is interpreted as the usual equality predicate and ≺ as the subterm
ordering (the precise interpretations will be defined afterwards). We denote by var(e)
the set of variables freely occurring in the expression (term or formula) e. The formulas
φ⇒ ψ and φ⇔ ψ are taken as shorthands for ¬φ∨ψ and (φ∧ψ)∨(¬φ∧¬ψ) respectively.

The notion of a position in an expression (term or formula) or sequence of expres-
sions is defined as usual. The set of positions in an expression e is written pos(e). If
e is an expression, then we denote by e|p the expression occurring at position p in e

and by e[e′]p the expression obtained from e by replacing the expression at position p
by e′ (implicitly assuming that the sorts of e′ and e|p are identical). The head symbol
of the expression e is written head(e); note that head(e) may be a function symbol, a
variable or a logical symbol.

A substitution is a total function mapping each variable to a term of the same sort.
The image of a term t by a substitution σ is defined inductively and written tσ. The
domain of a substitution is the set of variables x such that xσ 6= x. A substitution σ is
a renaming if ∀x ∈ V, xσ ∈ V and ∀x, y ∈ dom(σ), xσ = yσ ⇒ x = y. We denote by
[t1/x1, . . . , tn/xn] the substitution mapping xi to ti for every i ∈ [1, n]. The notation
t[v/u] is extended to the case where u is an arbitrary term, to denote the term obtained
from t by replacing every occurrence of u in t by v. A unifier of two terms t and s of the
same sort is a substitution σ such that tσ = sσ. It is well-known that every unifiable
pair of terms admits a most-general unifier (unique up to a renaming).

An interpretation is a function I mapping:

– Each sort symbol s ∈ S to a non-empty set, such that I(bool) = {true, false}
and the sets I(s) are pairwise disjoint.

– Each function symbol f of profile s1 × · · · × sn → s to a function fI from I(s1)×
· · · × I(sn) to I(s).

– The symbol ≺ to a binary relation on the domain
⋃

s∈S I(s).
– Each variable x of sort s to an element of I(s).

If I is an interpretation, x1, . . . , xn are variables of respective sorts s1, . . . , sn and
e1, . . . , en are elements of I(s1), . . . , I(sn), then I[e1/x1, . . . , en/xn] denotes the in-
terpretation coinciding with I, except that I[e1/x1, . . . , en/xn](xi)

def
= ei.
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The image of a term of sort s (resp. of a formula) by an interpretation is an element
of I(s) (resp. of {true, false}), defined as usual (where x is a variable of sort s):

I(f(t1, . . . , tn))
def
= fI(I(t1), . . . , I(tn))

I(t ≺ s) def
= true iff (I(t), I(s)) ∈ I(≺);

I(¬φ) def
= true iff I(φ) = false;

I(φ1 ∨ φ2)
def
= true iff I(φ1) = true or I(φ2) = true;

I(φ1 ∧ φ2)
def
= true iff I(φ1) = true and I(φ2) = true;

I(t ' s) def
= true iff I(t) = I(s);

I(∃xφ) def
= true iff there exists an e ∈ I(s) such that I[e/x] |= φ;

I(∀xφ) def
= true iff for every e ∈ I(s), I[e/x] |= φ.

We write I |= φ if I(φ) = true and φ |= ψ if for every interpretation I such
that I |= φ, we have I |= ψ. Note that for technical convenience and contrarily to
the usual practice, we do not assume at this point that free variables are universally
quantified; for instance p(x) 6|= p(y), but ∀x p(x) |= ∀y p(y). Given a formula φ such
that var(φ) = {x1, . . . , xn}, we denote by ∀∗φ the formula ∀x1, . . . , xn φ.

A literal is an atom or the negation of an atom and a clause is a finite disjunction
of literals. The empty clause is denoted by 2. Clauses are taken as multisets, e.g., we
may write l ∈ C to state that l is a literal occurring in C, or C = D (resp. C ⊆ D) if
C and D are identical modulo AC (resp. if D = C ∨ C′).

2.2 Inductive Domains

In order to enable inductive reasoning in our framework, we consider a distinguished set
of sort symbols I ⊆ S, which are interpreted on inductively defined domains; these are
domains that are specified by a set of constructors. The sorts in I are called inductive
sorts. We thus consider several kinds of function symbols.

– We denote by K the set of constructors, i.e., the symbols defining the domains
of inductive sorts. We assume that the range of each symbol of K is in I. For
instance, the natural numbers have two constructors 0 : nat and succ : nat→ nat,
lists have two constructors nil : list and cons : s × list → list, etc. Note that
the arguments of the constructors may be of sorts not necessarily in I; for example,
the elements occurring in lists may be of some arbitrary non-inductive sort.

– We denote by Λ the set of function symbols other than constructors that range
over an inductive sort. For example, a constant symbol distinct from 0 denoting an
unspecified natural number n (to be interpreted as a term of the form succk(0),
with k ∈ N) is in Λ, as well as the usual functions + : nat × nat → nat and
append : list× list→ list.

– Each constructor f of profile s1 × · · · × sn → s is associated with n selectors f−1
i

(1 ≤ i ≤ n) of profiles s → si. We denote by R the set of rules of the form
f−1
i (f(x1, . . . , xn))→ xi and by t↓R the normal form of any term t by this set of
rules.

– The remaining symbols are standard function symbols. Their profiles are of the
form s1 × · · · × sn → s where si ∈ S \ {bool} and s ∈ S \ I.
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Remark 1 The selector functions are introduced for technical convenience only. They
are not intended to occur in the initial clause sets and they will be used only for proving
the soundness of the Domain Decomposition rule (see Section 3.5). See Examples 28,
47 and Definition 58 for more details.

Given an interpretation I, the set of I-terms of sort s ∈ S is the least set containing
I(s) and every expression of the form f(t1, . . . , tn) where f is a constructor of profile
s1 × · · · × sn → s and ti is an I-term of sort si, for i ∈ [1, n]. Note that if s 6∈ I then
the only I-terms of sort s are the elements of I(s). Informally, an I-term is simply
a term built on the set of constructors and on elements of the domain of I (taken as
constants). These I-terms are interpreted as usual terms, with I(e) def

= e if e ∈ I(s)
for s ∈ S. The subterm ordering / is defined inductively on I-terms as follows: t / s if
s is a term of the form f(s1, . . . , sn), with f ∈ K and there exists i ∈ [1, n] such that
either si = t or t / si. We write t E s if t / s or t = s.

Example 2 Let S = {list, real}, with I = {list}. Consider the formula:
∀x, y sum(cons(x, y)) ' x + sum(y) ∧ sum(nil) ' 0 ∧ sum(l) ' 0. The symbols
nil and cons are constructors of profile → list and real× list→ list respectively;
0, + and sum are ordinary function symbols of profile → real; real × real → real

and list→ real respectively; l is a constant symbol of sort list occurring in Λ and
x and y are variables of sorts real and list respectively.

If I interprets real as R, then the I-terms of sort list include all terms of the form
cons(r1, cons(. . . , cons(rn, nil) . . .)) with n ≥ 0 and r1 . . . , rn ∈ R, and the I-terms
of sort real are real numbers.

Definition 3 A term is I-ground if it contains no variable of a sort in I and if all its
function symbols are constructors. A substitution σ is I-ground if xσ is I-ground, for
every variable x ∈ dom(σ).

A rooted formula is an expression of the form φ[x1, . . . , xn], where φ is a formula
and var(φ) = {x1, . . . , xn}. A rooted formula is interpreted in the same way as a usual
formula, the only difference is that it fixes a total strict ordering on its free variables.
If α = φ[x1, . . . , xn], then we denote by α(t1, . . . , tn) the formula φ[t1/x1, . . . , tn/xn].
For simplicity, we may denote a rooted formula φ[x, y1, . . . , yn] by φ[x,y].

Let α = φ[x, y1, . . . , yn] be a rooted formula, where x, y1, . . . , yn are of sorts
s, s1, . . . , sn respectively. We associate α with two (n+ 1)-ary predicate symbols Tα
and T≺α , both of profile s× s1 × · · · × sn → bool. We assume that all the symbols of
the forms Tα and T≺α are pairwise distinct. The interpretation of these special sym-
bols will be given in Definition 6: intuitively, Tα(x, y1, . . . , yn) holds if α(x, y1, . . . , yn)
holds and T≺α (x, y1, . . . , yn) holds if α(x′, y1, . . . , yn) holds for every proper subterm
x′ of x.

Remark 4 The special symbols Tα and T≺α and the ordering relation ≺ are not in-
tended to occur in the initial clause set: they are introduced later on during proof
search.

Example 5 The formula φ = (p(x, y) ∨ p(y, x)) ∧ ¬q(x) may be associated with two
rooted formulas α = φ[x, y] and β = φ[y, x], depending on how the variables are
ordered. Then α[a, b] and β[a, b] denote the formulas (p(a, b) ∨ p(b, a)) ∧ ¬q(a) and
(p(b, a) ∨ p(a, b)) ∧ ¬q(b), respectively.
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The following equivalences will hold in the interpretations we consider:
Tα(x, y) ⇐⇒ Tβ(y, x) ⇐⇒ φ, T≺α (z, y) ⇐⇒ ∀x (x ≺ z ⇒ φ) and
T≺β (z, x) ⇐⇒ ∀y (y ≺ z ⇒ φ).

Definition 6 An interpretation is I-normal if it satisfies the following conditions:

1. The sets I(s) for s ∈ I are the least sets satisfying the following property: for each
constructor f of profile s1×· · ·× sn → s, and for each (e1, . . . , en) ∈ I(s1)×· · ·×
I(sn), the I-term f(e1, . . . , en) occurs in I(s).

2. If f is a constructor then fI is the function mapping (e1, . . . , en) to the I-term
f(e1, . . . , en).

3. I interprets ≺ as /.
4. For every rule t→ s in R, I |= ∀∗(t ' s).
5. For each rooted formula α = φ[x,y], I |= ∀∗(Tα(x,y)⇔ α(x,y)).
6. For each rooted formula α = φ[x,y], I |= ∀∗(T≺α (x,y)⇔ ∀z.(x ≺ y ⇒ α(z,y)))

Remark 7 Note that all constructors are free in every I-normal interpretation.

In the following we implicitly assume – unless specified otherwise – that all in-
terpretations are I-normal: satisfiability and logical entailment are considered w.r.t.
I-normal interpretations. The usual entailment relation (i.e., when the interpretations
are arbitrary) is denoted by |=fol .

Since by Condition 4, an I-normal interpretation is a model of ∀∗(t ' s) for every
rule t→ s, we have the following result:

Proposition 8 Let I be an I-normal interpretation and φ be a formula. Then I |= φ

if and only if I |= φ↓R.

The next proposition states an immediate consequence of Condition 1 in Definition
6.

Proposition 9 Let I be an I-normal interpretation and e be an element of the do-
main of I. There exists an I-term t containing only symbols in K and elements of⋃

s∈S\I I(s) such that I(t) = e.

Proof The proof is by induction on the ordering /. If the sort of e is not in I, then
it suffices to take t = e (e is an I-term since it is an element of the domain of I).
Otherwise, by Condition 1 of Definition 6, e is of the form f(e1, . . . , en) where f :
s1 × · · · × sn → s ∈ K and ∀i ∈ [1, n] ei ∈ I(si). For every i ∈ [1, n], we have ei / e by
definition of /, thus there exists a term ti containing only symbols in K and elements
of
⋃

s∈S\I I(s) such that I(ti) = ei. Then f(t1, . . . , tn) fulfills the required property.

2.3 Constrained Clauses

The proof procedure presented in Section 3 operates on constrained clauses of a par-
ticular form, formally defined as follows.

Definition 10 (Syntax) A constrained clause (or c-clause) is an expression of the form
JC | X K, where:

– C is a clause,
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– X is a conjunction of the form
∧n
i=1 fi(ui) ' vi ∧

∧m
i=1 T

≺
αi(wi), where n,m ≥ 0

and ∀i ∈ [1, n], fi ∈ Λ.

Empty conjunctions are denoted by >, and a c-clause of the form JC | >K may simply
be denoted by C. For any set of c-clauses S, we denote by S> the set of c-clauses in S
with a constraint part equal to >.

Note that, in the above definition, the terms ui, vi, wi and the clause C may contain
symbols in Λ. Constraints are taken as sets: we may write l ∈ X to state that l is an
atom occurring in X , X ⊆ Y if Y = X ∧X ′, or X = Y \X ′ if X ∧X ′ = Y, modulo AC.

Definition 11 (Semantics) Let JC | X K be a c-clause with free variables x1, . . . , xk
of respective sorts s1, . . . , sk. For all interpretations I, we write I |= JC | X K if
I |= C or I 6|= X . We write I |= ∀∗ JC | X K if for all e1, . . . , ek in I(s1), . . . , I(sk),
I[e1/x1, . . . , ek/xk] |= JC | X K

For every set of c-clauses S, we write I |= S iff I |= C holds for every C ∈ S and
I |= ∀∗S if I |= ∀∗C for every C ∈ S. We write S1 |= S2 if I |= S2 every time I |= S1.

Constrained Clause Sets and Formulas

We introduce a few shorthands to simplify notations. For every set of clauses S and for
every constraint X , we denote by JS | X K the set of c-clauses {JC | X K | C ∈ S}. For
every formula φ not containing quantifiers, cnf (φ) denotes a formula in conjunctive
normal form equivalent2 to φ. For all constraints X , we denote by Jφ | X K the set
Jcnf (φ) | X K.

Example 12 If φ = (p(a, x) ∧ q(b, y)) ∨ r(x, y) then:

Jφ | b ' yK = {Jp(a, x) ∨ r(x, y) | b ' yK , Jq(b, y) ∨ r(x, y) | b ' yK}.

2.4 Inference Trees

The induction rules in Section 3.5 will be defined by taking into account the so-called
inference tree of the generated clauses in order to extract candidate inductive invariants.

Before defining the notion of an inference tree, we need to define the notion of an
inference. Because our aim is to be as generic as possible, we do not want to assume
that a specific set of inference rules is fixed. Instead, we prefer to define a general notion
of inference, together with some conditions that will ensure that upcoming induction
rules are correct.

Definition 13 An inference is a finite nonempty sequence of c-clauses, written
H1, . . . ,Hn ` C. The c-clauses H1, . . . ,Hn are the premises of the inference and C
is its conclusion. The inference is sound if ∀∗H1, . . . , ∀∗Hn |= C.

Observe that ∀∗H1, . . . , ∀∗Hn |= C, entails ∀∗H1, . . . , ∀∗Hn |= ∀∗C, since by definition
∀∗H1, . . . , ∀∗Hn contain no variable in C. Note also however that, since free variables
are handled rigidly, H1, . . . ,Hn |= C does not necessarily hold.

2 Usual structural transformations (see, e.g., [29,28]) can be used to avoid an exponential
blow-up – the symbols Tα can be used for this purpose, together with the axioms in Section
3.2, which ensures that equivalence is preserved in I-normal interpretations.
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Definition 14 An inference tree δ is a partial function mapping c-clauses to finite sets
of c-clauses. For every c-clause C, the c-clauses in δ(C) are the parents of C. The set of
δ-ancestors (of simply ancestors if δ is fixed in the context) of C is the least set such
that every parent of C is a δ-ancestor of C and every parent of a δ-ancestor of C is also
a δ-ancestor of C.

