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We study Compton scattering at helium atom exposed to an electromagnetic field with a central frequency of 80 a.u. (∼ 2.18 keV). We consider the situation where the incident and scattered light are polarized along the same direction with small relative propagation angle β. The energy of the emitted electron ranges from 0.2 to 2.1 a.u. (∼ 5.44 -57.14 eV). The approach is based on previous works on stimulated Compton scattering (see H. Bachau, M. Dondera, and V. Florescu, Phys. Rev. Lett. 112, 073001 (2014)). We consider a field intensity of 3.51 × 10 16 W/cm 2 , where stimulated Compton scattering can be treated in perturbative regime. In lowest order perturbation theory the process results from the contribution of A • P in second order and A 2 in first order (P is the electron momentum operator and A the vector potential of the field), both terms induce two-photon transitions. The Compton matrix element |M f g | 2 is extracted numerically resolving the time-dependent Schrödinger equation and in perturbation theory, emphasis is put on the calculation of the second order amplitude associated with A • P. We investigate the cases of relative propagation angle β = 0 and 10 degrees. The photoelectron energy distributions are dominated by the nondipole term A 2 , they increase by orders of magnitude when β grows from 0 to 10 degrees. At β = 0 degree both A • P and A 2 are at play and we show that the electrons are emitted in the (forward) direction of the momentum transfer Q and to a lesser extend in the backward direction.

When β increases the nondipole contribution A 2 tends to dominate and the forward/backward asymmetry vanishes.

Introduction

Almost a century after the publication of the seminal works of Compton [1], Kramers and Heisenberg [2] and Waller and Hartree [3] the problem of photon-matter scattering with x-ray continue to receive a considerable attention from the community. For decades, due to the low photon flux of traditional x-ray machine and small cross section, there has been few experiments on Compton scattering at atoms and molecules in gas-phase. With recent advances in synchrotron facilities, it has become feasible to accurately measure Compton scattering in atoms and molecules (see [4][5][6][7] for recent Compton profile measurements). The brightness of x-ray free-electron lasers [8][9][10],

which is many orders of magnitude higher than that of synchrotron sources, opens up the possibility to explore non-linear processes in atoms and molecules, including Compton effects, see [11] for a recent prospective report concerning experiment and theory. Incidentally we note that the computation of nonlinear processes like Compton, Raman or Rayleigh scattering in complex atoms is an important component of present-day atomic code developments [12]. Along with the development in the field of x-ray technologies, tremendous progresses have been realized in coincidence spectroscopy. In a recent work Kircher et al [13] have obtained the first fully differential cross section for Compton scattering at the gas-phase helium atom with few keV photons. The regime of keV photons is of particular interest from the theoretical point of view because it allows to study Compton scattering of an initially bound electron in the nonrelativistic limit. In this con-text, it is well-known that the dipole approximation (DA) is no longer valid, in particular nondipole corrections lead to forward/backward asymmetry in the photoelectron angular distributions. The differential Compton cross section rely on the calculation of Kramers-Heisenberg-Waller (KHW) (references cited above) matrix elements. They provide a clear picture of photon scattering processes up to the second order of perturbation theory (PT), including the term A • P and the coupling term A 2 (neglected in DA). There has been a tremendous amount of theoretical work devoted to KHW matrix elements, the evaluation of the part associated with the coupling A • P is difficult since it involves the excitation of intermediate states (Green functions) and the presence of a pole. In the pioneering work of Gavrila [14] an exact analytic (nonrelativistic) calculation of KHW matrix elements is presented in the case of an hydrogenic atom. With the help of the latter work, we have been able to show the good agreement between time-dependent Schrödinger Equation (TDSE) and perturbative calculations using KHW matrix elements in stimulated Compton scattering by hydrogen with keV photons [15,16] at an intensity of 3.51 × 10 16 W/cm 2 . Later similar calculations have been extended to stimulated Raman transitions from the 1s and 2s states of hydrogen [17,18].

