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Abstract

We develop and analyse the first second-order phase-field model to combine melting
and dissolution in multi-component flows. This provides a simple and accurate way to
simulate challenging phase-change problems in existing codes. Phase-field models simplify
computation by describing separate regions using a smoothed phase field. The phase field
eliminates the need for complicated discretisations that track the moving phase boundary.
However standard phase-field models are only first-order accurate. They often incur an
error proportional to the thickness of the diffuse interface. We eliminate this dominant er-
ror by developing a general framework for asymptotic analysis of diffuse-interface methods
in arbitrary geometries. With this framework we can consistently unify previous second-
order phase-field models of melting and dissolution and the volume-penalty method for
fluid-solid interaction. We finally validate second-order convergence of our model in two
comprehensive benchmark problems using the open-source spectral code Dedalus.

1 Introduction

Many scientific and industrial questions involve fluid flows coupled with phase changes; includ-
ing sea-ice formation [19], semiconductor crystal manufacture [26], binary alloy solidification
[14], and geophysical mantle dynamics [30]. Multi-phase interaction combines the challenges
of nonlinear multi-component convection [56] and evolution of phase boundaries [35], creating
entirely new effects. Quantifying this complexity demands appropriate mathematical tools.

Moving boundary problems are the standard method to model phase change phenomena.
Separate partial differential equations (PDEs) exist in the liquid and solid regions and moving
boundary conditions are applied at the interface (see fig. 1 (a)). A dynamically shifting interface
means that the boundary conditions form an essential (often nonlinear) part of the solution
[63]. Moving boundaries present many challenges, complicating numerical algorithms [18] and
mathematical proofs [27].

As a possible remedy, it is useful to recall that boundary conditions are a mathematical
abstraction; they result from limiting cases of rapid transitions in material properties. There
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is a long history of reinterpreting discontinuous boundary conditions as smoothed phenomena.
Where Gibbs treated capillarity with infinitesimal surfaces [25], Van der Waals understood the
importance of smoothness at phase boundaries [58]. Where Stefan treated solid-liquid phase
boundaries as discontinuous [51], Cahn and Hilliard modelled phase separation as smoothed [14].
Readopting a physics-based viewpoint of boundary conditions allows new possible techniques
for addressing complex multi-phase problems. As well as providing a firmer mathematical and
physical foundation, smoothed models also simplify numerical implementations by removing
the need to track the infinitesimal boundary.

This paper focusses on phase-field models, one of the foremost examples of this smoothed
approach. Phase-field models represent distinct phases using a single smoothed phase field φ,
illustrated in fig. 1 (b) [6, 52]. The evolution of the phases is then determined by a single set of
equations that apply over the entire domain. Many other methods also model phase changes,
such as enthalpy methods [59, 57], level set methods [47, 15], diffuse-domain approaches [39, 1],
or some immersed-boundary methods [42]. Yet phase-field models stand out for combining
several key benefits:

• They are physically motivated, introduced by Fix [23] and Langer [37] to model free
energy near phase boundaries (following from Hohenburg and Halperin’s model C [29]).

• They generalise canonical models of phase separation, reducing to Allen-Cahn and Hele-
Shaw flow (among others) in various asymptotic limits [11, 12].

• They are easily extensible to more general systems, including two-component alloys [61,
5, 32, 50], convection [4, 3], or multi-phase flows [1, 44].

• They can be made thermodynamically consistent [48, 60, 43, 46, 7].

• They are mathematically rigorous, with well-posedness and convergence results [10, 13].

• They are simple to simulate as they avoid explicit tracking of the interface [23, 40, 62,
20, 55, 41, 31, 21, 49, 17].

We emphasise this last point. The simulation of moving boundary problems requires specialised
algorithms designed to track and apply boundary conditions at the interface. These algorithms
can be difficult or impossible to implement in existing codes. For example, spectral methods
are popular for their efficiency, but cannot easily handle non-trivial geometries or topologies.
Phase-field models (and other diffuse-interface methods) alleviate these difficulties by removing
boundary conditions from the problem formulation. By replacing boundary conditions with
simple source terms, they can be implemented in general codes for little effort. More general
effects can be modelled by changing source terms, as opposed to developing and integrating new
algorithms into the codebase. Phase-field models extend the range of phenomena that existing
codes can simulate, and accelerate the development of codes to study new scientific problems.

However, phase-field models possess one important drawback for simulation: they must
resolve the diffuse interface. For small-scale simulations this is feasible. But there is a vast
disparity between the microscopic scale of the smoothed interface and the macroscopic scale
of interest in most problems. This disparity is what makes discontinuous boundary conditions
appropriate models in most circumstances. Throughout this paper, we denote this ratio by ε

ε =
microscopic interface width

bulk system size
. (1)

Numerically feasible values of ε are orders of magnitude larger than reality. Straightforward
analysis implies a commensurate O(ε) error with respect to the limiting boundary conditions.
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The only way to perform accurate phase-field simulations with achievable values of ε is
to accelerate the convergence of the model itself. This can be done through second-order
asymptotic analysis in the limit ε → 0. While the first order is sufficient to determine the
limiting behaviour, it is the second order that reveals the dominant error of the model. It is
then possible to find optimal prescriptions that cancel the dominant error and boost convergence
from O(ε) to O(ε2).

This strategy leads to various ‘quantitative’ (i.e. second-order) phase-field models, beginning
with a correction for arbitrary interface-kinetics in pure materials [33, 34], and since extended
to unequal diffusivities [2, 43], multiple components [32], and the combination thereof [24, 45].
An introduction to this asymptotic procedure can be found in [22]. Despite much success,
progress is difficult. Second-order asymptotic analysis has not yet ascertained a quantitative
phase-field model of multi-component convection1.