The inference tree δ is:

1. well-founded if the δ-ancestor relation is well-founded3.
2. sound if for every C ∈ S, if δ(C) = {D1, . . . ,Dn}, then the4 inferenceD1, . . . ,Dn ` C

is sound.

Intuitively, δ(C) represents the set of premises that are used to derive C, applying
one of the inference rules. The function δ is partial, hence the set δ(C)may be undefined.
This is the case when C has not been inferred but simply asserted, i.e., when it is a
hypothesis occurring in the initial clause set. If δ(C) = ∅ and δ is sound, then this
means that C is valid (it can be deduced from an empty set of premises). This is the
case in particular for all the axioms introduced in Section 3.2. The use of the abstract
notion of an inference tree makes our results applicable to a wide range of inference
systems.

Definition 15 A derivation for an inference tree δ from a set of c-clauses S is a finite
sequence of c-clauses (C1, . . . , Cn) such that for every i ∈ [1, n], either δ(Ci) is undefined
and Ci ∈ S or every c-clause in δ(Ci) occurs in {C1, . . . Ci−1}, up to a renaming of
variables. A derivation (C1, . . . , Cn) is ground if Ci is ground for every i ∈ [1, n]. A
derivation (C1σ, . . . , Cnσ) is a ground instance of (C1, . . . , Cn) if it is ground and for
every i ∈ [1, n], δ(Ciσ) = δ(Ci)σ.

In the following, we assume that all the considered inference trees are well-founded
and sound. We also assume that for every c-clause C with δ(C) = {H1, . . . ,Hn}, and
for every i, j ∈ [1, n] such that i 6= j, the c-clause Hi and its ancestors share no variable
with the c-clause Hj and its ancestors this means that if a c-clause is used several times
in a derivation then its inference tree may have to be duplicated and renamed5.

3 Definition of the Calculus

In order to illustrate forthcoming definitions we will consider the following running
example.

Example 16 Assume that I and S contain a unique sort s, and that the set of construc-
tors is {a :→ s, f : s → s}. Let p and q be predicate symbols with the same profile
s × s → bool. Let H1 = (p(a, a) ∨ ∀x q(a, x)), H2 = ∀x, x′ (p(x, x′) ⇒ p(f(x), x′)),
H3 = ∀x (q(x, a) ⇒ q(f(x), a)). The goal is to prove that the following entailment
holds6:

H1 ∧H2 ∧H2 |= ∀x∃y (p(x, y) ∨ q(x, y))

3 Because the inference trees are usually finite, it is sufficient to check that no clause is one
of its own ancestors.

4 The order of the premises is arbitrary.
5 In practice, the inference tree does not have to be computed explicitly: we only have to be

able to compute the candidate invariant Iδ(C,X , p) defined in Section 3.5. This can be done
by generating renamings on demand.

6 The reader can check that the implication does not hold if s is not an inductive sort.
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By negating the conclusion and eliminating the existential quantification by
Skolemization, the problem boils down to proving that the formula:

H1 ∧H2 ∧H3 ∧ ∀y (¬p(b, y) ∧ ¬q(b, y))

is unsatisfiable in I-normal interpretations, where b is a fresh symbol (not a constructor)
in Λ of profile → s. Since the interpretation is I-normal, b must be interpreted by a
term of the form fn(a) for n ∈ N.

3.1 Overview of the Inductive Proof Procedure

As informally explained in the Introduction, the goal of our calculus is to derive uni-
versal properties ∀xα(x) by induction on x. This is done by infinite descent: in order
to prove that such a property holds, we show that the implication ¬α(t) ⇒ ∃x (x ≺
t ∧ ¬α(x)) is provable from the clause set at hand, for every ground constructed term
t on the considered signature. Because ≺ is well-founded, this entails that α(t) must
hold for every t. Two related issues arise:

1. How to choose the formula α? Our solution is to compute this formula incremen-
tally: we start by collecting a minimal set of hypotheses that is sufficient to refute
a base case (when t is minimal w.r.t. /). The negation of the conjunction of the
collected hypotheses suggests a first candidate invariant. Then other hypotheses are
added when necessary to handle the other cases. Moreover, unification is used to
compute the instances of the free variables occurring in α for which infinite descent
applies.

2. How to check that ∃x (x ≺ t∧¬α(x)) can be derived? This is not obvious because
α is a set of clauses7. Our solution is to use the special symbol T≺α : we check thatq
2
∣∣ T≺α (t)y can be derived, which will mean that there exists a proper subterm t′

of t such that ¬α(t′) holds. To this purpose, we need specific axioms that encode
the semantics of the symbols Tα, T≺α and ≺. These axioms are defined in Section
3.2. In general

q
2
∣∣ T≺α (t)y can only be derived by distinguishing several cases,

depending on the form of the term t. We thus introduce a rule, called the Domain
Decomposition rule, to perform some kind of case splitting.

In general, the above reasoning is applied under some additional conditions, expressed
by constraints or additional literals occurring in the clauses. In other words, a clause of
the form

q
C
∣∣ T≺α (t) ∧ Xy

may be obtained instead of
q
2
∣∣ T≺α (t)y, meaning that the

result holds under conditions ¬C and X , and the formula JC ∨ α(x) | X K is eventually
derived instead of α(x).

Before giving formal definitions, we explain in more details how the procedure
works on our running example.

Example 17 (continued). The formula of Example 16 can be encoded by the following
set of c-clauses S:

c1 p(a, a) ∨ q(a, x)
c2 ¬p(x2, x

′
2) ∨ p(f(x2), x

′
2)

c3 ¬q(x3, a) ∨ q(f(x3), a)
c4

q
¬p(y4, y

′
4)
∣∣ b ' y4

y

c5
q
¬q(y5, y

′
5)
∣∣ b ' y5

y

7 Formula ∃x (x ≺ t∧¬α(x)) may be encoded as a finite disjunction of cnf formulas ¬α(t1)∨
· · · ∨ ¬α(tn), with t1, . . . , tn / t.
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The constant b is abstracted away and respectively replaced by variables y4 and y5 in c4
and c5, while the constraints b ' y4 and b ' y5 are added to the clauses (applications
of the Abstraction rule introduced in Section 3.3 on Page 16). Abstracting b will allow
us to apply inference rules without having to replace b by a constructor term (which
could be done by using domain axioms). Replacing b with a variable make it possible
to use unification to find the values of b for which the above clause set can be refuted.
Informally, the procedure will permit to prove that S is unsatisfiable by generating the
inductive invariant ∀x p(x, a) ∨ q(x, a), which, along with c-clauses c4 and c5, permits
to derive the c-clause J2 | b ' y4K stating that S is unsatisfiable, regardless of the value
of b. This is done as follows. First, the c-clause J2 | b ' aK is derived by Resolution,
using c-clauses c1, c4 and c5, which means that S is unsatisfiable if b is equal to a.
The conjunction of instances of the c-clauses involving b that were used to generate
J2 | b ' aK is extracted. In this case, the conjunction consists of instances of c4 and c5,
and is equal to (¬p(b, a)∧¬q(b, y′5)). The negation of this conjunction (abstracting away
the constant b) suggests a first candidate inductive invariant: ∀x p(x, a)∨q(x, y′5). Note
that this candidate invariant contains a free variable y′5 and the goal is to determine
for which instances of y′5 this invariant propagates.

It is possible to attempt proving that this candidate is indeed an invariant by well-
founded induction and contraposition, by trying to show that the following formula is
a logical consequence of S:

(?) : ∀x [¬p(x, a) ∧ ¬q(x, y′5) ⇒ (∃x′ x′ ≺ x ∧ ¬p(x′, a) ∧ ¬q(x′, y′5))].

To this aim, a seemingly natural solution would be simply to add the cnf of the negation
of (?) to S in order to derive a contradiction. However this is not satisfactory in our
context, for the following reasons:

– First, the invariant contains free variables (here y′5) that would have to be treated
rigidly (they must be instantiated in the same way in every clause).

– Second, if the test S |= (?) fails (i.e., if (?) is not provable) then no information
would be provided for constructing a new candidate invariant, although a natural
way of generating a new candidate invariant is to refine the previous one by adding
hypotheses that allow one to prove (?).

The goal in our context is thus not simply to check that (?) is a logical consequence
of S, but rather to find the conditions under which S |= (?) holds. If no conditions
are necessary, then the candidate is an invariant. Otherwise, it may be necessary to
instantiate the free variables in (?), or to add hypothesis to consider another invari-
ant candidate. Thus, instead of considering the formula (?) above, we consider the
consequent of the implication instantiated by [b/x]:

(†) : (∃x′ x′ ≺ b ∧ ¬p(x′, a) ∧ ¬q(x′, y′5))

The formula (†) is encoded by the c-clause:
r
2
∣∣∣ b ' z ∧T≺p(x,a)∨q(x,y′5)

(z, y′5)
z
. We

first try to prove that S |= (†), then, by inspecting the clauses involving b used in
the proof, we will be able either to deduce that S |= (?) or to refine the candidate
invariant. Note that if S |= (?) then we necessarily have S |= (†): indeed, by definition,
¬p(x, a) ∧ ¬q(x, y′5) was constructed by extracting properties of b derivable from S,
thus we must have S |= (¬p(x, a) ∧ ¬q(x, y′5))[b/x].

The derivation of J2 | b ' aK mentioned above is a proof that S |= (†) when
b = a. Using c-clauses c2, c3, c4 and c5, it is possible to show that S |=
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J¬p(y, a) | b ' f(y)K , J¬q(y, a) | b ' f(y)K. This means that (†) holds when b = f(y)
and y′5 is instantiated by a. Since a and f are the only constructors, b is either equal
to a or of the form f(y). Therefore, S |= (†) regardless of the value of b, but with the
instantiation [a/y′]8. At this point we can again collect all the properties of b that were
used in this derivation. We get: (¬p(b, a) ∧ ¬q(b, a)). This entails that the following
implication is a logical consequence of S:

[¬p(b, a) ∧ ¬q(b, a) ⇒ (∃x′ x′ ≺ b ∧ ¬p(x′, a) ∧ ¬q(x′, a))]

Furthermore, since ¬p(b, a) ∧ ¬q(b, a) contains all the properties of b that are used to
prove the consequent (†), the constant b can be abstracted away, which means that the
following formula is also a logical consequence of S:

∀x [¬p(x, a) ∧ ¬q(x, a) ⇒ (∃x′ x′ ≺ x ∧ ¬p(x′, a) ∧ ¬q(x′, a))].

We deduce that the invariant does propagate when y′5 = a. This entails that
∀x (p(x, a) ∨ q(x, a)) holds, which contradicts c-clauses c4 and c5.

In the next sections, we show how to formalize the procedure sketched in Example
17. Our aim is to make all steps purely automatic and at the same time to avoid fixing
the inductive scheme in advance. For example the inductive invariant p(x, a) ∨ q(x, a)
and the decomposition b = a ∨ b = f(y) used in Example 17 should be discovered
automatically.

3.2 Axioms for the Special Symbols

Definition 18 We define the following sets of c-clauses, where x, x, y, y′, z, z, xi de-
note (vectors of) variables of the appropriate sorts, and α denotes an arbitrary rooted
formula:

ΓT :
⋃{

Jα(x) ∨ ¬Tα(x) | >K
∣∣∣α = φ[x]

}
ΓT≺ :

{r
y′ 6≺ y ∨Tα(y

′, z)
∣∣ T≺α (y, z)z ∣∣∣α = φ[y, z]

}
Γ f≺ :

{
Jxi ≺ f(x1, . . . , xn) | >K

∣∣∣ f ∈ K, arity(f) = n
}

Γ≺ :
{

Jx 6≺ y ∨ y 6≺ z ∨ x ≺ z | >K
}

We let Γ def
= ΓT ∪ ΓT≺ ∪ Γ

f
≺ ∪ Γ≺.

Intuitively, ΓT states that if Tα(y, z) holds then α(y, z) holds9, ΓT≺ states that if

T≺α (y, z) holds then Tα(y
′, z) holds for every strict subterm y′ of y; and the sets Γ f≺

and Γ≺ axiomatize the theory of the subterm ordering ≺.

Proposition 19 The c-clauses in Γ are all valid in I-normal interpretations.

8 As we shall see, this assertion is derived by a form of case splitting, performed by the
Domain Decomposition rule defined in Section 3.5, Page 24.

9 This corresponds to an application of Tseitin’s extension rule with the formula α. Note
that in the definition of ΓT , Jα(x) ∨ ¬Tα(x) | >K denotes a set of c-clauses, as explained in
Section 2.3.
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Proof The validity of the c-clauses in Γ f≺ and Γ≺ stems immediately from the definition
of the interpretation of ≺. The validity of ΓT≺ and ΓT follows from Conditions 5 and
6 of Definition 6.

Remark 20 The axioms for the converse implications (e.g., α(x) ⇒ Tα(x)) are not
needed because the symbols Tα and ≺ are used only positively and T≺α appears only
in the constraints. Note also that we could get rid of the symbol Tα by using the
alternative axiom:

ΓT≺ :
⋃{r

y′ 6≺ y ∨ α(y′, z)
∣∣ T≺α (y, z)z ∣∣∣ α = φ[y, z]

}
.

The current presentation is clearer and makes the derivations easier to understand.

Activated Formulas

In practice, using all the axioms defined above is very costly because the set ΓT is
infinite and the c-clauses in ΓT and ΓT≺ interfere with each other (e.g., by resolving
or superposing on the atoms Tα(x)), which will generate many irrelevant c-clauses.
We thus restrict the use of the c-clauses in ΓT and ΓT≺ to a special set of rooted
formulas α, called activated formulas. Inferences involving c-clauses that correspond to
formulas that are not in this set are blocked. Initially, no rooted formula is activated.
Formulas are activated during proof search, using the Trigger and Iteration rules
defined in Section 3.5. Informally, a formula is activated when it is considered as a
candidate inductive invariant.

Remark 21 Intuitively, activating a rooted formula α makes it possible to use this
formula as an inductive hypothesis – more precisely, an instance α(t,u) can be used
provided an atom T≺α (s,u) with t ≺ s is added in the constraint.

3.3 Core Inference Rules

We consider a first set of rules, called the core rules, which contains standard in-
ference rules whose definition is omitted (such as the Superposition or Resolution
rules) together with three additional ones: Constraint Factorization, Abstraction
and Instantiation. We assume that each rule in the set of standard rules is of the
form H1,...,Hn

Cσ , where H1σ, . . . ,Hnσ |=fol Cσ10. For each such rule we introduce the
corresponding rule operating on c-clauses, denoted by the same name for simplicity:

JH1 | X1K , . . . , JHn | XnK
JC | X1 ∧ · · · ∧ XnKσ

10 Note that we do not have H1, . . . , Hn |=fol Cσ in general, because our definition of logical
entailment does not assume that free variables are implicitly universally quantified. Instead we
have ∀∗H1, . . . , ∀∗Hn |=fol ∀∗Cσ.
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Example 22 (continued). The following c-clauses can be derived from the set of c-
clauses of Example 17.

c1 p(a, a) ∨ q(a, x)
c2 ¬p(x2, x

′
2) ∨ p(f(x2), x

′
2)

c3 ¬q(x3, a) ∨ q(f(x3), a)
c4

q
¬p(y4, y

′
4)
∣∣ b ' y4

y

c5
q
¬q(y5, y

′
5)
∣∣ b ' y5

y

c6 Jq(a, x) | b ' aK (Resolution, c1, c4) ffl
ffl [a/y4, a/y

′
4]

c7 J2 | b ' aK (Resolution, c6, c5) ffl
ffl [a/y5, x/y

′
5]

c8
q
¬p(x2, y

′
4)
∣∣ b ' f(x2)

y
(Resolution, c2, c4) ffl

ffl [f(x2)/y4, y
′
4/x
′
2]

c9 J¬q(x3, a) | b ' f(x3)K (Resolution, c3, c5) ffl
ffl [f(x3)/y5, a/y

′
5]

The following rule permits the factorization of constraints:

Constraint Factorization:

JC | l1 ∧ l2 ∧ X K

JC | l1 ∧ X Kσ
If σ is an m.g.u. of l1 and l2.