In the theoretical approach developed in [13] the authors neglect the term A • P; they only consider the nondipole coupling A 2 , with good agreement between experimental results and theory. At contrast with the latter work, we focus here on the case of small deflection angles of the scat-tered photon (≤ 10 degrees) and as a consequence small values of the momentum transfer Q (i.e., Q ≤ 0.1). In this context both A • P and A 2 coupling terms are considered, with two pulses A 1 (r, t) and A 2 (r, t) centered around the frequencies ω 1 and ω 2 , respectively. We study here the two-color ionization process, identified as due to stimulated Compton scattering (SCS) [15], where the bound electron of an atom (here the helium atom) absorbs an energy around ω 1 -ω 2 and is emitted with the energy E ≈ ω 1 -ω 2 -I p (I p being the ionization potential of the atom, here I p ≈ 0.903 a.u.). The two pulses have similar duration and they overlap in time. Figure 1 presents a schematic representation of the SCS process and helium energy levels. The left hand part of the figure displays the two paths associated with the second order transition involving A • P while the right hand part shows the one order transition associated with A 2 . Figure 2 presents the geometry of the system. We have focused on helium atom and photon energies of the order of 2.2 keV to place our investigations under conditions which are the most similar to the experiment cited above [13]. Nevertheless the approach developed in this work can be straightly extended to any one-active electron atom or ion and other photon energy range, provided the nonrelativistic approximation is valid.

We consider a pulse centered around ω 1 = 80 a.u., ω 2 ranging from 76.997 a.u. to 78.897 a.u. In the case of helium, this corresponds to SCS electron peak energies of E ≈ 0.2 -2.1 a.u. The total pulse duration is about laser bandwidth ∆ω is close to 0.23 a.u., much smaller than the ionization threshold. We choose a common peak intensity of 3.51 × 10 16 W/cm 2 (taken as the atomic unit of intensity). At this intensity, the ratio of the ponderomotive energy (the quiver energy of the electron in the electromagnetic field U p = I/4ω 2 ) and the photon energy ω is much less than 1 and, at the same time, the value of the Keldysh parameter [19], given by I p /2U p is much greater than 1, which is unfavorable for nonperturbative ionization. Under these conditions, there is a good agreement between perturbative and nonperturbative ap-proaches over a wide range of photon wavelengths [15,16,20]. In our treatment the diamagnetic term A 2 is included up to O(1/c), we have shown that this approximation is valid for SCS with keV photons, but a deviation with the exact treatment appears at large propagation angles [16],

T ∼ 500×2π ω1 (T ∼ 39 a.u), it is worth noticing that the
i.e., for large momentum transfer. In previous works we have shown that, in the context of SCS, the nondipole correction coming from A • P can be neglected [15,16],

A • P will be treated in DA in the following. In the case of helium the KHW matrix elements cannot be evaluated analytically, here they are extracted considering the TDSE results and the formal expression of time-dependent lowest order perturbation theory (LOPT). A particular attention is put on the evaluation of second order elements involving A • P. The results are compared with a direct numerical evaluation of these matrix elements using an extrapolation technique. We discuss the respective role of A • P and A 2 coupling terms in electron energy and angular distributions.

Atomic units (a.u.) are used throughout this paper unless otherwise stated.

Theory

The expression of the nonrelativistic Hamiltonian operator for the one-active electron helium atom in an external electromagnetic field of vector potential A is written (in the Coulomb gauge):

H = 1 2 P 2 + A(r, t) • P + 1 2 A 2 (r, t) + V (r) (1) 
The atomic potential V (r) is a central one, it has the form

V (r) = - 1 r - 1 r (1 + λr)e -2λr . (2) 
This potential is widely used in atomic and molecular physics (see [21] and references therein). It verifies the correct asymptotic conditions for He; V (r) ∼ r→0 -2/r and of the behavior of the KHW matrix elements over a wide range of energies. In particular we have studied the case of E = 0.5 a.u. and E = 1.1 a.u., located below the autoionizing state series, and E = 2.1 a.u., placed above the double continuum threshold. In the latter case double ionization or ionization with excitation of He + are not excluded but these processes should have a much lower probability than single electron ionization leaving He + (1s). Therefore we expect our approach to be valid for the specific cases investigated.