This paper presents the first second-order phase-field model of buoyancy-forced convecting
binary mixtures. The model, given in section 2, builds on first-order models of multicomponent
convection [4], second-order models of pure melts [16], the diffuse domain method for Robin
boundary conditions [36], and the smooth volume-penalty method for no-slip boundary con-
ditions [28]. We verify second-order convergence in section 3 by developing a straightforward
asymptotic procedure suitable for general equations and geometries in three dimensions. This
procedure allows us to consistently analyse and unify previous second-order phase-field and
diffuse-interface methods. We also implement this procedure in the symbolic computing lan-
guage Mathematica. For brevity we assume somewhat simplified thermodynamical properties
in our model, such as uniform temperature diffusivity, negligible solute within the solid, and
Boussinesq buoyancy. Each assumption could be relaxed and analysed using the framework
of section 3. We finally validate the improved convergence in two comprehensive benchmark
problems implemented in the Dedalus numerical code [9] in section 4.

2 Models of melting in binary mixtures

2.1 Conventional moving boundary formulation

Melting in binary mixtures, such as ice in sea water, is often modelled as a moving boundary
problem. We partition the domain into fluid Ω+ and solid Ω− regions, pose separate PDEs on
each subdomain, and apply boundary conditions at the evolving interface ∂Ω (as in fig. 1 (a)).

In the fluid, the temperature T+ and dissolved solute concentration C satisfy advection-
diffusion equations, and the fluid velocity u and pressure p satisfy incompressible Navier-Stokes
equations with Boussinesq buoyancy forcing gρ(T+, C) ẑ,

∂tT
+ + u · ∇T+ − κ∇2T+ = 0,

∂tC + u · ∇C − µ∇2C = 0,

∂tu+ u · ∇u− ν∇2u+∇p+
gρ(T+, C)

ρ0
ẑ = 0,

∇ · u = 0, in Ω+, (2)

where κ, µ, and ν are the thermal, solutal, and momentum diffusivity (each assumed constant),
and g, ρ, and ρ0 are the gravitational acceleration, the density of the fluid, and a reference

1 Shortly before submission we became aware of the work [53]. In it, Subhedar et al. perform second-
order analysis of a phase-field model combining melting and advection. Our work is more general as we also
account for dissolution, give a more comprehensive analytical treatment, and use more challenging computational
benchmarks.
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Figure 1: Figure (a) illustrates a moving boundary formulation in which the domain is parti-
tioned into the fluid Ω+, solid Ω− and interface ∂Ω. Figure (b) show a phase-field approxima-
tion, where the phase φ smoothly varies between fluid and solid. The dashed line highlights the
φ = 1/2 contour that approximates the true interface. We illustrate the asymptotic fluid Ω+,
solid Ω−, and size O(ε) boundary ∆Ω regions of our analysis. Figure (c) details the signed-
distance coordinate system used to analyse the boundary region ∆Ω. Points on the interface
p(s) (blue) are parameterised by arbitrary surface coordinates s. A point off the boundary x
can be reached by moving a distance σ in the normal direction n̂(s) from the closest point on
the manifold p(s). Coordinate singularities (the corners of the red curves) will occur, but the
coordinate system remains well-behaved in the interface region (fig. (b)). The figure is in two
dimensions for clarity, though the analysis of section 3 is done in three dimensions.

density. In the solid only the temperature T− is defined, which follows a diffusive equation,

∂tT
− − κ∇2T− = 0, in Ω−. (3)

We require several boundary conditions at the moving interface [63]. The Gibbs-Thompson
relation relates departure of thermosolutal equilibrium (T +mC, where m is the liquidus slope)
to a mean-curvature K dependent surface energy, and kinetic undercooling proportional to
the interfacial normal velocity v. The Stefan condition expresses heat conservation, equat-
ing latent heat L release with a discontinuity in temperature flux. The Robin concentration
condition ensures total solute conservation. Zero velocity boundary conditions maintain mass
conservation,

T +mC − γK + αv = 0, [κn̂ · ∇T ]+− + Lv = 0, µn̂ · ∇C+ + C+v = 0, u = 0. (4)

This model involves several idealisations, namely Boussinesq buoyancy forcing, constant dif-
fusivities and densities that are phase, temperature, and concentration invariant, and a linear
liquidus relation. We can include more general thermodynamic properties into our framework,
but we continue with the current model as it captures many aspects of melting and dissolution
in multi-component flows. Kinetic undercooling is only relevant for rapidly solidifying super-
cooled liquids so we set α = 0. Note that the neglect of density change during melting means
the fluid velocity is equal to zero at the moving interface.

2.2 Phase-field model

Phase-field models represent an alternative approach that is physically motivated and simple
to simulate. They represent distinct phases with a smoothed phase field φ. This field obeys
an Allen-Cahn type equation which forces the phase to φ ≈ 1 in the solid and φ ≈ 0 in the
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fluid [4]. The interface is represented implicitly by the level set φ = 1/2. The new equations
augment are,

∂tT + u · ∇T − κ∇2T = L∂tφ,

∂tC + u · ∇C − µ∇2C =
C∂tφ− µ∇φ · ∇C

1− φ+ δ
,

∂tu+ u · ∇u− ν∇2u+∇p+
gρ(T,C)

ρ0
ẑ = − ν

(βε)2
φu,

∇ · u = 0,

ε
5

6

L

κ
∂tφ− γ∇2φ = − 1

ε2
φ(1− φ)(γ(1− 2φ) + ε(T +mC)). (5)

The new source terms of eq. (5) can be understood heuristically. At leading order, the
phase-field equation develops a tanh-like profile around the interface with thickness ε. Beyond
this distance the phase φ tends to its limiting values of zero in the fluid and one in the solid.
In the fluid eq. (5) reproduces eq. (2). in the solid the advective and diffusive solute flux tend
to zero (with δ � 1 regularising the concentration equation for numerical stability), and the
velocity is damped by Darcy drag terms for porous media. At next order thermosolutal forcing
perturbs the interface to generate latent heat. For a clear derivation of a similar first-order
model see [4].