A version of the calculus without the Constraint Factorization rule could also be
defined; however, in the current version, the Trigger, Induction and Iteration rules
apply to a single equation that could be obtained by the factorization rule. Without
it, it would be necessary to define more complex versions of the former rules, reducing
the readability of the paper

We introduce a rule to abstract away terms whose head is in Λ, so that inductive
reasoning can be applied on such terms:

Abstraction:

JC[f(t)]p | X K

JC[x]p | f(t) ' x ∧ X K
If f ∈ Λ, x 6∈ var(C) ∪ var(t) ∪ var(X )

Remark 23 If C contains several occurrences of f(t) then the same variable x can be
employed for each of them (the corresponding rule can be derived by combining the
Abstraction and Constraint Factorization rules).

In all the examples in this paper, the c-clause set at hand is assumed to already
be in abstracted form. Simple heuristics can be used to guide the application of the
Abstraction rule. For instance the rule can be applied when an inference is “blocked”
due to a clash in the unification algorithm between an occurrence of a function symbol
f ∈ Λ and a constructor. In this case, it is worth trying to replace the term of head f
by a variable.

We finally define the dual to the Abstraction rule:

Instantiation:

JC | X ∨ t ' sK

JC | X Kσ
If σ = mgu(t, s)

The Instantiation rule is very close to the usual Equality resolution rule of the
Superposition calculus [2], the only difference is that it applies only on constraint
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literals. For example the Instantiation rule derives the empty clause from J2 | t ' xK,
if x does not occur in t. It is only used for this purpose in the present paper.

Redundancy Elimination

Standard redundancy elimination techniques can be easily extended to constrained
clauses, provided the constraints are taken into account when checking redundancy.
More precisely, a c-clause JC | X K will be considered redundant w.r.t. some c-clauses
JCi | XiK with i = 1, . . . , n if C is redundant w.r.t. C1, . . . , Cn (in the usual sense) and
if X1, . . . ,Xn ⊆ X . For instance, the subsumption rule is defined as follows:

Definition 24 A c-clause JC | X K subsumes JD | YK if there exists a substitution θ

such that Cθ ⊆ D and X θ ⊆ Y.

Other deletion rules (e.g., equational simplification) are omitted, because none of the
presented results depend on these. The definition of the induction rule only relies on
the existence of an inference tree, regardless of how this tree is constructed. Similarly,
all the usual features of the Superposition calculus, such as literal selection, ordering
etc. can be integrated into the calculus, because the induction rules do not depend of
them. Whether the completeness results in Section 6 extend to inference systems with
deletion rules requires further investigation and is left for future work.

3.4 I-Soundness

It turns out that the soundness properties for inferences and inference trees (see Def-
initions 13 and 14) are not always sufficient for our purpose. We introduce a strictly
stronger property, which also takes into account variable instantiations and constraint
propagation from the premises to the conclusion11.

Definition 25 An inference H1, . . . ,Hn ` C, where Hi = JHi | XiK and C = JC | YK
is I-sound w.r.t. a constraint Y ′, a function λ and a substitution σ if:

1. Y ′ ⊆ Y;
2. λ is a function mapping every occurrence of an equation l ∈ Y to a set of occurrences

of equations L ⊆
⋃n
i=1 Xi, the elements of which are called the antecedents of l;

3. dom(σ) ∩ var(C) = ∅;
4. σ is idempotent;
5. for every I-ground substitution θ of the variables in C, there exists a set of indices

Iθ ⊆ [1, n] such that:
(a) for every i ∈ Iθ, Xiσθ ↓R⊆ Yθ ↓R and for every antecedent l′ ∈ Xi of an

equation l ∈ Y, we have lθ↓R= l′σθ↓R;
(b)

∧
i∈Iθ (Hiσθ) |=

q
C
∣∣ Y ′y θ.

The substitution σ is called the inf-substitution of H1, . . . ,Hn ` C, or simply the
inf-substitution of C if the inference is clear in the context. The constraint Y ′ is the
inference constraint of H1, . . . ,Hn ` C, or simply the inference constraint of C.

11 We recall that R denotes the set of rules associated with the selectors, see Page 7 for
details.
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Remark 26 In general several substitutions σ may exist, in which case one of them is
chosen arbitrarily. Similarly, if an inference is I-sound w.r.t. Y ′, λ and σ, then it is
easy to check that it is also I-sound w.r.t. Y (with the above notations), an empty
antecedent function and the same substitution σ. The results below are valid for any
choice of σ, Y ′ and λ. However, the upcoming inference rules will depend on the choice
of Y ′ and λ.

Intuitively, the conditions of Definition 25 serve several purposes. Firstly, they are
meant to ensure that the conclusion of the inference is indeed a consequence of the
premises. Secondly, and more importantly, they split the constraint Y of the conclu-
sion into two parts12. The first part, Y ′, contains the constraint ensuring that the
inference is indeed sound, whereas the second one contains the literals that are merely
inherited from the premises. Those literals play no further role in the inference, in the
sense that the entailment is still valid if these conditions are removed (see Condition
5b, only the constraint Y ′ is taken into account). Consider for instance an inference
Jp(a) | a ' bK ,¬p(a′) |=

q
2
∣∣ a ' b ∧ a ' a′y. Here the constraint a ' b is inherited

from the first premise (antecedent), whereas the condition a ' a′ is necessary to en-
sure that 2 can indeed be derived from p(a) and ¬p(a′). Thirdly, the definition relates
every ground instance of the conclusion to a particular set of premises, used to de-
rive this specific instance. This is crucial to handle reasoning by case analysis over
the domain. Consider for instance the inference p(0), p(s(x)) |= p(y) over the natural
numbers. Here the conclusion is derived from the first clause if y = 0 and from the
second one otherwise, i.e., Iθ = {1} if θ = [0/y] and Iθ = {2} otherwise.

Remark 27 In most cases, we will simply have Iθ = {1, . . . , n}, Xiσ ⊆ Y and∧n
i=1(Hiσ) |=

q
C
∣∣ Y ′y. However this property does not hold for the Domain

Decomposition rule introduced on Page 24, which explains why this more general
definition is needed. Similarly, we have Y ′ = ∅, except for axioms.

Example 28 Consider the Resolution inference:

Jp(a, x) | n ' xK , J¬p(y, b) ∨ p(f(y), c) | >K ` Jp(f(a), c) | n ' bK

It is easy to check that p(a, x)[b/x], (¬p(y, b) ∨ p(f(y), c))[a/y] |= p(f(a), c), thus we
may set Iθ = {1, 2} regardless of θ, σ = ffl

ffl [b/x, a/y] and Y ′ = >. Here the inference
constraint Y ′ is empty, because the constraint n ' x is not needed to ensure the sound-
ness of the inference: it is merely propagated from the first premise to the conclusion.
Now consider the Abstraction inference: Jp(n) | >K ` Jp(x) | n ' xK. Here, the entail-
ment p(n) |= p(x) holds only if the constraint n ' x is true. Thus for any θ we let:
Iθ = {1}, σ = id and Y ′ = (n ' x). Similarly, consider the following inference, corre-
sponding to an axiom in ΓT≺ (with, e.g., α = p(x)[x]): `

q
y′ 6≺ y ∨Tα(y

′)
∣∣ T≺α (y)y.

Here Iθ = ∅, σ = id and Y ′ = T≺α (y).
In the previous examples the set Iθ does not depend on the substitution θ. Consider

the inference J2 | n ' 0K , J2 | n ' succ(y)K ` J2 | n ' xK, where x is a variable of
sort nat ∈ I and 0, succ are the only constructors of range nat. This inference is a
particular case of the Domain Decomposition rule introduced later; it is sound because,
by definition, every term of sort nat is equal to 0 or succ(y), for some y. We take Y ′ = >.
Here Iθ depends on the substitution θ:

Iθ =

{
{1} if θ = [0/x]
{2} if θ = [succ(t)/x]

12 The two parts are not necessarily disjoint.
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Note that we cannot take Iθ = {1, 2}, because Condition 5a of Definition 25 would
not hold. The definition of the substitution σ is slightly more complicated than in
the previous case: we have to find a substitution σ such that succ(y)σθ = succ(t), if
θ = [succ(t)/x]. This is possible thanks to the selector functions and rewrite rules in
R: we let σ = [succ−1

1 (x)/y], so that σθ = [succ−1
1 ◦ succ(t)/y], and succ(y)σθ ↓R=

succ(yσθ)↓R= succ(t).

Example 29 The derivation of Example 22 corresponds to the following inference tree:
δ(ci) is undefined for i = 1, . . . , 5, δ(c6) = {c1, c4}, δ(c7) = {c6, c5}, δ(c8) = {c2, c4}
and δ(c9) = {c3, c5}. The antecedent of b ' a in c6 is b ' y4, the antecedents of b ' a
in c7 are b ' a (in c6) and b ' y5 (in c5), the antecedent of b ' f(x2) in c8 is b ' y4 and
the antecedent of b ' f(x3) in c9 is b ' y5. The respective inf-substitutions of c6, c7,
c8 and c9 are σ6 = ffl

ffl [a/y4, a/y
′
4], σ7 = ffl

ffl [a/y5, x/y
′
5], σ8 = ffl

ffl [f(x2)/y4, y
′
4/x
′
2] and

σ9 = ffl
ffl [f(x3)/y5, a/y

′
5]. The corresponding inference constraints are all equal to >.

These substitutions, inference constraints and inference tree will be used in forthcoming
examples.

Proposition 30 Let I be an I-normal interpretation and φ be a formula. There exists
an I-ground substitution θ and an I-normal interpretation J such that:

– I and J coincide on every symbol occurring in φ.
– For every variable x occurring in φ, J (x) = J (xθ).
– For every x ∈ dom(θ), x occurs in φ and xθ contains no variable occurring in φ.

Proof Let x1, . . . , xk be the set of variables occurring in φ. By Proposition 9, there exist
k terms t1, . . . , tk containing only symbols in K and elements of

⋃
s∈S\I I(s) such that

∀i ∈ [1, k], I(ti) = I(xi). We associate every element e ∈
⋃

S\I I(s) occurring in
t1, . . . , tk with pairwise distinct fresh variables ye not occurring in φ and we let J be
the interpretation coinciding with I except that J (ye)

def
= e. J is necessarily I-normal

since it coincides with I on every symbol that is not a variable and I is I-normal. By
construction, the first item of the proposition is fulfilled. We let θ be the substitution
mapping each variable xi to the term t′i obtained from ti by replacing each element
e by ye. By definition, θ is I-ground and fulfills the third item of the Proposition.
Furthermore, we have J (xi) = I(xi) = I(ti) = J (ti) = J (t′i) = J (xiθ) for every
i ∈ [1, k], thus the second item is also fulfilled.

The next lemma states that every I-sound inference is sound.

Lemma 31 If an inference H1, . . . ,Hn ` C is I-sound w.r.t. an inference constraint
Y ′, an antecedent function λ and an inf-substitution σ, then H1σ, . . . ,Hnσ |= C.

Proof We employ the same notations as in Definition 25, i.e., Hi = JHi | XiK and
C = JC | YK. Let I be an I-normal interpretation validating H1σ, . . . ,Hnσ and Y. We
have to show that I |= C. By Proposition 30, there exists an I-normal interpretation
J and an I-ground substitution θ such that I and J coincide on every symbol in
H1σ, . . . ,Hnσ, C, and J (x) = J (xθ) for every variable x in var(C). Since I |= Y, we
have J |= Y hence J |= Yθ. Since J is I-normal, J |= Yθ ↓R by Proposition 8;
furthermore, by Condition 1 of Definition 25, we have Y ′ ⊆ Y, so that J |= Y ′θ. Now
by Condition 5a, for every i ∈ Iθ, we have Xiσθ↓R⊆ Yθ↓R, thus J |= Xiσθ. But since
J |= Hiσθ, necessarily, J |= Hiσθ. Thus J |=

∧
i∈Iθ (Hiσθ) and by Condition 5b we

deduce that J |= Cθ. Therefore J |= C, and since I and J coincide on all symbols in
C, we conclude that I |= C.
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Definition 32 An inference rule R is I-sound (resp. sound) if for every instance
H1,...,Hn
C of R, the inference H1, . . . ,Hn ` C is I-sound (resp. sound).

Note that the Instantiation rule is not I-sound because the premise contains a con-
straint t ' s that does not occur in the conclusion, thus Condition 5a of Definition 25
may not hold.

Proposition 33 All the core rules except for the Instantiation rule, are I-sound.
The Instantiation rule is sound.

Proof The soundness of the Instantiation rule is immediate to prove. Let Hi,...,HnC
be a core rule, with Hi = JHi | XiK and C = JC | YK, and let θ be an I-ground
substitution. It is easy to check that for every rule, except for the Instantiation
rule, there exists a substitution σ such that Y =

∧n
i=1 Xiσ ∧ Y

′ for some constraint
Y ′ (Y ′ is empty for every rule except the Abstraction rule, for which it is f(t) ' x),
with

∧n
i=1Hiσ |=

q
C
∣∣ Y ′y. We let: Iθ = {1, . . . , n}, regardless of θ. The antecedent

relation is defined as follows: every atom occurrence f(u) ' v ∈ Xi is an antecedent
of the corresponding atom occurrence (f(u) ' v)σ ∈ Y, except for the Abstraction
rule, for which the atom occurrence f(t) ' x has no antecedent. It is straightforward
to check that the requirements of Definition 25 are satisfied.

3.5 Inference Rules for Inductive Reasoning

Intuitively, an inductive proof in our framework proceeds as follows. First, the
Abstraction rule is applied on some term of head f ∈ Λ, to replace it by a vari-
able. Afterwards, the usual inference rules may construct a refutation of the clause set
for some particular value of this term. Then, information is gathered from this refu-
tation to construct a candidate invariant along with a constraint that will be used to
guarantee that the invariant is correct. Additional inference rules test whether the can-
didate invariant propagates, and if so, then it is generated as a universally quantified
set of clauses.

Definition 34 Given f ∈ Λ, an f-constraint is a constraint of the form
∧n
i=1 f(ui) '

vi where n ≥ 0. In particular, > is an f -constraint. A position p is eligible for∧n
i=1 f(ui) ' vi w.r.t. a sort s ∈ I if it is a position in vi, for every i ∈ [1, n],

and if the terms v1|p, . . . , vn|p are of sort s.