V (r) ∼ r→∞ -1/
Taking the z-axis (unit vector e z ) along the polarization vector the vector potential reads;

A(r, t) = A 1 (r, t) + A 2 (r, t) (3) 
with

A i (r, t) = A i (t -n i • r/c) e z . (4) 
The unit vector n i is the propagation direction of the field A i (r, t) and c = 137.036 a.u. is the light velocity. Each function

A i (τ ) = f i (τ )A 0,i cos(ω i τ + φ l,i ) (5) 
is non vanishing over a finite interval -T /2 ≤ τ ≤ T /2 (T being the total pulse duration). ω i is the field frequency, A 0,i its amplitude, we choose a cos 2 envelope for the shape f i (τ ) and the phase φ l,i = 0. We take the propagation direction of the first pulse along the x-axis, and we denote the azimuthal angle of the propagation direction of the second pulse (in the plane x -o -y) as β. We consider that the emitted electron has a momentum p, see Fig. 2.

The time-dependent perturbative approach

In time-dependent PT the SCS transition amplitude A f g from the state g to a continuum state f can be expressed using the Fourier transform of A(τ );

Ãi (ω) = A i (τ )e iωτ dτ. (6) 
We give directly the compact result obtained:

A f g = 1 2πi dω Ã1 (ω) Ã2 (ω f g -ω)M f g (ω) (7) 
ω f g = ω f -ω g , ω f and ω g being the energies of the states f and g, respectively. Note that the above expression of the transition amplitude is valid provided that a single pulse cannot populate f . This is the case here since the laser bandwidth verifies ∆ω << ω f g . In Eq. ( 7) The polarization vector of both fields is along the z-axis (unit vector ez) and the wave vector κ1 is along the x-axis. β refers to the azimuthal angle of the wave vector κ2. Q denotes the momentum transfer vector; Q = κ1 -κ2.

M f g (ω) = O f g (ω) + T f g (ω) (8) 
with O f g (ω) associated with

A 2 O f g (ω) =< f |e i ω c (n1-n2)•r+i ω f g c n2•r |g > (9) 
and

T f g (ω) associated with A • P in DA T f g (ω) =< f |P z G + (ω g + ω)P z |g > + < f |P z G + (ω g + ω f g -ω)P z |g > . ( 10 
) G + (W ) is the usual Green function G + (W ) = (W + i - H a ) -1
where H a is the field free Hamiltonian of the atom and → 0 + .

Considering that Ã1 (ω) Ã2 (ω f g -ω) is non-zero around ω ≈ ω 1 the Eq. ( 7) is written

A f g 1 2πi M f g (ω 1 ) dω Ã1 (ω) Ã2 (ω f g -ω). (11) 
In the nonrelativistic case the transition amplitude

M f g (ω 1 ) = O f g (ω 1 ) + T f g (ω 1
) is of the type KHW, as mentioned in the Introduction. This amplitude cannot be expressed analytically since V (r) in Eq. ( 1) is not a pure Coulomb potential. In the general case the numerical evaluation of the matrix elements in Eq. ( 10), which involve Green functions, is particularly difficult due to the integration over continuum-continuum matrix elements and the presence of a pole. Crude assumptions like the closure approximation are often used in order to avoid the explicit calculation of these matrix elements. At

ω f = ω 1 -ω 2 +ω g ,
it is easy to show that O f g and T f g take the usual KHW forms

O f g (ω 1 ) =< f |e i(κ1-κ2)•r |g >=< f |e iQ•r |g >, (12) 
where κ i is the photon wave vector (κ i = ωi c n i ) and Q = κ 1 -κ 2 the momentum transfer vector. T f g reads

T f g (ω 1 ) =< f |P z G + (ω g + ω 1 )P z |g > + < f |P z G(ω g -ω 2 )P z |g > . (13) 
Note that in the above equation the last term has no pole, 

G(ω) = (ω -H a ) -1 .