Our goal is to surpass this approximate understanding and demonstrate improved conver-
gence of this optimised phase-field model to the original moving boundary formulation. We
achieve this with an asymptotic analysis of eq. (5) as the interface length-scale ε tends to zero.
Proving these equations converge to the moving boundary formulation at O(ε2) in general ge-
ometries is nontrivial, but builds on second-order models of each individual boundary condition;
a phase-field model which optimises the mobility term for zero interface kinetics [16], a concen-
tration equation similar to [4] and the diffuse domain method for Robin boundary conditions
[36], and the smooth volume penalty method (which gives β = 1.51044385) [28].

3 Analysis of the phase-field model

In order to understand the phase-field model and demonstrate second-order accuracy we use a
multiple-scales matched-asymptotics framework, which we break into several modular steps:

1. Partition the solid Ω−, fluid Ω+, and size O(ε) boundary ∆Ω regions (fig. 1 (b)).

2. Adopt signed distance coordinates in the boundary region (section 3.1.1, fig. 1 (c)).

3. Rescale normal coordinate and operators by ε near the interface (section 3.1.2, fig. 1 (b)).

4. Expand the variables in an asymptotic power series in ε in each region (section 3.1.3).

5. Connect regions with asymptotic matching conditions in the limit ε→ 0 (section 3.1.4).

6. Iterate to solve the zeroth, first, and second order problems (sections 3.2 to 3.4).

This procedure follows our previous analysis of the volume-penalty method [28]. The philosophy
of our approach is to determine the evolution of the phase-field model up to and including O(ε2)
in each region. We show that the variables in the fluid and solid regions, as well as the location of
the interface itself, evolve with only O(ε2) divergence from the moving boundary formulation.
Errors of O(ε) in the temperature and tangential velocity do occur in the boundary region
∆Ω. But this deviation is a necessary consequence of smoothly approximating discontinuous
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gradients across the interface, and is localised to the boundary region. We thereby derive
a second-order accurate phase-field model. We now summarise the key components of this
procedure2.

3.1 Summary of asymptotic procedure

3.1.1 Signed-distance coordinate system

We build a simple orthogonal coordinate system in the boundary region ∆Ω using the signed-
distance function from the φ = 1/2 level set. The signed distance σ is the minimum distance of
a point x to the interface. It follows that the point x must lie in the direction of the unit normal
vector n̂ from the nearest point on the interface p, which we label with surface coordinates s,

x = p(s) + σ n̂(s). (6)

The surface coordinates induce a tangent vector basis ti. Given orthogonal surface coordinates,
we also derive the dual vector basis ∇si and a unique orthonormal tangent basis t̂i,

ti =
∂p

∂si
, t̂i =

ti
|ti|

, ∇si =
t̂i
|ti|

. (7)

We can then write the surface area measure dA = |t1||t2|ds1ds2 and surface gradient ∇⊥,

∇⊥ = ∇s1
∂

∂s1
+∇s2

∂

∂s2
= t̂1∇1 + t̂2∇2.

It is not difficult to show the normal n̂ is everywhere equal to the gradient of the signed distance.
The gradient of the normal is therefore symmetric and diagonalisable. The eigenvectors are the
principal directions of curvature (which must align with orthogonal surface coordinates), and
the eigenvalues are the principal curvatures κi,

n̂ = ∇σ, ∇n̂ = −κ1t̂1t̂1 − κ2t̂2t̂2 = −K. (8)

We use this orthonormal frame to describe all geometric quantities near the interface. We can
then express the gradient using the surface and normal derivatives and the scale tensor J

∇ = n̂∂σ + J−1 · ∇⊥, where J = I − σK. (9)

It is straightforward to derive the remaining vector calculus operators from the gradient, which
we list in appendix A. Finally, the Cartesian partial time derivative ∂t can be rewritten in a
moving coordinate system using the signed-distance partial time derivative ∂τ ,

∂t = ∂τ − v∂σ + σ∇⊥v · J−1 · ∇⊥. (10)

3.1.2 Rescaling interfacial coordinates

We analyse the size ε interfacial region using the rescaled coordinate ξ and derivative ∂ξ,

σ = εξ, ∂σ =
1

ε
∂ξ. (11)

This rescales vector calculus operators (listed in appendix A) through scale factors of the
gradient

J = I − εξK, J−1 =
∑∞

k=0
εkξkKk. (12)

2We also provide a Mathematica script that automates each step of this analysis at
github.com/ericwhester/phase-field-code.
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3.1.3 Variable expansions with formal power series

After splitting the domain into the fluid Ω+, solid Ω−, and interfacial ∆Ω regions, each variable
f in each region (fluid f+, solid f−, and interfacial f) is expressed as a power series in ε,

f+(x, t) =
∞∑
k=0

εkf+
k (x, t), f−(x, t) =

∞∑
k=0

εkf−k (x, t), f(ξ, s, τ) =
∞∑
k=0

εkfk(ξ, s, τ). (13)

We do so for the temperature T , solute concentration C, fluid velocity u = uσn̂+ u⊥, pressure
p, phase field φ, and interface velocity v n̂ (which does not depend on ξ). We substitute these
series into the hierarchy of equations generated by section 3.1.2 to derive a system of equations
at each order of ε. Solving each order requires a matching procedure between adjacent regions.

3.1.4 Asymptotic matching

To ensure agreement between different regions we specify asymptotic matching boundary con-
ditions. This subtle notion requires asymptotic agreement in intermediate zones ξ ∼ ε−1/2 in
the limit that ε → 0. We can then let ξ approach infinity for the inner problem without en-
countering coordinate singularities (provided ε � mini |κ−1i |), and let σ approach zero for the
outer problem without entering the interfacial region. That is, for any variable f , we require

lim
ε→0

f(±ε−1/2ξ, s, t) ∼ lim
ε→0

f±(p(s, t)± ε+1/2 ξ n̂(s, t), t). (14)

Each variable is already expressed as an asymptotic series. Each series term in the outer
variables can be further expanded as a Taylor series about the interface at φ = 1/2 using the
signed distance σ. The matching conditions at each order of ε then simplify to

lim
ξ→±∞

f(ξ) = lim
ξ→±∞

∑
k=0

εkfk ∼ lim
ξ→±∞

∑
k=0

εk

(
k∑
`=0

ξ`

`!
∂`σf

±
k−`|σ=0

)
. (15)

Equipped with our multiple-scales matched-asymptotics procedure, we can now verify second-
order convergence of our phase-field model in general smooth geometries.