The definition will be used in a context where the vectors ui and terms vi are unifiable.
In most examples, the position p will be empty. Considering non-empty positions is
useful if induction has to be applied on some subterm of f(ui).

Example 35 Let X = a ' f(f(x, y), y)∧a ' f(z, z′), where x, y, z, z′ are variables and
f ∈ Λ is of profile s× s → s, with s ∈ I. X in an a-constraint, and the positions ε, 1
and 2 are all eligible. The positions 1.1 and 1.2 are not eligible.

The following definition relates a c-clause C, an f -constraint X and a position p

to a candidate invariant, together with a constraint and a set of ancestors of C. The
invariant is obtained by considering a disjunction of instances of ancestors of C.
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Definition 36 Let δ be an inference tree. Let X =
∧k
i=1 f(ui) ' vi be an f -constraint

and C be a c-clause of the form JC | X ∧ YK. Let p be an eligible position in X w.r.t.
a sort s and consider a fresh variable z of sort s, not occurring in the c-clauses under
consideration13. The set of auxiliary ancestors Aδ(C,X , p), the invariant Iδ(C,X , p)
and the invariant constraint Xδ(C,X , p) associated with C, X and p are inductively
defined as follows:

1. If X = >, then Iδ(C,X , p) def
= ⊥, Aδ(C,X , p) def

= {C} and Xδ(C,X , p) def
= Y.

2. If X is of the form f(u) ' v[y]p where y is a variable not occurring in Y, u or v,
then Iδ(C,X , p) def

= ¬C[z/y], Aδ(C,X , p) def
= ∅ and Xδ(C,X , p) def

= >.
3. If X 6= >, δ(C) is defined and δ(C) ` C is I-sound14 then:

Aδ(C,X , p) def
=

⋃
D∈δ(C)

Aδ(D,XD, p),

Iδ(C,X , p) def
=

∨
D∈δ(C)

Iδ(D,XD, p)σ,

Xδ(C,X , p) def
=

Y ′ ∧ ∧
D∈δ(C)

Xδ(D,XD, p)σ

 [z/v1|p, . . . , z/vk|p],

where XD denotes the conjunction of the antecedents of the literals in X that
occur in D, σ is the inf-substitution of C, Y ′ is the inference constraint of C, and p
is eligible for XD w.r.t. s, for every D ∈ δ(C).

The above objects are undefined if C and X are not of the required forms, if p is not
eligible for XD w.r.t. s, if none of the conditions of Items 1–3 hold, or if (in Item 3)
there is a D ∈ δ(C) for which the functions are not defined.

Intuitively, Iδ(C,X , p)[z] denotes the negation of the properties satisfied by the terms
occurring at position p in v1, . . . , vk that are used to derive C; Aδ(C,X , p) is the set
of c-clauses used in the derivation that contain no antecedent of equations in X , and
Xδ(C,X , p) is the constraint ensuring that the derivation is sound.

Remark 37 Conditions 2 and 3 in Definition 36 possibly overlap, hence the above
functions are actually non-deterministic. To make the functions deterministic, we may
assume that Item 3 is applied with the highest priority when possible, to avoid trivial
applications of the Induction rule.

Note that, in the definition above, Y possibly contains occurrences of f . Further-
more, if δ(C) = ∅ then Aδ(C,X , p) = ∅, Iδ(C,X , p) = ⊥ and Xδ(C,X , p) = Y ′. Finally,
the same variable z is used in every recursive call, which is possible since, thanks to
the eligibility condition, all the occurrences of z have the same sort.

Example 38 (continued). Consider the derivation of Example 22, and the corresponding
sets of ancestors constructed in Example 29. We have the following results:

Aδ(c1,>, ε) = {c1}, Xδ(c1,>, ε) = >, Iδ(c1,>, ε) = ⊥,
Aδ(c4, b ' y4, ε) = ∅, Xδ(c4, b ' y4, ε) = >, Iδ(c4, b ' y4, ε) = p(z, y′4),

Aδ(c5, b ' y5, ε) = ∅, Xδ(c5, b ' y5, ε) = >, Iδ(c5, b ' y5, ε) = q(z, y′5),

Aδ(c6, b ' a, ε) = {c1} , Xδ(c6, b ' a, ε) = >, Iδ(c6, b ' a, ε) = p(z, a).

13 Formally, Aδ(C,X , p), Iδ(C,X , p) and Xδ(C,X , p) are thus also parameterized by the vari-
able z, however this dependency is left implicit for the sake of readability.
14 In practice, the condition will be checked simply by testing the rule applied to derive C.
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c1 : J¬p(x,y) ∨ p(f(x),y) | y 6' aK
Aδ(c1,⊥, ε) = {c1}
Iδ(c1,⊥, ε) = ⊥

Xδ(c1,⊥, ε) = y 6' a

c2 : J¬p(u,b) | n ' uK
Aδ(c2, n ' u, ε) = ∅

Iδ(c2, n ' u, ε) = p(z, v)
Xδ(c2, n ' u, ε) = >

c3 : J¬p(x,b) | n ' f(x) ∧ b 6' aK
Aδ(c3, n ' f(x), ε) = {c1}
Iδ(c3, n ' f(x), ε) = p(z, b)
Xδ(c3, n ' f(x), ε) = b 6' a

Fig. 1: Computing a Candidate Invariant from an Inference Tree: Example

From these, we conclude that

Aδ(c7, b ' a, ε) = {c1},
Xδ(c7, b ' a, ε) = >,
Iδ(c7, b ' a, ε) = (p(z, a) ∨ q(z, y′5))σ7 = q(z, x) ∨ p(z, a).

Intuitively, this indicates that 2 can be derived from ¬(q(z, x) ∨ p(z, a))[a/z] using
c-clause {c1} under constraint >. The procedure will then try to prove the formula
∀z (q(z, x) ∨ p(z, a)) by induction on z. Note that the extracted inductive invariant
contains a free variable x, that remains to be instantiated. In this example, the invariant
is actually provable, as we shall see in Example 52, in the case where x = a.

Continuing our constructions, we also have

Aδ(c2,>, ε) = {c2}, Xδ(c2,>, ε) = >, Iδ(c2,>, ε) = ⊥,
Aδ(c3,>, ε) = {c3}, Xδ(c3,>, ε) = >, Iδ(c3,>, ε) = ⊥.

Therefore,

Aδ(c8, b ' f(x2), ε) = {c2} and Aδ(c9, b ' f(x3), ε) = {c3} ,
Xδ(c8, b ' f(x2), ε) = > and Xδ(c9, b ' f(x3), ε) = >,
Iδ(c8, b ' f(x2), ε) = p(z, y′4) and Iδ(c9, b ' f(x3), ε) = q(z, a).

Example 39 Consider the inference: Jp(x) | n ' xK , J¬p(f(f(y))) ∨ p(y) | >K `
Jp(y) | n ' f(f(y))K. Let C = Jp(y) | n ' f(f(y))K, X = n ' f(f(y)), and p = 1.
Then Aδ(C,X , p), Iδ(C,X , p) and Xδ(C,X , p) are undefined since p is not a posi-
tion in the term x in the constraint of the first clause. Indeed, Jp(y) | n ' f(f(y))K
is not derived from c-clauses of the form JD | n ' f(y)K. If q = ε, then Aδ(C,X , q) =
{¬p(f(f(y))) ∨ p(y)}, Iδ(C,X , p) = p(z) and Xδ(C,X , p) = >.

Because Definition 32 takes into account the normal form of some terms modulo R,
we need to introduce a notion of unifier modulo R. This notion is used for theoretical
purposes only: in practice, the selector functions will never occur in the clauses under
consideration and standard unification will be used, but terms containing selectors ap-
pear in the induction in the proof of Lemma 56. Selectors are useful only to ensure that
substitutions satisfying the conditions of Definition 32 always exist (see in particular
the proof of Lemma 61).

Definition 40 A substitution σ is a unifier of a set of terms t1, . . . , tn modulo R if
for every i, j ∈ [1, n] tiσ↓R= tjσ↓R.
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Example 41 Assume s is an inductive sort with constructors a :→ s and f : s → s.
Then the terms g(a, x) and g(f−1

1 (f(y)), b) admit the substitution σ def
= [b/x, a/y] as

a unifier modulo R.

We now define the inference rules for performing inductive reasoning. Two of them,
the so-called Trigger and Iteration rules are actually not inference rules: they do not
infer any c-clause, but merely activate some formulas, as explained in Section 3.2, when
specific conditions are satisfied. Thus, a set of rooted formulas is maintained during
proof search, distinct from the set of clauses at hand, and “Activate formula α” states
that α is added into this latter set. The formulas that are activated are candidate
invariants. This activation will in turn trigger new inferences, since an inference is
allowed on an axiom in ΓT or ΓT≺ iff the corresponding formula α is activated.

The formulas that are activated are candidate invariants.

The Trigger rule.
We first define the Trigger rule, which activates a formula when a refutation is

obtained for a particular inductive term, possibly under some additional conditions,
expressed as constraints or ordinary literals. The rule is defined as follows:

Trigger:
C : JC | f(u) ' v[t]p ∧ X K

Activate formula Iδ(C, f(u) ' v[t]p, p)[z,y]

If:

– var(t) ∩ (var(C) ∪ var(X ) ∪ var(u) ∪ var(v)) = ∅.
– Iδ(C, f(u) ' v[x]p, p) is defined and contains no selector functiona.
– y is the vector of the variables occurring in Iδ(C, f(u) ' v[t]p, p) and

distinct from z (the order is chosen arbitrarily).

a The latter condition is meant to avoid introducing selector functions in the
c-clause sets – since these functions are introduced only for theoretical purposes,
they should not occur in the clauses.

The premise C states that f(u) is distinct from v[t]p, if the condition ¬C ∧ X holds.
The purpose of the Trigger rule is to generate a candidate inductive invariant formula,
taking the derivation generating C as the proof of this invariant for the base case t.
The candidate inductive invariant is the formula α(z,y) def

= Iδ(C, f(u) ' v[t]p, p)[z,y].
In order to prove that this is indeed an invariant, we have to show that it propagates,
i.e., that α(z,y) holds if α(z′,y) is true for every proper subterm z′ of z. To this
purpose, we activate the formula α, and let the procedure infer consequences of the
axioms corresponding to α, using in particular the axioms specifying the interpretation
of ≺, Tα and T≺α that were introduced in Section 3.2. If the above implication holds,
then the c-clause

q
2
∣∣ f(u) ' v[z]p ∧T≺α (z,y)

y
will be derived eventually from S and

the axioms Jα ∨ ¬Tα(x,y) | >K,
q
x′ 6≺ x ∨Tα(x,y)

∣∣ T≺α (x,y)y and Γ f≺ ∪ Γ≺. This
c-clause means that if f(u) is of the form v[z]p then T≺α (z,y) is false, i.e., that there
exists a proper subterm z′ of z such that α(z′,y) does not hold. This information will
be used in turn by the Induction rule below to derive the desired conclusion.

In most examples, the Trigger rule will be applied with C = 2 (see Example 69
for a case where C 6= 2). In practice, restricting the application of the rule to C = 2
seems like a reasonable choice, because otherwise the search space would be huge.
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Example 42 (continued from Example 38). In our running example, the Trigger rule
applies on c7 = J2 | b ' aK, where α is the rooted formula Iδ(c7, b ' a, ε)[z, x] =
(q(z, x) ∨ p(z, a))[z, x].

Once this formula is activated, other c-clauses can be derived, using the axioms
corresponding to α together with the c-clauses c8 =

q
¬p(x2, y

′
4)
∣∣ b ' f(x2)

y
and c9 =

J¬q(x3, a) | b ' f(x3)K generated in Example 22 and which are reproduced here for
readability:

c10

q
z1 6≺ z′ ∨ q(z1, x1) ∨ p(z1, a)

∣∣ T≺α (z′, x1)
y

(ΓT≺ ,ΓT)
c11

q
z1 6≺ z′ ∨ q(z1, x1)

∣∣ b ' f(z1) ∧T≺α (z
′, x1)

y
(c10,c8)

c12

q
z1 6≺ z′

∣∣ b ' f(z1) ∧T≺α (z
′, a)

y
(c11,c9)

c13

q
2
∣∣ b ' f(z1) ∧T≺α (f(z1), a)

y
(c12, Γ f≺)

The inf-substitutions corresponding to c11 c12 and c13 are respectively σ11 =
ffl
ffl [z1/x2, a/y

′
4], σ12 = ffl

ffl [z1/x3, a/x1] and σ13 = [f(z1)/z
′]. Associated with the

c-clauses above are the following elements, constructed using those of Example 38 and
the fact that inference constraints for the Resolution rule are always empty:

Xδ(c10,>, ε) = T≺α (z
′, x1), Iδ(c10,>, ε) = ⊥

Xδ(c11, b ' f(z1), ε) ≡ T≺α (z
′, x1), I

δ(c11, b ' f(z1), ε) ≡ p(z, a)
Xδ(c12, b ' f(z1), ε) ≡ T≺α (z

′, a), Iδ(c12, b ' f(z1), ε) ≡ p(z, a) ∨ q(z, a)

We also have Iδ(c13, b ' f(z1), ε) ≡ p(z, a) ∨ q(z, a), and

Xδ(c13, b ' f(z1), ε) =
((

Xδ(c12, b ' f(z1), ε) ∧ Xδ(c9,>, ε)
)
σ13

)
[z/f(z1)]

= T≺α (z
′, a)σ13[z/f(z1)]

= T≺α (z, a).

The c-clause c13 states that when the head symbol of b is the constructor f , there
exists a proper subterm z′ of b such that p(z′, a)∨q(z′, a) does not hold. In order to be
able to apply the infinite descent principle, it will be necessary to generate the c-clauseq
2
∣∣ b ' x′ ∧T≺α (x

′, a)
y
; we will show how to derive this c-clause using another rule,

called the Domain Decomposition rule, see the definition below and Example 46.

The Domain Decomposition rule.
We define a rule that performs a form of case analysis. The idea is to derive a

general property from a set of instances that covers all possible cases. We introduce
the following:

Definition 43 A constructor term is a possibly non-ground term built on the set of
constructors. A set of constructor terms T of a given sort s is covering if for every
I-ground term t of sort s, there exists a term s ∈ T such that t is an instance of s.

Note that all I-ground terms are constructor terms, but the converse does not hold:
for instance a variable of a sort in I is a constructor term but it is not I-ground. There
exist several algorithms for detecting whether a given set of terms is covering, see, e.g.,
[15].
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Example 44 Assume that nat, list ∈ I, where the only constructors are 0 :→
nat, succ : nat → nat, nil :→ list and cons : nat × list → list. Let
x, y be variables of respective sorts nat and list. The sets {x}, {0, succ(x)} and
{0, succ(0), succ(succ(x))} are covering for the sort nat; the sets {nil, cons(x, y)} and
{nil, cons(0, y), cons(succ(x), y)} are covering for the sort list.