The nonperturbative approach

Here we follow the numerical method previously developed in [15,22], we recall only the main steps. Given the approximations explained above the Hamiltonian can be written

H ≈ H a + H DA + H RET + H D RET . (14) 
It is expressed as a sum of the atomic Hamiltonian H a ≡ P 2 /2 + V (r), of the interaction term in DA

H DA = A(t) P z , (15) 
and of two other contributions, describing nondipole (retardation) corrections in first order in n i • r/c expansion;

H RET = α F a (t) x P z + α F b (t) y P z (16) 
and the diamagnetic term

H D RET = α F a (t) A(t) x + α F b (t) A(t) y (17) 
where

F a (t) = F 1 (t) + F 2 (t)cosβ and F b (t) = F 2 (t)sinβ with F i (t) = -Ȧi (t)
. α is the fine structure constant (α = 1/c). Note that in the above expressions we have

approximated A i (t -n i • r/c) by it first two terms of its power series in n i • r/c, correction of 1/c 2 are neglected.
It is easy to demonstrate that this approximation is fully consistent with the first order expansion of e i(κ1-κ2)•r in Eq. ( 12);

e i(κ1-κ2)•r ≈ 1 + i(κ 1 -κ 2 ) • r. ( 18 
)
The domain of validity of this approximation for A 

A spectral method is used to resolve the TDSE. In order to calculate the time-dependent wave function ψ(r, t), solution of the TDSE, we use the expansion

ψ(r, t) = nmax, lmax, |m|≤l n, l, m e -iE nl t c (l,m) n (t) u nlm (r) (20)
in a discrete basis of the atomic Hamiltonian (H a ) eigenfunctions

u nlm (r) = X nl (r)/r Y lm (r/r). ( 21 
)
The eigenvalues of H a , indexed as E nl , are determined together with the radial eigenfunctions X nl (r) by solving numerically the radial Schrödinger equation in a basis of B-spline functions [23]. The system of coupled differential equations satisfied by the coefficients c Once the wave function ψ(r, t) is known at the end of the pulse, the amplitude A(E, n) and associated photoelectron energy distribution (PED) and photoelectron angular distribution (PAD) can be extracted [22,24]. The PAD reads

P(E, p) = p|A(E, p)| 2 (22) 
and the PED

P(E) = p |A(E, p)| 2 dΩ p . ( 23 
)
where p is the electron momentum and E its energy, E = p 2 /2.

Full, A.P and A 2 TDSE calculations

In the following P f ull (E) ≡ P(E) refers to the TDSE resolved with the full Hamiltonian given in Eq. ( 14). P DA (E)

and in figure 3) leads to an underestimation of the PED. We also notice the slow convergence of the PED with E nmaxl , denoting that the two-photon transition from state g to f involves (as intermediate states) the l = 1, m = 0 continuum spectrum at rather high energies. The source of the convergence problem will be discussed at the end of this Section. Therefore any truncation of the basis in TDSE or LOPT approaches (specifically calculating the Green operator in Eq. ( 13), also expressed in Eq. ( 34)) should be carefully checked.

P A 2 (E)
In LOPT and DA the transition amplitude is given in Eq. (11) where M f g reduces to T f g ;

A DA f g 1 2πi T f g (ω 1 ) dω Ã1 (ω) Ã2 (ω f g -ω) (24) 
with T f g (ω 1 ) extracted from Eq. ( 10)

T f g (ω 1 ) =< f |P z G + (ω g + ω 1 )P z |g > + < f |P z G(ω g + ω f g -ω 1 )P z |g > . (25) 
We have discussed in Section 2.1 the difficulties inherent in the calculation of T f g (ω 1 ), here we extract |T f g (ω 1 )| 2 from TDSE calculations. In the above equation the integral

I f g = 1 2πi dω Ã1 (ω) Ã2 (ω f g -ω) (26) 
can be easily evaluated, either numerically or analytically.