3.2 Zeroth order

At leading order the phase-field equation reduces to the condition φ±0 (1−φ±0 )(1−2φ±0 ) = 0. We
define the solid by φ−0 = 1, the liquid by φ+

0 = 0, with the boundary region separating them.
Fluid problem — Noting that the phase is zero in the fluid, we recover the desired sharp

interface equations for the remaining leading order variables,

∂tT
+
0 + u+0 · ∇T+

0 − κ∇2T+
0 = 0, ∂tC

+
0 + u+0 · ∇C+

0 − µ∇2C+
0 = 0,

∂tu
+
0 + u+0 · ∇u+0 − ν∇2u+0 +∇p+0 −B(T+

0 −NC+
0 )ẑ = 0, ∇ · u+0 = 0.

For brevity we approximate the buoyancy relationship as being linear in temperature and
concentration, with proportionality constants B and −NB respectively. This simplification
does not affect the convergence results. The solutions may also require external boundary
conditions to complete the system.

Solid problem — Within the solid, we reproduce the diffusion equation for the temperature,
and zero velocity in the solid. The divergence of the momentum equation reveals a Poisson
equation for the pressure. The concentration equation depends sensitively on the decay of the
phase to zero, but in the region 1− φ� δ the concentration forcing terms vanish, giving

∂tT
−
0 − κ∇2T−0 = 0, ∂tC

−
0 − µ∇2C−0 = 0, u−0 = 0, ∇2p−0 = B∂z(T

−
0 −NC−0 ).
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Similarly, internal ice boundary conditions may be necessary.
Boundary problem — The boundary region is defined relative to the interface φ = 1/2. To

hold true for all ε when expanded into its power series, this implies that

φ0(ξ = 0) = 1/2 and φk(ξ = 0) = 0 for all k > 0.

In this region the phase-field equation balances the diffusion and reaction terms. The limiting
boundary conditions φ0(ξ → +∞) = 0 and φ0(ξ → −∞) = 1 imply a tanh profile for φ0,

∂2ξφ0 = φ0(1− φ0)(1− 2φ0), lim
ξ→±∞

φ0(ξ) ∼ φ±0 |σ=0, =⇒ φ0(ξ) =
1

2

(
1− tanh

ξ

2

)
.

Matching the inner heat equation to the outer temperature requires T0 to be constant in ξ,

∂2ξT0 = 0, lim
ξ→±∞

T0(ξ) ∼ T±0 |σ=0, =⇒ T0 = T±0 |σ=0.

The identity ∂ξφ0 = −φ0(1−φ0) simplifies the concentration equation. The limiting behaviour
of the operator implies exponential growth of the kernel into the solid. This is unphysical,
implying that the operand ∂ξC0 is zero. Matching to the outer variables requires a constant
concentration,

(1− φ0)(∂ξ + φ0)∂ξC0 = 0, lim
ξ→±∞

C0(ξ) ∼ C±0 |σ=0 =⇒ C0 = C±0 |σ=0.

The divergence constraint and matching to the solid implies zero normal velocity,

∂ξuσ0 = 0, lim
ξ→±∞

uσ0(ξ) ∼ u±σ0|σ=0, =⇒ uσ0 = u±σ0|σ=0 = 0.

The tangential momentum equation balances diffusion with damping. The kernel is spanned
by an unphysical solution that grows exponentially into the solid, and a physical solution that
decays exponentially into the solid and is affine in the fluid. Calibrating β [28] allows linear
(rather than affine) behaviour in the fluid. Matching to the fluid implies u⊥0 is zero,(

∂2ξ −
1

β2
φ0

)
u⊥0 = 0, lim

ξ→±∞
u⊥0(ξ) ∼ u±⊥0|σ=0, =⇒ u⊥0 = u±⊥0|σ=0 = 0.

In summary, the zeroth order asymptotics shows that the phase field has a tanh profile near
the boundary, and that the leading order outer velocities satisfy no-slip boundary conditions.
The next order problem reproduces the remaining boundary conditions.

3.3 First order

The first-order perturbation of the phase-field equation away from the interface takes the form

(1− 6φ±0 + 6φ±0
2
)φ±1 = (T±0 +mC±0 )φ±0 (1− φ±0 ).

At subsequent orders the leading order operator (1− 6φ±0 + 6φ±0
2
) pairs with the highest order

φ±k . The forcing terms contain lower order factors. As the first inhomogeneity is zero all
remaining forcing terms, and therefore all outer phase-field expansions φ±k≥1, are zero.

Fluid problem — The remaining fluid equations are linear and homogeneous,

∂tT
+
1 + u+0 · ∇T+

1 + u+1 · ∇T+
0 − κ∇2T+

1 = 0, ∂tC
+
1 + u+0 · ∇C+

1 + u+1 · ∇C+
0 − µ∇2C+

1 = 0,

∂tu
+
1 + u+0 · ∇u+1 + u+1 · ∇u+0 − ν∇2u+1 +∇p+1 −B(T+

1 −NC+
1 )ẑ = 0, ∇ · u+1 = 0.
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The external boundary conditions are satisfied by the zeroth order outer solutions. The first-
order corrections therefore have homogeneous external boundaries. They are only perturbed
at the melting interface. We show this interfacial perturbation is zero at first order.