Domain Decomposition:

JC1 | β1(t1) ∧ X1K . . . JCn | βn(tn) ∧ XnK

JC1 ∨ · · · ∨ Cn | X1 · · · ∧ Xn ∧ β1(x)K η

If β1, . . . , βn are rooted formulas, η is a most general idempotent substitution
such that βjη ⊆ β1η, for every j = 2, . . . , n, {t1, . . . , tn} is covering, x is a
fresh variable of the same sort as t1, . . . , tn, and the variables occurring in
ti do not occur in Ci, βi and Xi.

The Domain Decomposition rule performs a case analysis on the terms of the same
sort as t1, . . . , tn. Intuitively, if a set {t1, . . . , tn} is covering for some sort s ∈ I, then
every term t of sort I is an instance of some ti, for i ∈ [1, n]. Thus if ∀∗p(t1), . . . , ∀∗p(tn)
hold for some property p then ∀∗p(x) also holds, where x is fresh variable. The rule
essentially applies this scheme with p(x) ≡ J2 | β1(x)K η.

Example 45 Assume that the only constructors of nat are 0 and succ. The
Domain Decomposition rule infers the c-clause J2 | n ' xK from the set of premises
{J2 | n ' 0K , J2 | n ' succ(0)K , J2 | n ' succ(succ(x))K}. The covering set is
{0, succ(0), succ(succ(x))} and the rooted formulas β1, β2 and β3 are: β1 = β2 =
β3 = (n ' x)[x]. From J2 | n ' xK, 2 can be derived by Instantiation.

Example 46 In Examples 22 and 42, the following c-clauses were derived:

c7 J2 | b ' aK
c13

q
2
∣∣ b ' f(z1) ∧T≺α (f(z1), a)

y

Intuitively, c7 means that b cannot be equal to a and c13 means that if b is equal to
f(z1), then there exists a proper subterm z′ of b such that (p(z′, a) ∨ q(z′, a)) does
not hold. We apply the Domain Decomposition rule on c13 and c7, with β1 = (b '
x′ ∧T≺α (x

′, a))[x′] and β2 = (b ' x′)[x′], t1
def
= f(z1), and t2

def
= a. The set {f(z1), a}

is covering and β2 ⊆ β1, thus we may derive:

c14

q
2
∣∣ b ' x′ ∧T≺α (x

′, a)
y

(Domain Decomposition, c7, c13)

The c-clause c14 states that regardless of the value of b, there exists a proper subterm
z of b such that p(z, a) ∨ q(z, a) does not hold.

Example 47 In Example 46, we derived c14 :
q
2
∣∣ b ' x′ ∧T≺α (x

′, a)
y

from c7 :
J2 | b ' aK and c13 :

q
2
∣∣ b ' f(z1) ∧T≺α (f(z1), a)

y
. Assume for instance that x′θ =

f(s). To fulfill Condition 5a of Definition 25, we need to find a premise JC | X K and a
substitution σ14 independent of θ such that Xσ14θ↓R⊆ (b ' x′∧T≺α (x′, a))θ↓R= b '
f(s)∧T≺α (f(s), a). It is clear that the only premise that can fulfill this property is c13,
which corresponds to the set Iθ = {2} (since c13 is the second premise). We must have
(b ' f(z1))σ14θ ↓R⊆ b ' f(s), i.e., z1σ14θ ↓R= s. We cannot take z1σ14 = s, since
θ is arbitrary, thus this property can only hold if z1σ14 = f−1

1 (x′) (see also Example
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28). The inf-substitution of c14 is thus σ14
def
= [f−1

1 (x′)/z1], and because x′ occurs in
both literals in the constraint, we have:

Xδ(c14, b ' x′, ε) = Xδ(c13, b ' f(z1), ε)σ14 ≡ T≺α (z, a),

Iδ(c14, b ' x′, ε) = (Iδ(c7, b ' a, ε) ∨ Iδ(c13, b ' f(z1), ε))σ14

≡ q(z, x) ∨ p(z, a) ∨ q(z, a).

The Induction rule. The Induction rule is the key rule for inductive reasoning. We
first introduce the relation |=s, which denotes a form of subsumption between formulas.
Intuitively, |=s is a restricted (decidable) entailment relation that will be used to check
whether all the hypotheses used in the inductive proof are entailed by the the considered
invariant, see Condition 1 in the definition of the rule.

Definition 48 Let φ and ψ be two quantifier-free formulas in nnf. We write ψ |=s φ
if one of the following conditions holds:

– φ = >.
– ψ = ⊥.
– φ = ψ.
– ψ = (ψ1 ∨ ψ2) and ψi |=s φ for all i ∈ {1, 2}.
– φ = (φ1 ∧ φ2) and ψ |=s φi for all i ∈ {1, 2}.
– φ = (φ1 ∨ φ2) and ψ |=s φi for some i ∈ {1, 2}.
– ψ = (ψ1 ∧ ψ2) and ψi |=s φ for some i ∈ {1, 2}.

The definition extends to arbitrary quantifier-free formulas by transforming them into
nnf. We write ∀xφ |=s ψ if there exists a vector of terms t such that φ[t/x] |=s ψ.

Proposition 49 If ψ |=s φ then ψ |= φ.

Proof By a straightforward induction on the set of formulas.

Remark 50 The relation |=s in Definition 48 is given here as an example. Any other
relation could be used instead, as long as Proposition 49 is satisfied, and provided an
algorithm is available to compute, given two formulas φ and ψ, a substitution σ such
that φσ |=s ψσ is satisfied (if any).

The Induction rule is defined in Figure 2. The substitution σ can be computed by
combining the rules in Definition 48 (modulo AC) with any unification algorithm.

Remark 51 In most examples, the vector y will be empty. Considering nonempty vec-
tors of variables y allows one to handle inductive invariants containing universally
quantified variables, other than the variable on which induction is applied. See Exam-
ple 68 for such an application.

It should be noted that the conclusion of the Induction rule is a set of c-clauses, not
a single c-clause because α(x, t) is a formula, see Section 2.3 for more details.
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Induction:
C : JC | f(u) ' v[x]p ∧ X ∧T≺α (x, t)K

JC ∨ α(x, t)σ | YσK

If there exists a vector of variables y such that:

1. Iδ(C, f(u) ' v[x]p, p) is defined and the substitution σ is a most general idem-
potent substitution such that (∀y Iδ(C, f(u) ' v[x]p, p)[x/z])σ |=s α(x, t)σ,
xσ = x and ∀y ∈ dom(σ), x 6∈ var(yσ).

2. x does not occur in C.
3. Iδ(C, f(u) ' v[x]p, p) and Xδ(C, f(u) ' v[x]p, p) contain no occurrence of x

and no selector functiona.
4. Y = Xδ(C, f(u) ' v[x]p, p)[x/z] \T≺α (x, t).
5. The variables in y do not occur in Cσ, Yσ.

a The latter condition is not necessary for soundness, but avoids introducing
selector functions in the c-clause sets.

Fig. 2: The Induction rule

The Induction rule applies when the candidate inductive invariant propagates. This
is the case when a c-clause of the form

q
2
∣∣ T≺α (x, t)y ≡ ¬T≺α (x, t) can be derived,

possibly with some additional conditions in the general case, here, f(u) ' v[x]p, X and
¬C. By definition of the interpretation ofT≺α (x, t), this means that there exists a proper
subterm x′ of x such that ¬α(x′, t) holds. If the above c-clause is derived from a set of
hypotheses ¬Iδ(C, f(u) ' v[x]p, p)[x/z] that is – as stated by the converse of Condition
1 – a logical consequence of ¬α(x, t), then the implication ¬α(x, t) ⇒ ∃x′ x′ ≺ x ∧
¬α(x′, t) is a logical consequence of the considered clause set. By contrapositive, this
means that α(x, t) is true if α(x′, t) is true for every proper subterm of x (this is the
usual Noetherian induction scheme). Thus α(x, t) must be true for every x.

Example 52 In Example 46 we derived:

c14

q
2
∣∣ b ' x′ ∧T≺α (x

′, a)
y
,

where α is the rooted formula Iδ(c7, b ' a, ε)[z, x] = (q(z, x) ∨ p(z, a))[z, x], and we
computed:

Iδ(c14, b ' x′, ε) = q(z, x) ∨ p(z, a) ∨ q(z, a) def
= α′(z, x),

Xδ(c14, b ' x′, ε) = T≺α (z, a).

We observe that, according to Definition 48, α′(z, a) |=s α(z, a). This indicates
that the invariant ∀z α(z, a) indeed propagates, and since Xδ(c14, b ' x′, ε)[x′/z] =
T≺α (x

′, a), the Induction rule derives the c-clause
q
p(z, a) ∨ q(z, a)

∣∣ b ' x′y. After-
wards, the unsatisfiable c-clause

q
2
∣∣ b ' x′y can be inferred by Resolution with

c4 =
q
¬p(y4, y

′
4)
∣∣ b ' y4

y
and c5 =

q
¬q(y5, y

′
5)
∣∣ b ' y5

y
.

The reasoning justifying this inference can be summarized as follows. As we shall
see in Lemma 56, S,¬α′(z, a) |=

q
2
∣∣ T≺α (z, a)y, meaning that if α′(z, a) is false in an

I-normal model of S, then there exists a proper subterm z′ of z such that α(z′, a) does
not hold in the model. But by Proposition 49 we also have α′(z, a) |= α(z, a) hence
¬α(z, a) |= ¬α′(z, a). We deduce that if α(z, a) is false in a model of S, then there
exists a proper subterm z′ of z such that α(z′, a) is also false in that model. Since the
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subterm relation is well-founded, this is possible only if α(z, a) is true for every term
z, in every model of S.

Remark 53 As we shall see in the proof of Theorem 62, the conclusion of the Induction
inference is a logical consequence not of the given premise, but rather of a set of its
ancestors which are guaranteed to exist since the premise is derived from an initial
clause set. However, the rule applies only when the premise is derived.

The Iteration rule.
We finally introduce the following rule, which, similarly to the Trigger rule, only

aims at activating formulas. The purpose of this rule is to refine candidate invariants
in the cases where the Induction rule does not apply.

Iteration:
C :

q
C
∣∣ f(u) ' v[x]p ∧ X ∧T≺α (x, t)

y

Activate formula β

If:

1. Iδ(C, f(u) ' v[x]p, p) is defined, x does not occur in C, Iδ(C, f(u) '
v[x]p, p) and Xδ(C, f(u) ' v[x]p, p) contain no occurrence of x and no
selector function.

2. There is no substitution σ such that Iδ(C, f(u) ' v[z]p, p)[x/z]σ |=s
α(x, t)σ and xσ = x.

3. β = (Iδ(C, f(u) ' v[x]p, p) ∨ α(z, t))[z,y], where z is the fresh variable
introduced in Definition 36 and y denotes the other variables occurring
in β.

The Iteration rule applies when Condition 1 of the Induction rule does not hold, i.e.,
when property ¬T≺α (x, t) has been proven, but using additional hypotheses that do
not occur in the invariant. In this case, the rule generates a new candidate invariant β
by adding these hypotheses to the previous candidate. The rule applies iteratively until
some fixpoint is reached (if any). See Example 65 for an example of the application of
the Iteration rule.

Definition 54 We denote by core the set of core rules and by IC the calculus de-
fined by the set of core rules enriched with the rules Trigger, Domain Decomposition,
Induction and Iteration

Remark 55 In practice, the Trigger, Induction and Iteration rules should be ap-
plied only on c-clauses derived by the Domain Decomposition rule (as it is done in
all examples in the paper and also in the completeness proof in Section 6). Actually,
we could replace in a practical implementation the previous rules by derived inference
rules combining one application of the Domain Decomposition rule with one applica-
tion of the Trigger, Induction or Iteration rule (the current presentation is clearer
and simpler to deal with from a theoretical point of view).

To summarize, a set of clauses S can be proved to be unsatisfiable by induction by:

– Deriving 2 under some assumptions on an inductive term.
– Generating a candidate invariant and applying the Trigger rule to attempt con-

structing a derivation showing this candidate propagates.
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– If the candidate propagates, the Domain Decomposition and Induction rules per-
mit to generate a universally quantified formula that is an inductive invariant of S;
the core inference rules can then be applied to generate a refutation.

Since all the inference rules are sound (see Section 4), the refutation proves that S is
indeed unsatisfiable.

4 Soundness of the Calculus

In this section, we show that IC is sound. To this purpose, we have to prove that
the Induction rule is sound and that the Domain Decomposition rule is I-sound. For
the Domain Decomposition rule, proving that it is sound is not sufficient, because this
rule is intended to be used inside cycles: to make Domain Decomposition usable in the
inferences corresponding to Case 3 of Definition 36, we must check that it is I-sound.
Note that we do not need to consider the rules Trigger and Iteration because they
only activate formulas. Moreover, Induction is not I-sound.

We first establish the following lemma, which states a key property of the candidate
invariant Iδ(C,X , p):

Lemma 56 Let δ be an inference tree. Let C = JC | X ∧ YK be a c-clause, where
X =

∧n
i=1 f(ui) ' vi[ti]p, and assume that η is an idempotent unifier of

(u1, v1[t1]p), . . . , (un, vn[tn]p) modulo R, such that xη is I-ground, for every variable
x occurring in C. Also let t def

= t1η↓R. If Iδ(C,X , p) is defined then:

∀∗Aδ(C,X , p), ¬Iδ(C,X , p)[t/z]η |=
r
C
∣∣∣ Xδ(C,X , p)[t/z]z η.

Proof First note that we can assume that the c-clauses occurring in the infer-
ence tree δ share no variables with t, except for variables occurring in either C or
Iδ(C,X , p). Indeed, if this condition is not satisfied, then all the variables occurring
in var(t) \ (var(C) ∪ var(Iδ(C,X , p))) can be replaced in δ by fresh, pairwise distinct,
variables. The resulting inference tree δ′ satisfies the required condition; it is clear
that Iδ

′
(C,X , p) = Iδ(C,X , p) since variables occurring in C and Iδ(C,X , p) are not

renamed, and ∀∗Aδ
′

>(C,X , p) ≡ ∀
∗Aδ(C,X , p) because the c-clauses in Aδ

′

>(C,X , p) are
renamings of those in Aδ(C,X , p).

We prove the result by induction on δ. Let v def
= v1[t1]pη ↓R and I be an I-

normal model of ∀∗Aδ(C,X , p) and ¬Iδ(C,X , p)[t/z]η. According to Definition 36, we
distinguish 3 cases.

1. Assume that X = > (i.e., that n = 0). Then by Case 1 of Definition 36, we have
Aδ(C,X , p) = {C} = {JC | YK} and Xδ(C,X , p) = Y. Since I |= ∀∗Aδ(C,X , p), and
Y contains no occurrence of z, necessarily I |=

r
C
∣∣∣ Xδ(C,X , p)z [t/z]η.