As discussed in the Introduction the perturbation theory applies [15,16], the TDSE and LOPT results calculated at the same level of approximation overlap, therefore

P DA (E f ) = |A DA f g | 2 = T f g (ω 1 ) × |I f g | 2 (27) 
with

T f g (ω 1 ) = |T f g (ω 1 )| 2 = |T l=0 f g (ω 1 )| 2 + |T l=2,m=0 f g (ω 1 )| 2 (28) 
since we consider angle integrated values (we recall that in DA l = 0 and l = 2 continua are populated with m = 0).

For all cases investigated in this work we have found that the l = 0 contribution largely dominates over the l = 2 one. Therefore in DA the PAD is quasi-isotropic in θ. It is now straightforward to extract the value of T f g (ω 1 ) from Eq. (27). A very good fit with the converged value of P DA (E = E f ) around the resonance value E = 0.5 a.u., shown in Fig. 3, is obtained with T f g (ω 1 ) 10 -6 a.u.

The transition amplitude O f g given in Eq. ( 12) can be evaluated (up to O(1/c)) in the same way, using the formula

P A 2 (E f ) = O f g (ω 1 ) × |I f g | 2 . ( 29 
)
Here

O f g (ω 1 ) = |O f g (ω 1 )| 2 = |O l=1,m=-1 f g (ω 1 )| 2 + |O l=1,m=+1 f g (ω 1 )| 2 (30)
since the nonperturbative term A 2 expanded to the first order in 1/c populates l = 1 with m = ±1 continua. Note

that |O l=1,m=-1 f g (ω 1 )| 2 = |O l=1,m=+1 f g (ω 1 )| 2 . Finally the |M f g | 2 KHW matrix element reads |M f g | 2 = T f g (ω 1 ) + O f g (ω 1 ). ( 31 
)
We have considered in this Section angle integrated matrix elements, but a similar procedure can be used to extract differential matrix elements (for any direction of the emitted electron), using the value P f ull (E, p) defined in Section 2.2.1.

We have performed calculations for ω 1 = 80 a.u. and ω 2 ranging from 76.997 a.u. to 78.897 a.u. (E = 0.2 -2.1 a.u.), the results for the matrix elements T f g (ω 1 ) and

O f g (ω 1
) are shown in Fig. 4 for β = 0 and β = 10 degrees.

As a matter of fact the value of T f g (ω 1 ) is independent of β in DA. We notice that the nondipole contribution dominates in all cases, particularly at low energies and larger propagation angle, in agreement with the scaling law ω 2 1 + ω 2 2 -2ω 1 ω 2 cos β [16]. Finally we observe a rather flat behavior for T f g (ω 1 ). We have checked that the values of O f g , numerically calculated from Eq. ( 12) (in first order of 1/c), perfectly match the data presented in Fig. 4. The direct evaluation of T f g from Eq. ( 13) requires the evaluation of the Green functions

G + (ω g + ω 1 ) = n |s n >< s n | ω g + ω 1 + i -E s,n (32) 
and

G(ω g -ω 2 ) = n |s n >< s n | ω g -ω 2 -E s,n . (33) 
Where |s n > are the eigenfunctions representing the full spectrum of the field free Hamiltonian H a , with eigenenergies E s,n . Using these expressions the Eq. ( 13) reads

T f g (ω 1 ) = n [< f | P z |s n >< s n |P z ω g + ω 1 + i -E s,n |g > + < f | P z |s n >< s n |P z ω g -ω 2 -E s,n |g >] (34) 
with → 0 + . We recall that, in the above equation, the initial g and intermediate s n states have angular momenta l = 0 and l = 1, respectively. The final continuum state f has the angular momentum l = 0 or l = 2, in DA m = 0 for all states. As explained in Section 2.2, the states are defined in a box, the spectrum is therefore discretized and it represents both bound and continuum states. This explains the discrete summations in the expressions of the Green functions. We use the same basis set of B-splines and eigenfunctions as in the TDSE calculations. The main problem in the calculation of T f g is the presence of the pole in the first term in right hand side of Eq. (34) as well as continuum-continuum matrix elements. In order to circumvent these difficulties, we use an heuristic method presented in [25] to calculate above threshold ionization amplitudes, it is rapidly explained here. In Eq. (34) we arbitrarily choose for a value larger than the energy spacing between s n states in the region of the pole. Then the behavior of T f g (ω 1 ) is checked as tends to zero; T f g (ω 1 )