Solid problem — The solid equations are the same at first order,

∂tT
−
1 − κ∇2T−1 = 0, ∂tC

−
1 − µ∇2C−1 = 0, u−1 = 0, ∇2p−1 = B∂z(T

−
1 −NC−1 ).

Boundary problem — The differential operator of the first-order phase-filed equation has
a two dimensional kernel spanned by ∂ξφ0 and 6φ0(1− φ0)(ξ + sinh ξ) + sinh ξ. The inhomo-
geneity must be orthogonal to the kernel, implying the Gibbs-Thomson condition,

γ(∂2ξ − (1− 6φ0 + 6φ2
0))φ1 = −∂ξφ0(T0 +mC0 − γK) =⇒ (T±0 +mC±0 )|σ=0 − γK = 0.

Matching implies φ1 = 0. Integrating the temperature equation recovers energy conservation,

κ∂2ξT1 = v0L∂ξφ0, =⇒ T1 =
−v0L
κ

∫ ∞
ξ

φ0 dη + ∂σT
+
0 (0)ξ + T+

1 (0), [κ∂σT
±
0 ]σ=0 + Lv0 = 0.

Solving the homogeneous concentration equation and matching gives the solute conservation
condition,

(∂ξ + φ0)(µ∂ξC1 + v0C0) = 0, =⇒ C1 =
−v0
µ
C+

0 (0)ξ + C+
1 (0), µ∂σC

+
0 |σ=0 + C+|σ=0v0 = 0.

The divergence condition when matched with the solid again implies zero normal velocity,

∂ξuσ1 = 0, =⇒ uσ1 = u±σ1|σ=0 = 0.

The tangential velocity is proportional to the physical solution U(ξ). We choose β [28] to ensure
linear behaviour in the fluid,(
∂2ξ −

φ0

β2

)
u⊥1 = 0 =⇒ u⊥1(ξ) = ∂σu

+
⊥0|σ=0U(ξ), u⊥1(ξ →∞) ∼ ∂σu

+
⊥0|σ=0ξ, u+⊥1|σ=0 = 0.

We finally use the normal momentum equation to show the pressure is constant at leading order

∂ξp0 + ν
φ0

β2
uσ1 = 0 =⇒ p0 = p±0 (0).

The first-order asymptotics have reproduced the Gibbs-Thomson condition with zero interface
kinetics and the solute and energy conservation boundary conditions. Hence the phase-field
equations will tend to the sharp interface equations in the limit. Calibrating β ensures the first-
order outer fluid velocity satisfies homogeneous boundary conditions u+σ1|σ=0 = u+⊥1|σ=0 = 0.
We now solve the second-order asymptotics to show that the mobility coefficient ε(5/6)(L/κ)
ensures homogeneous boundary conditions for the first-order outer temperature and concentra-
tion, and that the first-order interfacial velocity error is zero — allowing second-order conver-
gence.

3.4 Second order

Fluid problem — At second order the fluid equations are sourced by the first-order errors,

∂tT
+
2 + u+0 · ∇T+

2 + u+2 · ∇T+
0 − κ∇2T+

2 = −u+1 · ∇T+
1 ,

∂tC
+
2 + u+0 · ∇C+

2 + u+2 · ∇C+
0 − µ∇2C+

2 = −u+1 · ∇C+
1 ,

∂tu
+
2 + u+0 · ∇u+2 + u+2 · ∇u+0 − ν∇2u+2 +∇p+2 −B(T+

2 −NC+
2 )ẑ = −u+1 · ∇u+1 ,

∇ · u+2 = 0.

9



Solid problem — The solid velocity is now non-zero from interior pressure and forces,

∂tT
−
2 = κ∇2T−2 , ∂tC

−
2 = µ∇2C−2 , ∇2p−2 = B∂z(T

−
2 −NC−2 ),

ν

β2
u−2 = B(T−0 −NC−0 )ẑ −∇p−0 .

Boundary problem — The phase-field equation now has a more complex inhomogeneous term.

γ(∂2ξ − (1− 6φ0 + 6φ2))φ2 = −∂ξφ0

(
5

6

L

κ
v0 + (T1 +mC1)− ξγK2

)
.

We again apply a solvability condition. The odd terms drop out, and integration shows∫∞
−∞−∂ξφ0φ0(1− φ0) dξ = 1

6
and

∫∞
−∞−∂ξφ0φ0(1− φ0)

∫∞
ξ
φ0 dη dξ = 5

36
. The interfacial veloc-

ity term thus vanishes, giving a constraint between first-order concentration and temperature.∫ ∞
−∞

∂ξφ
2
0

(
T±1 (0) +mC±1 (0) +

Lv0
κ

(
5

6
−
∫ ∞
ξ

φ0 dη

))
dξ = 0 =⇒ (T±1 +mC±1 )|σ=0 = 0.

An explicit formula for φ2 (using variation of parameters) is non-trivial but it decays expo-
nentially to zero in either direction. The temperature equation is then integrated. If initially
T±1 |σ=0 = 0, then matching prevents linear asymptotic behaviour of T2, implying v1 = 0,

κ∂2ξT2 = Lv1∂ξφ0 + ∂tT0 − κ∇⊥ · ∇⊥T0 + (κK − v0)∂ξT1,

κT2 = (∂t − κ∇⊥ · ∇⊥ + (κK − v0)∂σ)T+
0 |σ=0

ξ2

2
+ (κK − v0)

v0L

κ

∫ ∞
ξ

∫ ∞
η

φ0 dζ dη + T±2 |σ=0.

The concentration equation is similarly integrated. The inhomogeneity is constant in ξ, and
explicitly solvable. Using previous solutions and C±1 |σ=0 = T±1 |σ=0 = v1 = 0, we find C2,

(∂ξ + φ0)(µ∂ξC2 + v0C1 + v1C0) = ∂tC0 + µK∂ξC1 − µ∇⊥ · ∇⊥C0,

µC2 =
v20
µ2
C+

0 |σ=0
ξ2

2
+ (∂t +Kv0 − µ∇⊥ · ∇⊥)C±0 |σ=0

∫ ξ

0

− log φ

1− φ dη + C±2 |σ=0.