2. Assume that X is of the form f(u) ' v[y]p (i.e., that n = 1 and t1 = y), where y is a
variable not occurring in Y, u or v. Then by Case 2 of Definition 36, Iδ(C,X , p) =
¬C[z/y] and Xδ(C,X , p) = >, hence Iδ(C,X , p)[t/z]η = ¬C[t/y]η = ¬C[yη ↓R
/y]η. Since η is idempotent, we have yη ↓R η = yη ↓R. Furthermore, since I is
I-normal, by Condition 4 of Definition 6, we have I |= yη ↓R' yη. Thus I |= Cη,
so that I |=

r
C
∣∣∣ Xδ(C,X , p)z η.
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3. Otherwise, we have:

Aδ(C,X , p) =
⋃
D∈δ(C)A

δ(D,XD, p),
Iδ(C,X , p) =

∨
D∈δ(C) I

δ(D,XD, p)σ,

Xδ(C,X , p) =
(
Y ′ ∧

∧
D∈δ(C) X

δ(D,XD, p)σ
)
[z/v1|p, . . . , z/vk|p],

where σ is the inf-substitution of C and Y ′ is the inference constraint of C. By
Condition 3 of Definition 25, dom(σ) ∩ var(C) = ∅, hence xσ = x holds for every
variable x occurring in C. Furthermore, if x ∈ var(Iδ(C,X , p)) then necessarily
xσ = x, because σ is idempotent by Condition 4 of Definition 25. Since we have
assumed that the c-clauses occurring in the inference tree δ share no variables
with t except those occurring in C or Iδ(C,X , p), we deduce that tσ = t. Let
δ(C) = {H1, . . . ,Hn}, where Hi = JHi | XiK. By Condition 5 of Definition 25,
there exists Iη ⊆ [1, n] such that:∧

i∈Iη
Hiση |=

q
C
∣∣ Y ′y η, (1)

and if an atom l ∈ Xi with i ∈ Iη is an antecedent of an atom l′ ∈ (X ∧ Y) then:

lση↓R= l′η↓R . (2)

Let i ∈ Iη. The constraint Xi is of the form X ′i ∧ Z, where X
′
i is the conjunction

of antecedents of atoms in X . By definition of an antecedent, X ′i is necessarily an
f -constraint. Since I |= ¬Iδ(C,X , p)[t/z]η, Hi ∈ δ(C) and X ′i = XHi , necessarily
I |= ¬Iδ(Hi,X ′i , p)σ[t/z]η.
For every literal f(u′) ' v′ in X ′i , we have by (2): (f(u′) ' v′)ση ↓R∈ Xη ↓R,
thus, if j is an arbitrary index in [1, k] such that f(u′) ' v′ is an antecedent of
f(uj) ' vj , then v′ση ↓R= vj [tj ]η ↓R= v. This means that X ′i satisfies the same
conditions as X (with the same term v and unifier ση modulo R). Since tσ = t

and I |= ¬Iδ(Hi,X ′i , p)σ[t/z]η, we deduce that I |= ¬Iδ(Hi,X ′i , p)[t/z]ση. But
we also have I |= ∀∗Aδ(Hi,X ′i , p) because A

δ(Hi,X ′i , p) ⊆ A
δ(C,X , p), and there-

fore, by the induction hypothesis, I |=
r
Hi

∣∣∣ Xδ(Hi,X ′i , p)[t/z]zση. Now, since
Xδ(Hi,X ′i , p)[t/z]σ ⊆ Xδ(C,X , p)[t/z], we have I |=

r
Hiσ

∣∣∣ Xδ(C,X , p)z [t/z]η.
This relation holds for every i ∈ Iη, we thus deduce:

I |=

u

v
∧
i∈Iη

Hiσ

∣∣∣∣∣ Xδ(C,X , p)[t/z]
}

~ η. (3)

Since t1η ↓R= · · · = tnη ↓R= t, Xδ(C,X , p)[t/z]η is equivalent to
Y ′ ∧

∧
D∈δ(C) X

δ(D,XD, p)ση. We deduce, from (3) and (1) that I |=
r
C
∣∣∣ Xδ(C,X , p)[t/z]z η.

We now prove that the Domain Decomposition rule is I-sound. In order to do
so, we need to exhibit the inf-substitution associated with the conclusion, according
to Definition 25. But the variables in the premises represent subterms of the terms
denoted by the variables in the conclusion of the rule, thus this substitution cannot be
defined using standard terms: this is why we use the selector functions f−1

i , defined in
Section 2.2.
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Definition 57 A position p is a constructor-position in a term t if p is a position in t
and for every proper prefix q of p, the head symbol of t|q is a constructor.

In particular, if t is I-ground, then any position in t is a constructor-position.

Definition 58 Let t be an I-ground term, let p be a constructor-position in t and let
s be a term. The term SubT (t, p, s) is inductively defined as follows.

– If p = ε then SubT (t, p, s) def
= s.

– If p = q.i and t|q = f(t1, . . . , tn) then SubT (t, p, s)
def
= f−1

i (SubT (t, q, s)).

Example 59 Consider the terms t def
= f(g(x)) and s def

= f(g(a)). Then SubT (t, 1.1, s) =
g−1
1 (f−1

1 (f(g(a)))).

Proposition 60 For any term t, constructor-position p of t and instance s of t,
SubT (t, p, s)↓R= s|p ↓R.

Proof The proof is by induction on p. If p = ε then SubT (t, p, s) = s and the proof is
immediate. If p = q.i then SubT (t, p, s) = f−1

i (SubT (t, q, s)) with t|q = f(t1, . . . , tn)
hence by the induction hypothesis SubT (t, p, s) ↓R= f−1

i (s|q) ↓R. Since s is an in-
stance of t we have s|q = f(s1, . . . , sn) and s|p = si. Hence SubT (t, p, s) ↓R=
f−1
i (f(s1, . . . , sn)↓R= si ↓R, since by definition of R, f−1

i (f(x1, . . . , xn))↓R= xi.

Lemma 61 The Domain Decomposition rule is I-sound.

Proof We employ the same notations as in the definition of the rule page 25. Let Ci
def
=

JCi | Xi ∧ βi(ti)K for i = 1, . . . , n, and D def
= JC1 ∨ · · · ∨ Cn | X1 ∧ · · · ∧ Xn ∧ β1(x)K η.

We assume that the C1, . . . , Cn (hence the terms t1, . . . , tn) are variable-disjoint.
The inference constraint Y ′ is > and the antecedent relation is defined in a natural

way, i.e., any equation l ∈ Xi ∧ βi(ti) is an antecedent of the corresponding equation
lη ∈ Xiη ∧ βi(x)η. The inf-substitution is defined as follows. Let j ∈ [1, n], and σj
be the substitution mapping each variable y in tj to the term SubT (tj , pj , x), where
pj is an arbitrarily chosen position such that tj |pj = y. Note that pj is necessarily a
constructor position since tj is a constructor term. We let: σ def

= η(
⋃n
j=1 σj).

Let θ be an I-ground substitution of the variables in D. Since {t1, . . . , tn} is cov-
ering, there exists an element i of [1, n] and a substitution γ such that xθ = tiγ.
We let: Iθ def

= {i}. Then for every variable y occurring at a position pi in ti, we have
yσ = yησi = yσi. Indeed, by definition of the Domain Decomposition rule, since y is a
variable of ti, it cannot occur in Dj or Xj for j = 1, . . . , n, thus yη = y. We deduce that
yσ = SubT (ti, pi, x), and yσθ = SubT (ti, pi, xθ) = SubT (ti, pi, tiγ). By Proposition
60, yσθ ↓R= tiγ|pi ↓R= (ti|pi)γ ↓R= yγ ↓R We deduce that yσθ ↓R= yγ ↓R for every
y ∈ var(ti), so that tiσθ ↓R= tiγ ↓R= xθ ↓R. Since the variables in ti do not occur
in Cj , βj or Xj (for j = 1, . . . , n), by construction of σ we have βiσθ = βiηθ and
Xiσθ = Xiηθ (this also entails that the conclusion of the rule cannot contain variables
in dom(σ) and that σ is idempotent, since η is idempotent). Since by definition of the
rule we have βiη ⊆ β1η, we deduce that βi(ti)σθ ↓R⊆ β1(x)ηθ ↓R. Therefore, all the
conditions of Definition 25 are satisfied.

Theorem 62 The Induction rule is sound.
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Proof Let δ be an inference tree, C be a c-clause, S′ be a set of
c-clauses deduced from C by applying the Induction rule and S =r
C ∨ Iδ(C, f(u) ' v[x]p, p)[x/z]σ

∣∣∣ Yσz
. By definition of the rule, C and S′ are respec-

tively of the form
q
C
∣∣ f(u) ' v[x]p ∧ X ∧T≺α (x, t)

y
and JC ∨ α(x, t)σ | YσK. Recall

that, by definition, Aδ(C, f(u), p) is a set of ancestors of C. Assume there exists a model
I of ∀∗Aδ(C, f(u), p) that is a counter-model of S′. By Condition 1 of the Induction
rule and Proposition 49, we have (∀y Iδ(C, f(u) ' v[x]p, p))[x/z]σ |= α(x, t)σ, and
since the variables in y do not occur in Cσ, this entails that I is also a counter-model
of S. By Proposition 30, there exists an I-ground substitution θ and an interpretation
J coinciding with I on every symbol occurring in ∀∗Aδ(C, f(u), p) and S, such that
J (y) = J (yθ) for every variable y occurring in S, and for every y ∈ dom(θ), yθ con-
tains no variables occurring in ∀∗Aδ(C, f(u), p) or in S. We have J |= ∀∗Aδ(C, f(u), p)
and J 6|= Sθ. Consequently, J |= Yσθ, J 6|= Iδ(C, f(u) ' v[x]p, p)[x/z]σθ and
J 6|= Cσθ.

Assume that there is an element m that is minimal w.r.t. / such that there exists a
vector of elements e of the same sorts as y with J ffl

ffl [m/x, e/y] |= ¬Iδ(C, f(u) '
v[x]p, p)[x/z]σθ. Since J |= ∀∗Aδ(C, f(u), p), we have J ffl

ffl [m/x, e/y] |=
∀∗Aδ(C, f(u), p) and it is clear that σθ is an idempotent unifier of {x} modulo R. By
Lemma 56, this entails that J ffl

ffl [m/x, e/y] |=
r
C
∣∣∣ Xδ(C,X , p)[x/z]zσθ, and there-

fore J ffl
ffl [m/x, e/y] |=

q
Cσθ

∣∣ Yσθ ∧T≺α (x, t)σθ
y
by definition of the constraint Y.

By Condition 5, the variables in y cannot occur in Cσθ or Yσθ. By Conditions 1, 2
and 3, the same property holds for the variable x. Since J |= ¬Cσθ,Yσθ, we deduce
that J ffl

ffl [m/x, e/y] |= ¬Cσθ,Yσθ. Necessarily, J ffl
ffl [m/x, e/y] |=

q
2
∣∣ T≺α (x, t)yσθ,

which means that there exists a termm′/m such that J ffl
ffl [m′/x, e/y] |= ¬Tα(x, t)σθ,

hence such that J ffl
ffl [m′/x, e/y] |= ¬α(x, t)σθ. By Condition 1 and Proposition 49,

J ffl
ffl [m′/x, e/y] |= ¬(∀y Iδ(C, f(u) ' v[x]p, p))[x/z]σθ, thus there exists e′ such that
J ffl

ffl [m′/x, e′/y] |= ¬Iδ(C, f(u) ' v[x]p, p)[x/z]σθ which contradicts the minimality
of m.

Consequently J |= ∀x,y Iδ(C, f(u) ' v[x]p, p)[x/z]σθ, and in particular, J |=
Iδ(C, f(u) ' v[x]p, p)[x/z]σθ, which contradicts our hypotheses.

Remark 63 It is clear that the calculus has a huge search space, and the unrestricted
application of the rules is not practical for automated proof search. A first natural
way to reduce the branching is to apply the rules only on empty clauses (i.e., add
the condition C = 2 (resp. Ci = 2) to the Trigger, Iteration, Induction (resp.
Domain Decomposition) rules. This entails a loss of generality only if induction is also
required to refute C, otherwise the refutation of C could be included into the considered
inference tree. A second way to strongly reduce the search space is to restrict the
application of Abstraction, that selects the term on which induction can be performed.
For instance, one may select a single constant or Skolem term in the initial formula, or
apply the rule only if the function f is not completely defined (for instance in Example
66, x+ y is defined for all ground terms x and y whereas n and m are undefined). We
may further restrict the induction terms by taking p = ε in the Trigger, Iteration
and Induction rules. Another option consists in applying the Trigger rule only if the
same candidate invariant is repeatedly generated. This typically happens when multiple
instances of the same formula can be proven, which naturally suggests that it could be
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proven by induction (if p(t1), . . . , p(tn) can be proven, then it is worth trying to derive
∀x p(x)).

Finally, in the context of interactive theorem proving, one could let a human user
suggest and select candidate invariants. This means that Trigger would be dismissed,
leaving to the user the burden of activating some formulas. The procedure would then
check that the proposed formula is provable and refine it is needed.

The presented calculus uses the core inference rules for two distinct purposes: first to
prove that a formula is an inductive invariant, and second to generate this formula. For
the first part, any refutationally complete calculus is (theoretically) sufficient, whereas
for the second part, less restrictive calculi may prove useful: if more clauses are gener-
ated, it is more likely that an inductive invariant will be obtained. This suggests that
the two aspects could be disconnected: very restrictive core rules could be employed,
coupled with any non-restrictive deductive procedure to generate input clauses (but
such non-restrictive inferences would not occur inside inference trees).

5 Examples

We illustrate how the calculus works on some simple examples, that have been chosen
to illustrate various features of the method. The first example is explained in full detail
and involves a binary constructor. Although quite simple, it is thus out of the scope of
the method described in [24,23], which only handles unary functions.

Example 64 Consider the clause set:

1 p(a)
2 ¬p(x1) ∨ ¬p(x2) ∨ p(f(x1, x2))

where a : τ and f : τ × τ → τ are the only constructors. The goal is to prove that
∀x p(x) holds. To this purpose, we add the c-clause:

3 J¬p(y) | b ' yK

to the set (where b is a fresh – non-constructor – symbol of profile τ) in order to derive
a contradiction. First, the base case is handled by applying the Resolution rule:

4 J2 | b ' aK (res, 1, 3)

meaning that the set is unsatisfiable if b is equal to a. Then, the Trigger rule applies
on 4: C and X are empty, f(u) is b, v is arbitrary and p is ε. We compute the set
Iδ(4, b ' a, ε). The two parents of 4 are 1 and 3, and the only antecedent of b ' a is
the literal b ' y in 3, thus: Iδ(4, b ' a, ε) = ¬¬p(z) ≡ p(z) and Xδ(4, b ' a, ε) = >.
Consequently, the rooted formula α = p(z)[z] is activated by the Trigger rule. By
applying the Resolution rule again, we get:

5 J¬p(x1) ∨ ¬p(x2) | b ' f(x1, x2)K (res, 2, 3)
6 J¬p(x1) ∨ ¬Tα(x2) | b ' f(x1, x2)K (res, ΓT , 5)
7 J¬Tα(x1) ∨ ¬Tα(x2) | b ' f(x1, x2)K (res, ΓT , 6)
8 J¬Tα(x1) ∨ x2 6≺ y2 | b ' f(x1, x2) ∧T≺α (y2)K (res, 7, ΓT≺ )
9 Jx1 6≺ y1 ∨ x2 6≺ y2 | b ' f(x1, x2) ∧T≺α (y1) ∧T≺α (y2)K (res, 8, ΓT≺ )
10

q
x1 6≺ y1

∣∣ b ' f(x1, x2) ∧T≺α (y1) ∧T≺α (f(x′1, x2))
y

(res, 9, Γ f≺)
11 J2 | b ' f(x1, x2) ∧T≺α (f(x1, x2))K (res, 10, Γ f≺ + c-fact)
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In the constraint of c-clause 11, the conjunction T≺α (f(x
′
1, x2)) ∧ T≺α (f(x1, x

′
2)) is

factorized into T≺α (f(x1, x2)). At this point, the Domain Decomposition rule applies
on c-clauses 11 and 4, with the covering set {f(x1, x2), a} and the formulas β1 = (b '
x ∧T≺α (x))[x] and β2 = (b ' x)[x], yielding:

13
q
2
∣∣ b ' x ∧T≺α (x)

y

The set Iδ(13, b ' x, ε) is computed by collecting ancestors of 13 that contain an-
tecedents of b ' x of the form b ' x′, for some variable x′, and considering the
disjunction of the negation of the clause part of these ancestors (substituting x′ by
a fresh variable z). The only such ancestor is 3 (the details of the computation are
omitted for conciseness and readability), thus Iδ(13, b ' x, ε) = ¬¬p(z) ≡ p(z) and
Xδ(13, b ' x, ε) = >. The conditions of the Induction rule are thus trivially satisfied,
and the rule can be applied to generate

14 Jp(z) | >K (Induction, 13)

By Resolution with c-clause 3 and Instantiation, we get J2 | b ' zK and 2, which
shows that the initial clause set is indeed unsatisfiable.