varies quite smoothly and, as expected, diverges when becomes smaller than the energy spacing. Therefore, using several large values of , an extrapolation technique gives the value of the amplitude at = 0. For the sake of consistency, in particular in the treatment of the continua, it is important that all set of states (for l = 0, 1, 2)

are calculated using the same basis of B-splines. Using this approach the estimated values of T f g are in excellent agreement with the data extracted from TDSE calculations. It is worth noticing that the two contributions in right hand side of Eq. ( 34) have close absolute values but opposite signs, explaining the relative small magnitude of

T f g (ω 1
) and the requirement of an accurate evaluation of these contributions. This also explains the numerical convergence problem evoked at the beginning of this section.

The photoelectron energy and angular distributions

In Fig. 5 we show the PED for ω 1 = 80 a.u. and ω 2 = 77.997 a.u., the ejected electron energy is centered around and β = 10 degrees (φ = 283 and 103 degrees). In both case we see that the electron emission in the direction of Q dominates, it is particularly pronounced at β = 0 degree. The asymmetry in the electron emission is even more important at higher electron energies since the relative contribution of A 2 decreases, as shown in Fig. 4. This is illustrated in Fig. 8 were we show angular distributions calculated for the energy of the ejected electron of 2.1 a.u.

(ω 1 = 80 a.u. and ω 2 = 76.997 a.u.). Here φ 0 ≈ 287 degrees at β = 10 degrees. Comparing this figure with Fig. 7 we clearly see that the electron emission is more pronounced in the forward direction for the higher value of E. 

) x 0.02 Q β=0 Q β=10 -Q β=0 -Q β=10

Conclusion

We have presented a theoretical study of Compton scattering at helium atom with keV photons and small mo- Incidentally we note that the numerical approaches used here to calculate Compton matrix elements can be easily extended to the investigation of Raman scattering (see [26] for recent Rayleigh and Raman KHW matrix element calculations and [27,28] for recent theoretical studies of Rayleigh scattering of synchrotron radiation by complex atoms and ions). 

Fig. 1 .

 1 Fig. 1. A schematic diagram of the two-photon helium ionization involving the absorption of a photon ω1 and the emission of photon ω2. (left) virtual transitions via A • P (paths 1 and 2) and (right) transition via A 2 . The shaded area below the threshold He + (2s, 2p) represents the series of autoionizing states (2lnl ).

Fig. 2 .

 2 Fig.2. Definition of the angles relative to photons, electron and polarization directions. κi is the wave vector associated with the vector potential Ai. p is the asymptotic electron momentum with polar and azimuthal angles θ and φ, respectively.

  The first term in right hand side of Eq. (13) represents the path 1 in figure1, i.e., absorption of ω 1 first and emission of ω 2 . The second term is associated with the path 2 in figure 1, i.e., emission of ω 2 first and absorption of ω 1 . In practice the evaluation of the Green function requires the calculation of the full spectrum (bound and continuum states) of the field free Hamiltonian, as expressed in Eqs. (32) and (33).