The divergence equation implies the second-order normal velocity is now no longer zero,

∂ξuσ2 = −∇⊥ · u⊥1, =⇒ uσ2 = uσ2(−∞)−∇⊥ · (∂σu+0 (0))

∫ ξ

−∞
U dζ.

The second-order tangential velocity can then be solved using variation of parameters

ν

(
∂2ξ −

φ0

β2

)
u⊥2 = ∇⊥p0 + (νK − v0)∂ξu⊥1 +B(T0 −NC0)ẑ⊥ = R,

u⊥2 = (Q+ c)U , where Q ≡
∫ ξ

0

−
∫ η
−∞RUdζ
U2

dη,

where c is a constant of integration that cancels the linear part of the solution into the fluid.
The normal momentum equation can then be integrated to determine p1. Matching requires
no constant term in the limiting behaviour of the pressure into the fluid,

∂ξp1 = ν∇⊥ · (∂σu+⊥0|σ=0)

(
φ0

β2

(∫ ξ

−∞
U dη − U ′(ξ)

))
− νφ0

β2
u−σ2|σ=0 −B(T+

0 −NC+
0 )|σ=0ẑσ,

p1 = ν∇⊥ · (∂σu+⊥0|σ=0)U(ξ)−B(T+
0 −NC+

0 )|σ=0ẑσξ,

+
ν

β2

(
∇⊥ · (∂σu+⊥0|σ=0)

(∫ ∞
ξ

φ0

∫ ζ

−∞
U(η) dη dζ

)
+ u−σ2|σ=0

∫ ∞
ξ

φ0 dη

)
.
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The second-order asymptotic analysis shows that calibrating the mobility and damping
parameters ensures homogeneous boundary conditions of the first-order outer solutions at the
interface. Combined with homogeneous external boundary conditions and homogeneous linear
evolution equations at first order, this implies that if the outer solutions are initialised correct
to O(ε2), then the fields and interfacial velocity will evolve accurate to O(ε2) over time. In
reality the chaotic nature of many fluid dynamics problems prevents convergence beyond the
Lyapunov timescale of the flow, but at each point in time the system behaves correctly to
within second-order accuracy.

4 Numerical validation of the model

We now validate the asymptotic arguments of section 3 in two benchmark problems. In each
problem we calculate a numerical reference solution corresponding to the “sharp interface”
equations of section 2.1. We then show the optimal phase-field equations of section 2.2 achieve
convergence of O(ε2) to these reference solutions. Both the reference and phase-field problems
are simulated using the flexible and efficient spectral code Dedalus [9]3. This allows us to probe
equation-level model error in the absence of numerical discretisation errors.

4.1 Melting and dissolution at a stagnation point

The first benchmark problem examines warm liquid with dissolved solute flowing toward a
melting interface at a stagnation point, (similar to section 5 of [38] and 5.6 of [28]). We
compare the sharp interface and phase-field approximations to this problem, as illustrated in
fig. 2. The symmetries of the system allow us to significantly simplify eq. (2), revealing a steady
travelling wave similarity solution for the moving boundary and phase-field formulations. We
do this by transforming to a frame moving leftward at the steady interface melting speed −v.
We solve the system as a nonlinear boundary value problem in Dedalus.

Sharp interface model — We solve a diffusion equation for the solid temperature T−,
advection-diffusion equations for the liquid temperature T+ and solute concentration C, and a
nonlinear third order equation for the horizontal fluid velocity u,

κ∂2xT
+ = (u− v)∂xT

+, µ∂2xC = (u− v)∂xC,

κ∂2xT
− = −v∂xT−, ν∂3xu = 1 + (u− v)∂2xu− (∂xu)2. (17)

Note that though we solve in the moving frame, we do not apply a Galilean boost to the fluid ve-
locity. These equations must also satisfy energy conservation, solute conservation, temperature
continuity and Gibbs-Thomson relations at the liquid-solid interface, and Dirichlet conditions
at x± 1. We can then solve for each variable and the unknown melting speed v.

T−(−1) = −1, T+(0) = T−(0), [∂xT (0)]+− = −Lv
κ
, u(0) = 0, ∂xu(0) = 0,

T+(1) = 1, T±(0) = −mC(0), ∂xC(0) = −C(0)v

µ
, C(1) = 0, ∂xu(1) = −1, (18)

Phase-field model — The phase field instead implicitly models the interfacial boundary

3The full simulation code, saved data, and analysis scripts are freely available at
github.com/ericwhester/phase-field-code.
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Figure 2: On the left we illustrate stagnation point flow toward a melting interface. The fluid
velocity decreases to zero at the interface (black arrows x > 0), and the vertical velocity is
proportional to y. The interface velocity (grey arrow at x = 0) uniformly recedes to the left.
The temperature (in colour) decreases toward the left, and is invariant in y (as are all quantities
excepting the vertical fluid velocity). The concentration (not shown) decreases similarly. We
also plot reference and phase-field solutions for temperature T , solute concentration C, normal
velocity u, and phase field φ as a function of x in the second and third columns. Only the
temperature exists inside the solid in the reference solution. We negate the normal fluid velocity
u for clarity.

conditions through various equation terms, which reduce eq. (5) to,

ν∂2xT = ((1− φ)u− v)∂xT + Lv∂xφ,

µ∂2xC = (u− v)∂xC − ∂x log(1− φ+ δ) (µ∂xC + vC) ,

ν∂3xu = 1 + (u− v)∂2xu− (∂xu)2 +
ν

(βε)2
φ∂xu,

γ∂2xφ = −ε5

6

L

κ
v∂xφ+

γ

ε2
φ(1− φ)(1− 2φ) +

1

ε
φ(1− φ)(T +mC). (19)