We now give a example in which the initial induction invariant does not propagate,
but can be refined by applying the Iteration rule.

Example 65 Consider the following clause set, in which a and f are the only construc-
tors:

1 p(a)
2 ¬p(x) ∨ p(f(x)) ∨ q(f(x))
3 ¬q(x) ∨ p(f(x)) ∨ q(f(x))
4 J¬p(y) | b ' yK
5 J¬q(y) | b ' yK
6 J¬r(y) | b ' yK

The last three c-clauses correspond to the skolemized form of the negation of the goal
∀y (p(y) ∨ q(y) ∨ r(y)). The c-clause 7 : J2 | b ' aK can be derived, and, exactly as in
the previous case, the Trigger rule is applied on the formula p(z) meaning that the
calculus attempts to prove that ∀z p(z) holds – which is clearly unfeasible and will fail

as will shall see. The c-clause 8 :
r
2
∣∣∣ b ' x ∧T≺p(z)[z](x)

z
can be derived in a similar

way to the c-clause 13 in the previous example, however, this time, c-clause 5 must be
used, which entails that Iδ(8, b ' x, ε) = (¬¬p(z) ∨ ¬¬q(z)) ≡ (p(z) ∨ q(z)) 6|=s p(z).
Therefore, Condition 1 in the definition of the Induction rule does not hold: the
invariant does not propagate and the previous attempt fails. We must thus apply the
Iteration rule to generate a new candidate invariant. The rule activates the formula
β = (p(z) ∨ q(z) ∨ p(z))[z] ≡ (p(z) ∨ q(z))[z], meaning that the calculus attempts to
prove that ∀z (p(z) ∨ q(z)) holds. Afterwards the clause J2 | b ' xK can be derived in
the same way as in the previous example. Note that the correct invariant can only
derived by using information extracted from the failure of the first one (it is clear that
trying to apply the induction scheme on the initial formula ∀y (p(y)∨q(y)∨r(y)) would
also fail).

We now show how to prove the commutativity of addition using the superposition
calculus [2,27]. Although simple, this example is interesting for two reasons: first it
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requires nested induction (induction is required both in the base and inductive cases
of the main induction scheme), and second its uses an auxiliary lemma, namely x +
succ(y) ' succ(x+ y), which is generated automatically by the calculus.

Example 66 We consider the following clause set:

1 0 + x ' x
2 succ(x) + y ' succ(x+ y)
3 Jx+ y 6' y + x | n ' x ∧m ' yK

We first derive clause 4 : Jx+ 0 6' x | n ' x ∧m ' 0K, from c-clauses 1 and 3. Then the
clause 5 : J2 | n ' x ∨m ' 0K can be derived by simple induction, as in the previous
examples: this is done by first generating J2 | n ' 0 ∧m ' 0K using the usual rules,
then applying the Trigger rule to activate formula x+0 ' x, and finally showing that
the invariant indeed propagates and applying the Induction rule. The Trigger rule
applies on 5, with the formula ¬(x+y 6' y+x) ≡ x+y ' y+x, activating the formula
α

def
= (x+ y ' y + x)[y, x]. Intuitively, this means that the calculus tries to prove that

x + y ' y + x holds by induction on y (having already proven the base case). By
combining the axiom Jx+ y ' y + x ∨ ¬Tα(y, x) | >K of ΓT associated with the newly
activated formula α with c-clauses 2 and 3, we derive by superposition, unifying y with
succ(y′):

6 :
q
x+ succ(y′) 6' succ(x+ y′) ∨ ¬Tα(y′, x)

∣∣ n ' x ∧m ' succ(y′)
y

From 6, Γ f≺ and the axiom
q
y′ 6≺ y ∨Tβ(y

′, x)
∣∣ T≺α (y, x)y of ΓT≺ , we obtain:

7 :
q
x+ succ(y′) 6' succ(x+ y′)

∣∣ n ' x ∧m ' succ(y′) ∧T≺α (succ(y′), x)
y

Using c-clause 1 twice and unifying x with 0, we get:

8 :
r
2
∣∣ n ' 0 ∧m ' succ(y′) ∧T≺α (succ(y

′), 0)
z

Again, the Trigger rule applies, this time with the formula β
def
= (x + succ(y′) '

succ(x + y′))[x, y′]. This formula can be viewed as a lemma, that will be proven by
induction on x. From the axiom x′+ succ(y′) ' succ(x′+ y′)∨¬Tβ(x′, y′) of ΓT and
from c-clauses 2 and 7, we eventually derive (unifying x with succ(x′)):

9 :
q
¬Tβ(x′, y′)

∣∣ ∧n ' succ(x′) ∧m ' succ(y′) ∧T≺α (succ(y′), succ(x′))
y

Using the axioms in Γ f≺ and ΓT≺ , this yields:

10 :
r
2

∣∣∣ n ' succ(x′) ∧m ' succ(y′) ∧T≺α (succ(y′), succ(x′)) ∧T≺β (succ(x′), y′)
z

Together with clause 8, this entails (by Domain Decomposition, with the covering
set {0, succ(x′)}):

11 :
r
2
∣∣ n ' x ∧m ' succ(y′) ∧T≺α (succ(y

′), x) ∧T≺β (x, y)
z

and the Induction rule applies, yielding:

12 :
q
x+ succ(y′) ' succ(x+ y′)

∣∣ >y
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From 12 and 7, we derive:

13 :
r
2
∣∣ n ' x ∧m ' succ(y′) ∧T≺α (succ(y

′), x)
z

Using the c-clauses 13 and 5, the Domain Decomposition rule can be applied with the
covering set {0, succ(y′)}, yielding 14 :

q
2
∣∣ n ' x ∧m ' y ∧T≺α (y, x)

y
. The corre-

sponding candidate invariant Iδ(14,m ' y, ε) is α. Thus the Induction rule applies,
yielding: Jx+ y ' y + x | >K. Together with c-clause 3, this yields the unsatisfiable
c-clause: J2 | n ' x ∧m ' yK.

It is interesting to note that this example is handled without having to supply
or synthesize any additional lemmata (as it is done for instance in [22,13]). All the
required lemmata are automatically generated.

We also give an example involving quantifier alternation. This example is interesting
because the correct instantiation can only be obtained from the inductive step. Trying
to prove the initial property by induction would fail.

Example 67 Let S be the following clause set, defining an operator ⊕ adding a natural
number to all elements in a list (the additional axioms for addition are irrelevant and
omitted):

1 x⊕ nil ' nil
2 x⊕ cons(x′, y) ' cons(x+ x′, x⊕ y)
3 0 + x ' x

The set of constructors of range list is {nil : list, cons : nat × list → list}.
Note that in this example nat does not necessarily belong to I, thus 0 can be either
a constructor or a standard symbol. We want to prove that that ⊕ admits a left-
neutral element, i.e., that ∃x∀y x ⊕ y ' y. Proceeding by contradiction, we add the
c-clause 4 : Jx⊕ y 6' y | f(x) ' yK and try to derive an unsatisfiable c-clause of the
form J2 | f(x) ' yK (x then denotes the left-neutral element). The symbol f denotes
a new, non-constructor, symbol of profile nat → list. Using 4 and 1 we derive: 5 :
J2 | f(x) ' nilK. This means that the base case always holds, regardless of the value of
x. At this point the Trigger rule applies, activating the formula α = (x⊕ y ' y)[y, x].
This indicates that the calculus tries to prove that ∀y x⊕ y ' y holds, which, clearly,
should succeed only if x = 0. By several steps of superposition using the axioms ΓT ,
ΓT≺ and Γ f≺, we eventually derive:

6 :
r
2
∣∣ f(0) ' cons(x′, y) ∧T≺α (cons(x

′, y), 0)
z

Together with 5, this yields, by the Domain Decomposition rule:

7 :
r
2
∣∣ f(0) ' z ∧T≺α (z, 0)

z

Intuitively, this means that the inductive invariant propagates, but only in the case
where x = 0. Then the Induction rule applies as in the previous cases, yielding:

8 : J0⊕ z ' z | >K

and by Resolution with c-clause 4:

9 : J2 | f(0) ' zK

This c-clause provides the answer to the original question, namely that the left-
neutral element is x = 0.
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The following example is taken15 from [11]. It is interesting because it involves an
inductive invariant containing a universal quantifier (see also Remark 51).

Example 68 We consider the clause set:

1 r(0, y)
2 ¬r(x, 0) ∨ r(s(x), 0)
3 ¬r(s(s(x)), y) ∨ r(s(x), s(y))
4 J¬r(x, y) | n ' x ∧m ' yK

It is easy to check that clause 5 : r(x, 0) can be generated from clauses 1, 2 and 4, as in
the previous examples. Afterwards, we may derive 6 : J2 | n ' x ∧m ' 0K from 5 and 4,
and the Trigger rule thus applies on the candidate invariant α = r(x, y)[y, x]. Then the
c-clause 7 :

q
2
∣∣ T≺α (y, s(s(x))) ∧ n ' s(s(x)) ∨m ' yy can be obtained using clauses

3, 4 and 5, with Iδ(7,m ' y, ε) = r(s(x), z) and Xδ(7,m ' y, ε) = T≺α (z, s(s(x))). We
have ∀x r(s(x), y) |=s r(s(s(x)), y), hence the Induction rules applies (with y = (x)),
yielding 8 : r(s(x), y). Finally, the empty clause can be generated from 1, 8 and 4
by straightforward applications of the Resolution and Domain Decomposition rules.
Note that there is no substitution σ such that r(s(x), y)σ |=s r(s(s(x)), y)σ, which
means that the Induction rule cannot be applied on 7 with a non-empty vector y.
Intuitively, the formula ∀x r(s(x), y) can be proven by induction on y but not the
formula r(s(x), y).

The final example illustrates how the Induction rule can be applied under some
conditions (stated as literals).

Example 69 We consider the clause set (taken from [37]):

1 p(0)
2 p(s(x)) ∨ ¬p(x) ∨ ¬q(x, s(x))
3 q(x, 0)
4 q(x, s(y)) ∨ ¬q(x, y) ∨ ¬p(x)
5 J¬p(x) ∨ ¬q(x, y) | n ' x ∧m ' yK

First the clause 6 : J¬p(x) | n ' x ∧m ' 0K is generated from 3 and 5, which activates
the formula α = (p(x) ∧ q(x, y))[y, x]. Then the c-clause

q
¬p(x)

∣∣ T≺α (y, x)y can be
derived from 3, 4 and 5. From this, the c-clause 7 : ¬p(x) ∨ q(x, y) can be derived16

by Induction. Afterwards, the clause 8 : p(s(x)) ∨ ¬p(x) can be derived from 7 and
2, and the clause p(x) is easily derived from 8, 1, 7 and 5, yielding an immediate
contradiction.

6 A Completeness Result

The calculus IC cannot be refutationally complete. Indeed, the collection of sets of
c-clauses that are unsatisfiable is not recursively enumerable, even if Λ only contains

15 For the sake of readability the predicate N describing natural numbers in the original
formulation is omitted.
16 Note that we also generate the clause ¬p(x) ∨ p(x), which is a tautology. Intuitively, the
invariant p(x) ∧ q(x, y), is proven by induction on y, under the condition p(x).
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a unique constant symbol (see, e.g., [24]). In this section we provide restricted com-
pleteness results. More precisely, we assume (informally speaking) that the clausal
representation of a particular kind of inductive invariant exists in the considered set of
c-clauses, either because it already occurs in the initial set or because it is generated at
some point by the inference rules. We show that, under this condition, and assuming
that the core inference rules are liftable (see below) and refutationally complete in the
usual sense, the rules in IC can be used to extract this invariant from the set and use
it to derive the empty clause. Of course, in general there is no guarantee that such
an invariant can be generated, and even the existence of such an invariant cannot be
ensured.

Definition 70 A substitution σ is an I-substitution if every x ∈ dom(σ) is of a sort
in I. We denote by Inst(S) (resp. InstI(S)) the set of c-clauses of the form Cσ, where
C ∈ S and σ is a substitution (resp. an I-substitution).

Definition 71 For all objects (terms, formulas, substitutions, . . . ) t and s, we write
s �g t and say that s is more general than t if there exists a substitution η such that
t = sη.

Proposition 72 Let t, s be terms of the same sort and σ be a substitution mapping
all variables in s to pairwise distinct constant symbols (of the appropriate sorts) not
occurring in t or s. If t �g sσ, then t �g s.

Proof For every term u, we denote by γ(u) the term obtained from u by replacing
any constant symbol of the form xσ by the variable x. Note that the function γ is
well-defined because by hypothesis σ is injective. Since t �g sσ, we must have tθ = sσ,
for some substitution θ. Let θ′ be the substitution defined as follows: for every x,
xθ′

def
= γ(xθ). Since t contains no constant symbol of the form xσ, it is clear that

γ(tθ) = tθ′, hence γ(sσ) = tθ′. By definition of γ, γ(sσ) = s, thus tθ′ = s and t �g s.

Definition 73 For every set of inference rulesR, we write S `R C if C is derivable from
S by the rules in R in any number of steps. A set of rules R is liftable if the following
property holds: for every set of c-clauses S and for every c-clause C, if Inst(S) `R C
then there exists a c-clause C′ and a substitution σ such that S `R C′ and C′σ = C.

The following proposition states a well-known property of the standard Resolution
calculus:

Proposition 74 The set consisting of the Resolution, Factorization and
Constraint Factorization rules is liftable.

Proof By an immediate induction on the derivation.

Remark 75 The superposition calculus is not liftable. For example, p(a, b) is derivable
from {b ' a, p(b, b)} if b > a, but no c-clause more general than p(a, b) is derivable
from {b ' a, p(x, x)}.

Definition 76 Let α be a rooted formula containing a unique free variable x of sort
s ∈ I. A simple induction scheme for α is a formula of the form:

n∧
i=1

(α(ti)⇒ ∃y (y ≺ ti ∧ α(y)))

where {t1, . . . , tn} is a covering set of terms of sort s.
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Definition 77 A simple inductive invariant for a set of c-clauses S is a rooted formula
α such that there exists a simple induction scheme ψ for α and17:

∀∗Γ ∪ ∀∗S> |=fol ψ.