  2 appears clearly; the momentum transfer Q = |κ 1 -κ 2 | should verify Q r c << 1 (r c being the characteristic dimension of the atom, here of the order of the atomic unit). This requirement is fulfilled here; for the propagation angles investigated (β = 0 and 10 degrees) we recall that Q ≤ 0.1 a.u. The nondipole term H RET is associated with the coupling A • P, as noticed above it plays a minor role in the present context, therefore we do not elaborate on it in the following. Within first order PT, the terms A • P ≡ H DA and A 2 ≡ H D RET induce one and two-photon transitions, respectively. The selection rule is (∆l = ±1; ∆m = 0) in DA (term H DA ) and (∆l = ±1; ∆m = ±1) for the nondipole coupling term H D RET . Therefore, given that the initial state has an angular momentum l = 0 and magnetic quantum number m = 0, the A • P term treated in second order of PT and DA populates l = 0, m = 0 and l = 2, m = 0 final states f . A 2 in first order of PT and developed up to O(1/c) populates l = 1, m = ±1 states. The TDSE reads i ∂ ∂t ψ(r, t) = Hψ(r, t).

  is integrated from t = -T /2 to t = T /2 using an explicit timeadaptive Runge-Kutta method, with initial conditions (at t = -T /2) corresponding to He in its ground state, i.e., here the 1s state. In a typical calculation we use angular momenta l = 0 -2, with |m| ≤ l, and a basis of 4000 B-spline functions of order k = 7, distributed linearly inside a box of length b = 600 a.u. The box radius b is chosen such that the probability to find the photoelectron outside the box at the end of the pulse is negligible. In the expansion(20) we use n max = 3500, corresponding to E nmaxl ≈ 170 a.u. The convergence of the calculations is checked by varying the box size and the number of angular momenta. A special attention is paid to the total number n max of eigenfunctions, we return to this point later.

3 Results 3 . 1

 331 The extraction of KHW |M f g | 2 matrix elements We consider first TDSE calculations for ω 1 = 80 a.u. and ω 2 = 78.597 a.u., the others laser parameters are given in the Introduction. The energy distribution P DA (E) is shown in Fig. 3, as expected it is centered around E = 0.5 a.u. (E ≈ ω 1 -ω 2 -I p ). We have performed TDSE calculations with various n max values in expansion (20), corresponding to E nmaxl ∼ 20, 90, 110, 150, 170 a.u.. The results are shown in figure 3, we clearly see that keeping only a value of E nmaxl much lower than ω 1 (E nmaxl ∼ 20 a.u.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Convergence with nmax (see expansion 20) of the PED calculated in DA around E = 0.5 a.u. E nmaxl is indicated in the legend. See the text.

1. 1 a

 1 .u. Calculations are performed for propagation angles β = 0 degree (left figure) and β = 10 degrees (right figure). At β = 0 degree the transfer momentum Q is about 0.015 a.u. and Q ≈ 0.1 a.u. at β = 10 degrees; the momentum transfer mostly results from the photon deflectionangle and to a lesser extend from the photon energy difference. First we notice the scales in figure5, the PED at β = 10 degrees is two order of magnitude larger than the one at β = 0 degree. We show results for the PEDs P f ull (E), P DA (E) and P A 2 (E) defined in Section 2.2.1.As expected (see Fig.4) for β = 0 degree the PED has a main contribution from P A 2 (E) but P DA (E) is non negligible. At β = 10 degrees the PED is clearly dominated by the nondipole contribution.In Fig.6we present the PADs as a function of the azimuthal angle φ in the x-o-y plane (perpendicular to the polarization direction) calculated with full Hamiltonian and with only the nondipole coupling term. The PADs are obtained by integrating the differential probabilities P f ull (E, p) and P A 2 (E, p) (defined in Section 2.2.1) in the region of the SCS resonance energy E = 1.1 a.u., here from 0.6 to 1.6 a.u. These integrated values are referred to as P f ull (p) and P A 2 (p) in the following. At β = 0 degree the electron is preferentially emitted in the direction of propagation of the field (φ = 0 degree). Note that, within the approximations used to treat A • P and A 2 , the forward/backward asymmetry in electron emission results from constructive/destructive interferences in the addition of the amplitudes associated with A • P and A 2 . In fact one can show that the ionization rate associated with P A 2 (p) scales as sin 2 θ cos 2 (φ -φ 0 )[16] (with φ 0 the azimuthal angle of the momentum transfer vector Q = (κ 1 -κ 2 )). For β = 0 φ 0 = 0, the maxima of P A 2 (p) have equal magnitudes and are located at 0 and 180 degrees. At β = 10 degrees the contribution of A 2 dominates, here φ 0 ≈ 283 degrees. Note that in full TDSE calculations the electron emission in (forward) direction of Q (φ = 283 degrees) slightly dominates over the backward direction (φ = 103 degrees). This is more clearly seen in Fig.7where we plot the PADs P f ull (p) as a function of the polar angle θ for β = 0 (φ = 0 and 180 degrees)