We now only require the Dirichlet outer boundary conditions of before to solve the problem

T (−1) = −D, C(−1) = 0, φ(−1) = 1, u(−1) = 0, ∂xu(−1) = 0,

T (1) = 1, C(1) = 1, φ(1) = 0, φ(0) = 1/2, ∂xu(1) = −1. (20)

Requiring φ(0) = 1/2 is necessary to fix the problem in the moving frame to determine v.
Results — We solve each problem as a nonlinear boundary value problem in Dedalus. We

discretise each variable on the solid (−1 < x < 0) and fluid (0 < x < 1) domains using Cheby-
shev polynomials. Newton-Kantorovich iteration then converges on a solution with a tolerance
of 10−12 (see [8] appendix C). We reproduce example phase field and reference snapshots in
fig. 2 for ε = 0.05, κ = µ = ν = 1/10, and D = m = L = γ = 1, using 64 grid points for
each subdomain. We set δ = 2 × 10−5 to regularise the solute equation within the solid. The
disagreement (though small) is visible by eye for the temperature, concentration, and normal
velocity.

We then perform a quantitative analysis of convergence in fig. 3. We test seven logarithmi-
cally spaced values of ε from 10−1 to 10−3, for the previous control parameters, and using 256
grid points in each subdomain. We quantify the difference between the reference and phase-
field solutions with the L1 and L∞ error norms of each variable (u, T+, T−, C, v) as a function
of ε. We find clear O(ε2) convergence in the L1 error norm of each field variable, as well as
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Figure 3: Plot of convergence in L1 and L∞ error norm of the velocity u, liquid temperature
T+, solid temperature T−, solute concentration C and interface melting speed v as a function
of ε. Each norm is calculated within the appropriate domain of the reference variable. Clear
O(ε2) convergence is observed in L1 norm using optimal parameters. O(ε) convergence in L∞

norm occurs for the temperature because of the non-differentiability of the reference solution.

for the L∞ error norm of the u, C and v variables. The L1 convergence demonstrates the
quantitative accuracy of the phase-field model. The reason for the apparently restricted O(ε)
L∞ convergence of the temperature fields is the jump in temperature gradient of the reference
solution at the interface. The smooth phase-field model cannot follow this kink leading to an
O(ε) disagreement that is localised to the boundary. Tangential velocities also suffer from this
reduced continuity in general.

4.2 Double diffusive melting

In our second benchmark we examine buoyancy driven flow of warm liquid with dissolved
solute underneath a melting solid layer. This problem develops nontrivial geometries from the
evolution of the flow. To simulate the reference formulation in Dedalus, we use an evolving
coordinate system that maps the fluid and solid regions to a stationary rectangular domain.
This transformation allows an efficient spectral discretisation using Dedalus, and is used in
similar spectral solvers [54]. We repeat this remapping for the phase-field formulation as it
concentrates resolution near the φ = 1/2 level set. This allows us to efficiently and accurately
simulate much smaller ε. By comparing the phase-field simulation to the reference problem as
we decrease ε, we demonstrate second-order accuracy of the model.

Sharp differential equations — The full domain exists between 0 < z < 2 and 0 < x < 4.
It is partitioned by the interface at height z = h(t, x). Above the interface we solve the
heat equation for the solid temperature field T− with diffusivity κ. Below the interface we
solve incompressible Boussinesq hydrodynamics (using a first-order formulation in terms of
velocity u, vorticity q, and augmented pressure p = P + 1

2
|u|2), with advection and diffusion of

temperature T+ and solute concentration C,

∂tT
− − κ∇2T− = 0, ∇ · u = 0,

∂tT
+ − κ∇2T+ = −u · ∇T+, q −∇× u = 0,

∂tC − µ∇2C = −u · ∇C, ∂tu+∇p− ν∇× q = q × u+ (T+ +NC) êz, (21)

where ν, κ, and µ are the momentum, temperature, and solute diffusivity. This first-order
reformulation is required in the Dedalus solver, and has the added benefit of simplifying the
mathematical details of the coordinate transformation. We set the buoyancy parameter B = 1.
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Boundary conditions — At the top we specify conservative temperature boundary con-
ditions. At the bottom, we specify no-slip boundaries with no-flux temperature and solute
conditions. The zeroth mode for the vertical velocity is replaced by a choice of pressure gauge,

∂zT
−(t, x, 2) = 0, ∂zT

+(t, x, 0) = 0, ∂zC(t, x, 0) = 0, u(t, x, 0) = 0, p(t, x, 0) = 0.

At the interface z = h(t, x), we have a Gibbs-Thomson boundary condition, matching tem-
perature boundary conditions, energy and solute conservation boundary conditions, and zero
velocity boundary conditions required for mass conservation,

T+ +mC = −γ∇ · n̂, n̂ · ∇T+ − n̂ · ∇T− +
L

κ
n̂ · ∂th êz = 0, ux = 0,

T+ − T− = 0, n̂ · ∇C +
C

µ
n̂ · ∂th êz = 0, uz = 0. (22)

Initial conditions — We initialise the problem with h(0, x) = 1 and zero velocity and
pressure, and a decreasing concentration profile with height. We apply a large perturbation to
the linearly decreasing temperature field to initiate convection,

T (0, x, z) = 1− z + exp(52((x− 2)2 + (z − 0.5)2)),

C(0, x, z) = 0.05 + (1− 0.05)
1

2
(1− tanh(10(z − 0.5))) .

Phase-field equations — The phase-field equations are a similar reformulation of eq. (5).