Intuitively, if a set of c-clauses admits a simple inductive invariant, then, by the
infinite descent principle, this set cannot be satisfiable. We assume in the remainder
of the section that the core rules are liftable and refutationnally complete w.r.t. first-
order satisfiability, i.e., that if S is a set of clauses such that S |=fol 2, then S `core
2, and that they contain the Constraint Factorization rule (the Abstraction and
Instantiation rules are not needed). The results apply, e.g., to the Resolution or
Hyperresolution calculi, but not to the Superposition calculus. The following theorem
states a form of completeness for IC. Informally, it ensures that, if a simple inductive
invariant exists for a set of clauses, then the empty clause is derivable.

Theorem 78 Let S be a set of c-clauses. Let t, s be two terms of a sort in I and let p be
a position in t. Consider a variable x that does not occur in t or s and assume that there
exists a simple inductive invariant α for S such that every c-clause in Jα(x) | s ' t[x]pK
occurs in S (possibly up to a renaming of variables). Then there exists a c-clause C
derivable from S ∪ Γ by IC such that C subsumes J2 | s ' t[x]pK.

The proof of Theorem 78 is based on the following definition and results:

Definition 79 A propagation-constraint is a conjunction of atoms of the form T≺β (t).

Proposition 80 Consider a set of c-clauses S, two terms t, s of a sort in I and let p be
a position in t. Assume that every c-clause in S is of the form JC | >K or JC | s ' t[x]pK,
where var(C)∩ (var(s)∪ var(t)) = ∅ and x 6∈ var(t). If JD | X K is a c-clause derivable
from S ∪ Γ by the core rules then X is of the form

(s ' t[x])η1[u1/x] ∧ · · · ∧ (s ' t[x])ηn[un/x] ∧ X ′,

where:

– each ηi is a variable-disjoint renaming of the variables in s, t, and x 6∈ dom(ηi);
– (var(ui) ∪ var(D) ∪ var(X ′)) ∩ (var(sηi) ∪ var(tηi)) = ∅;
– X ′ is a propagation-constraint.

Proof First note that, although x /∈ var(t) by hypothesis, it is possible to have x ∈
var(C). Any constraint in X comes either from the axioms in Γ or from the c-clauses
in S. In the former case the constraint must be a propagation-constraint, and in the
latter case, it must be of the form (s ' t[x]p)ηγ, where η is a renaming (applied to
ensure that the hypotheses are variable-disjoint) and γ denotes the union of all unifiers
in the derivation. Since t and s share no variable with the clausal part of the c-clauses,
the renamed terms tη and sη cannot be affected by the substitution γ and cannot share
variables with the other atoms occurring in the c-clause. This entails that (s ' t[x]p)ηγ
must be of the form (s ' t[x]p)η[u/x], for some term u. The detailed proof is by an
immediate induction on the length of the derivation.

17 See Section 3.2 for the definition of Γ and Definition 10 on Page 9 for the definition of S>.
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Proposition 81 Let u be a ground term and X be a propagation-constraint. Consider
an extended formula α with a unique free variable x, and let t, s be terms such that
x /∈ var(s) ∪ var(t) and every clause in Jα(x) | s ' t[x]pK occurs in S possibly up to
a renaming of variables. If J2 | X K is derivable from Γ ∪ S> ∪ cnf (α(u)) by the core
rules then there exist a c-clause C and a substitution θ such that:

– C is of the form
q
2
∣∣ X ′y or

q
2
∣∣ s ' t[u′]p ∧ X ′y, where u′θ = u and X ′θ = X ;

– C is derivable from S ∪ Γ by the core rules.

Proof Let s′, t′ be arbitrarily chosen ground instances of s and t respectively. Con-
sider the derivation yielding J2 | X K from Γ ∪ S> ∪ cnf (α(u)). By adding the con-
straint s′ ' t′[u]p to every clause in cnf (α(u)) and all their descendants we obtain
a derivation of J2 | Y ∧ X K from Γ ∪ S> ∪

q
α(u)

∣∣ s′ ' t′[u]py, where Y is either
s′ ' t′[u]p (if a clause in cnf (α(u)) is used in the above derivation) or > (if no
clause in cnf (α(u)) is used). By hypothesis, every c-clause in

q
α(u)

∣∣ s′ ' t′[u]py is
an instance of a c-clause in S because x is the only free variable in α. Since the core
rules are liftable, we deduce that there exist a c-clause C and a substitution µ such
that Γ ∪ S `core C and Cµ = J2 | Y ∧ X K. By Proposition 80, C must be of the formq
2
∣∣ ∧m

i=1 si ' ti[ui]p ∧ X
′′y, where (var(si) ∪ var(ti)) ∩ (var(ui) ∪ var(X ′′)) = ∅ for

all i = 1, . . . ,m, and X ′′ is a propagation-constraint. Since Cµ = J2 | Y ∧ X K, we must
have tiµ = t′, siµ = s′, uiµ = u for all i = 1, . . . ,m, and X ′′µ = X . Let σ be the
m.g.u. of {(ti, si, ui) | i = 1, . . . ,m}, so that µ = σθ for some substitution θ. By apply-
ing at most m times the Constraint Factorization rule, we derive a c-clause that is
of the form

q
2
∣∣ s1σ ' t1σ[u1σ]p ∧ X ′′σ

y
, up to a renaming. Since each ti (resp. si)

is a renaming of t (resp. s) and shares no variables with ui or X ′, we can assume by
renaming that t1σ = t and s1σ = s. Then the result follows by taking u′ = u1σ and
X ′ = X ′′σ.

Proposition 82 Consider a formula α(y) and a c-clause C = JC | X K, let S′ =
Jα(y) | s ' t[y]pK and let S be a set of standard clauses. If Γ ∪ S ∪ S′ `core C, then
Iδ(C,X , p) is defined and is of the form (¬

∧
C∈E C), for some E ⊆ cnf (α(z)).

Proof By definition of Jα(y) | s ' t[y]pK, all clauses in S′ are of the form JD | s ' t[y]pK,
where D ∈ cnf (α(y)). We prove the result by induction. If C is a standard clause, then
by Case 1 of Definition 36, Iδ(C, s ' t[u′]p, p) = ⊥, and the result holds. If C occurs
in S′, then by Case 2 of Definition 36, Iδ(C, s ' t[u′]p, p) = ¬C[z/y] and the result
holds again, since C ∈ cnf (α(x)) in this case. Otherwise, δ(C) must be defined, and
by Case 3 of Definition 36, Iδ(C, s ' t[u′]p, p) is of the form

∨
D′∈δ(C) I

δ(D′,XD′ , p)σ.
By the induction hypothesis, Iδ(D′,XD′ , p)σ = (¬

∧
C∈ED′

C)[xD′ ] for some ED′ ⊆
cnf (α(z)). It is then straightforward to verify that the result also holds for ψ, with
E

def
=
⋃
D′∈δ(C)ED′ .

We are now in the position to give the proof of Theorem 78:

Proof We assume that S ∪Γ 6|=fol 2; otherwise the proof follows from the refutational
completeness of the core rules. Let S′ = Jα(x) | s ' t[x]pK, and u be a /-minimal ground
term of the same sort as t|p (such a term necessarily exists since the domain of a sort
cannot be empty and / is well-founded18). By hypothesis, α admits a simple induction

18 Note that u is not necessarily a constant (/-minimal constants of the same sort as t|p do
not always exist). We may, however, assume w.l.o.g. that the signature contains a constant of
every sort, but this constant is not necessarily a constructor.
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scheme ψ of the form

(†)
n∧
i=1

(α(ti)⇒ ∃x (x ≺ ti ∧ α(x))),

for which the conditions of Definitions 76 and 77 are satisfied. In particular, u is an
instance of ti, for some i = 1, . . . , n, and we have: ∀∗Γ ∪ ∀∗S> |=fol α(u) ⇒ ∃x (x ≺
u∧α(x)). Since u is minimal w.r.t. /, this entails that ∀∗Γ ∪∀∗S>∪cnf (α(u)) |=fol 2,
and because the core rules are refutationally complete, Γ ∪ S> ∪ cnf (α(u)) `core
2. By Proposition 81, we deduce that either S ∪ Γ `core 2 or Γ ∪ S> ∪ S′ `coreq
2
∣∣ s ' t[u′]py where u′ �g u. The former case cannot occur because S ∪ Γ 6|=fol 2,

thus Γ ∪ S> ∪ S′ `core
q
2
∣∣ s ' t[u′]py. Let C =

q
2
∣∣ s ' t[u′]py. By definition, all

the hypotheses in the corresponding inference tree are either standard clauses in S> or
c-clauses occurring in S′. Therefore, by Proposition 82, Iδ(C, s ' t[u′]p, p) is defined
and is of the form ¬

∧
C∈E C, where E ⊆ cnf (α(z)). The Trigger rule applies and

activates the extended formula β def
= (¬

∧
C∈E C)[z].

Now, consider a ⊆-maximal subset E′ of cnf (α(z)) such that an extended formula
β′ ≡ (¬

∧
C∈E′ C)[z] is activated. Since β and E satisfy these properties, E′ necessarily

exists. Let j ∈ [1, n] and v be a ground term obtained from tj by replacing all variables
in tj by fresh pairwise distinct non-constructor constant symbols of the appropriate
sort. This entails that v is an instance of tj , and by (†) we have: ∀∗Γ ∪ ∀∗S> |=fol

α(v) ⇒ ∃x (x ≺ v ∧ α(x)). Since E′ ⊆ cnf (α(z)), we have α(x) |=fol ¬β′(x), and
therefore,

∀∗Γ ∪ ∀∗S> ∪ Jα(v) | >K |=fol ∃x (x ≺ v ∧ α(x)) |=fol ∃x (x ≺ v ∧ ¬β′(x)),

so that ∀∗Γ ∪ ∀∗S> ∪ Jα(v) | >K ∪
q
x 6≺ v ∨ β′(x)

∣∣ >y
|=fol 2. By Definition 18, the

set of axioms ΓT contains all the c-clauses in cnf (β′(x) ∨ ¬Tβ′(x)), hence we deduce
that

∀∗Γ ∪ ∀∗S> ∪ Jα(v) | >K ∪ {
q
x 6≺ v ∨Tβ′(x)

∣∣ >y
} |=fol 2.

By the completeness of the core rules, this entails that:

Γ ∪ S> ∪ Jα(v) | >K ∪ {
q
x 6≺ v ∨Tβ′(x)

∣∣ >y
} `core 2.

By attaching the constraint T≺β′(v) to the c-clause
q
x 6≺ v ∨Tβ′(x)

∣∣ >y
and all its

descendants, we deduce that

Γ ∪ S> ∪ Jα(v) | >K ∪ {
r
x 6≺ v ∨Tβ′(x)

∣∣ T≺β′(v)z} `core q
2
∣∣ Yjy ,

where Yj is either T≺β′(v), if the c-clause
q
x 6≺ v ∨Tβ′(x)

∣∣ >y
is used at least once

in the derivation, or > otherwise. By definition, the set ΓT≺ contains the axiom:
r
y′ 6≺ y ∨Tβ′(y

′)
∣∣∣ T≺β′(y)z, that is more general than

r
x 6≺ v ∨Tβ′(x)

∣∣∣ T≺β′(v)z.
Since the core rules are liftable, it is possible to derive from Γ ∪ S> ∪ Jα(v) | >K a
c-clause J2 | X K �g

q
2
∣∣ Yjy. By Proposition 81, there exist a c-clause Dj and a

substitution θj such that Γ ∪ S> ∪ S′ `core Dj , where Dj is of the form
q
2
∣∣ Y ′jy,

Y ′j is either X ′ or s ' t[v′]p ∧ X ′, with v′θ = v and X ′θ = X . By hypothesis v is
obtained from tj by replacing each variable by new, pairwise distinct, constant sym-
bols, thus by Proposition 72, we deduce that v′ �g tj , and X ′ �g Yj . We deduce
that for all j ∈ [1, n], we can derive a c-clause Dj that is more general than either



42 M. Echenim and N. Peltier

q
2
∣∣ s ' t[tj ]p ∧ Yjy or

q
2
∣∣ Yjy. Furthermore, the set {t1, . . . , tn} is covering, which

entails that the Domain Decomposition rule can be applied on D1, . . . ,Dn, yielding
a c-clause D with either D =

r
2
∣∣∣ s ' t[x]p ∨T≺β′(x)

z
or D = J2 | s ' t[x]pK. In

the latter case, the proof is completed, hence we assume that the former condition
holds. The hypotheses of this derivation are either clauses in S> or c-clauses occur-
ring in S′. Therefore, by Proposition 82, Iδ(D, s ' t[x]p, p) is defined, and is of the
form ¬

∧
C∈E′′ C, where E

′′ ⊆ cnf (α(z)). If the Induction rule applies, then it yieldsq
β′(z)

∣∣ >y
, from which J2 | s ' t[x]pK can be derived, and the proof is completed.

Otherwise, we have ¬
∧
C∈E′′ C 6|=s β

′ thus E′′ 6⊆ E′. By applying the rule Iteration,
the extended formula α′ = β′ ∨ Iδ(D, s ' t[x]p, p) is activated. But we have:

β′ ∨ Iδ(D, s ' t[x]p, p) ≡ ¬
∧
C∈E′

C ∨ ¬
∧

C∈E′′
C ≡ ¬

∧
C∈E′∪E′′

C

and E′ ( E′ ∪ E′′, which contradicts the maximality of E′.

7 Conclusion

A new method has been described to integrate inductive reasoning into saturation-
based proof procedures such as Resolution or Superposition. This approach strongly
increases the scope of these procedures by making them capable of refuting formulas
containing function symbols interpreted over inductively defined domains. Some (nec-
essarily restricted, since the logic is not semi-decidable) completeness results have been
established.

Several lines of future work deserve to be considered. The first one consists in ex-
tending the completeness results given in Section 6, for instance by devising syntactic
fragments for which completeness or decidability can be ensured (as it is done in [24]
for clauses with indices interpreted as words), or by taking deletion and simplification
rules into account. Another idea is to extend the procedure to handle more general in-
ductive domains. The main restriction of the present work is that only free constructors
are considered, and the first priority is to get rid of this condition. This affects both
the definition of the semantics and the form of the Domain Decomposition rule – in
particular, it is unclear how covering sets could be identified if the constructors are not
free. It would also be fruitful to combine our approach with constrained superposition
calculi (see, e.g., [4,6,21]) that allow one to combine first-order proofs with more spe-
cific theory reasoning. Another interesting follow-up would be to consider more general
induction orders other than the subterm relation. Our technique should be applicable
to any order, provided it can be axiomatized. Considering orders defined over tuples
of variables could also extend the scope of our approach.

The implementation of the calculus will also be considered. For the sake of efficiency,
we plan to implement the induction rules on the top of existing inference engines such as
E [32] or Prover9 [26]. From a practical point of view, the systematic application of the
induction rules generates a huge search space. It is thus essential to devise heuristics to
identify the terms on which the induction must be applied and the candidate invariants
that may be activated (see Remark 63).
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