Fig. 5 . 2 )

 52 Fig. 5. PEDs calculated around E = 1.1 a.u. for β = 0 degree (left) and β = 10 degrees (right). The TDSE approximations are indicated in the legends with the definitions of full, A 2 and DA approaches given in Section 2.2.1.

Fig. 6 .

 6 Fig. 6. PADs calculated for an energy E = 1.1 a.u. as a function of the azimuthal angle φ, with a polar angle θ = 90 degrees. The TDSE approximations and angles β are indicated in the legends. The arrows indicate the direction of the transfer momentum (Q β ) and backward direction (-Q β ). For the sake of clarity, the probabilities at β = 10 degrees are multiplied by a factor 0.02. The TDSE approximations are indicated in the legends with the definitions of full and A 2 approaches given in Section 2.2.1.

Fig. 7 .Fig. 8 .

 78 Fig. 7. PADs calculated for an energy E = 1.1 a.u. as a function of the polar angle θ for β = 0 degree (left) and β = 10 degrees (right), the azimuthal angle is indicated in the legends.

  mentum transfer. We have considered photon energy of 80 a.u. (∼ 2.18 keV) and electron energies ranging from 0.2 to 2.1 a.u. (∼ 5.44 to 57.14 eV). The field intensity, I = 3.51 × 10 16 W/cm 2 , ensures that the process can be described by PT. The study is based on SCS, with two fields polarized along e z and propagating with relative angles β = 0 and β = 10 degrees. Comparing TDSE results and LOPT we have been able to extract numerically KHW the transition matrix element |M f g (ω 1 )| 2 given in Eq. (31). A particular attention has been put on the amplitude transition T f g (ω 1 ), associated with the coupling A • P, which involves a Green function and a pole in the second order perturbative treatment. We have shown that TDSE converges provided high energy states are included in the basis set. The results are compared with a direct calculation of T f g (ω 1 ) using an approach previously de-veloped to investigate above threshold ionization[25], we have found an excellent agreement. The amplitude transition O f g (ω 1 ), associated with A 2 , is calculated up to O(1/c), which is consistent with small transfer momentum. The transition matrix element |O f g (ω 1 )| 2 decreases with the electron energy but in all cases dominate over |T f g (ω 1 )| 2 . The latter matrix element is nearly flat over the electron energy range considered (from 0.2 to 2.1 a.u.).

  As expected the electron angular distributions show that the electron are preferentially emitted in the direction of the momentum transfer Q and backward. Here the asymmetry in forward/backward directions results from the combined action of the couplings A • P and A 2 . For the case of propagation angle β = 0 degree, the angular distribution shows that the emission in the direction of Q largely dominates. At β = 10 degrees the forward/backward asymmetry still exist, despite A 2 dominates by orders of magnitude over A • P, but it is less pronounced. This demonstrates the importance of an accurate evaluation of the transition matrix elements associated with A • P and A 2 for small momentum transfer. This work should encourage accurate coincidence measurements of Compton scattering under similar conditions. It would be also very interesting to investigate the region of autoionizing state series with the measurements of fully differential cross sections. This requires theoretical investigations were twoactive electrons are considered, investigations in this direction are planned. M.D. acknowledges the support for mobility from the University Alioune DIOP of Bambey (Senegal) and is grateful for the hospitality and support from the laboratory CELIA. The
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