∂tT − κ∇2T − L∂tφ = −u · ∇T, ∂tC − µ∇2C = −u · ∇C +
∂tφC −∇C · ∇φ

1− φ+ δ

∇ · u = 0, ε
5

6

L

κ
∂tφ− γ∇2φ = − 1

ε2
φ(1− φ)(γ(1− 2φ) + ε(T +mC)),

q −∇× u = 0, ∂tu+∇p− ν∇× q = q × u+ (T+ +NC) êz −
ν

(βε)2
φu,

(23)

We use the optimal damping prescription β = 1.51044385 [28] and choose δ = 10−4. We specify
the same insulating no-slip boundary conditions at z = 0 and z = 2. The boundary conditions
at z = h(t, x) require continuity of each field and its derivatives. We initialise using the same
initial conditions as for the remapped simulation, plus the initial conditions for the phase field

φ(0, x, z) =
1

2

(
1 + tanh

(
1

2ε

)
(z − 1)

)
.

Remapped coordinates — To solve the melting problem we remap our evolving domain in
Cartesian space to a fixed rectangular domain with the new coordinates τ, ξ, and ζ±,

τ(t, x, z) = t, ξ(t, x, z) = x, ζ+(t, x, z) =
z

h(t, x)
, ζ−(t, x, z) =

z − h
2− h(t, x)

,

for which we plot equally spaced level set contours in fig. 4. The differential geometry of the
new coordinates is presented in appendix B. We solve the phase field equations on the remapped
domains of the reference problem to concentrate resolution near the phase-field interface and
speed up comparison of quantities between simulations.

Model and numerical parameters — We simulate these equations using model parameter
values from table 1. We simulate the reference equations using 64 Chebyshev polynomials in the
vertical direction and 128 Fourier modes in the periodic horizontal direction. After determining
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Figure 4: Contour plot of ξ (vertical) and ζ coordinates (horizontal) for h(x) = 3
4

+ 1
5

cos(πx).

the reference solution, we discretise the phase-field equations on the same evolving domain
of the reference simulation for several values of ε. To interpolate the reference geometries
into the phase-field simulations between the saved time and grid points we use third order
interpolating splines. The phase-field simulations discretise the vertical ζ basis using three
compound Chebyshev bases [0, 10 ε] ∪ [10 ε, 1 − 10 ε] ∪ [1 − 10 ε, 1], with resolutions of 32, 64,
and 32 modes respectively. This greatly reduces the simulation cost. We use a time step size
of ∆t = 10−3, 5 × 10−4, 2.5 × 10−4, 2 × 10−4, 5 × 10−5 for decreasing choice of ε, and integrate
in time using a second-order multistep semi-implicit backwards difference formula (SBDF2).

ν κ µ γ L m N ε

10−2 10−2 10−2 10−2 1 0.2 0
√

5 · 10−3, 10−2.5,
√

2 · 10−2.5,
√

5 · 10−2.5, 10−2

Table 1: Model parameters used in the second benchmark problem.

Results — A time series of the temperature and concentration fields of the reference solution
is given in fig. 5, which illustrates a rising buoyant plume from the initial temperature anomaly
in the fluid. The warm solute-laden liquid melts the interface in the middle more rapidly than
the ambient liquid at the sides, causing a trough to develop.

In fig. 6 we plot several error metrics of the phase-field simulations. In the first two columns
we plot the spatial error normalised by the L1 error for the liquid temperature T+, solute
concentration C, Cartesian velocity components ux and uz, and true pressure P = p− 1

2
|u|2. We

plot these normalised spatial errors for the smoothest (ε = 10−2) and sharpest (ε =
√

5× 10−3)
phase-field simulations at the final time t = 10. These plots reveal a consistent spatial error
profile between simulations. To understand the amplitude of the spatial error, we plot the L1

and L∞ error norms of each variable as a function of ε in the third and fourth columns of fig. 6.
We see clear second-order convergence of all variables in L1 norm. We note that the structure
of the boundary layer of the tangential velocity and temperature affects L∞ error norm. The
phase-field model causes a kink in the temperature and tangential velocity near the interface,
which leads to an O(ε) error of these variables in the interfacial region. However, this error is
localised to the boundary, and does not propagate outward. (This trend is difficult to notice in
the temperature plot as the error within the fluid still dominates the O(ε) boundary error for
the moderate choices of ε chosen.) We therefore achieve second-order convergence in the fluid
and solid regions due to our optimal calibration of the phase-field model parameters.
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Figure 5: Time series of temperature and concentration fields in reference simulation.

Figure 6: Column 1 and 2 plot normalised spatial errors of the liquid temperature T+, con-
centration C, horizontal and vertical Cartesian velocity ux, uz, and pressure p at time t = 10.
Column 3 and 4 plot the L1 and L∞ error norms for the fluid temperature T+, concentration
C, vertical ux and horizontal velocity uz, pressure p, and interface height h as a function of ε
at time t = 10.

16



5 Conclusions

In this paper we provide a general framework for analysing the convergence of phase-field
models. We use this procedure to develop a second-order phase-field model of melting and dis-
solution in multi-component flows. This is a concrete advancement that showcases second-order
accurate approximations of many common boundary conditions; no-slip Dirichlet boundaries,
Neumann boundaries, Robin boundaries, and Stefan boundaries. We also verify these prescrip-
tions in two thorough benchmark problems with accurate reference solutions. By developing
a framework to validate this model, we now possess the machinery requied to create second-
order accurate extensions to more general thermodynamic properties. We can also consider yet
higher order analyses of this and other models. An automated approach of Richardson sequence
extrapolation could also be considered to generate higher order accurate models, as was done
by the authors for the volume-penalty method [28]. To be clear, phase-field models are not
necessarily the most appropriate choice for any problem. Remapping was also shown to be an
effective strategy for sufficiently simple geometries in section 4.2. However our second-order
phase-field model is simple to implement, is more accurate than standard phase-field models,
and is applicable in much more challenging geometries than remapping approaches.

A Signed-distance coordinates

The signed distance σ of the point x is the minimum distance to the surface. Labelling surface
points p and unit normals n̂ with orthogonal surface coordinates s, we have

x = p(s) + σ n̂(s).

This gives a tangent vector basis ti, dual basis ∇si, and orthonormal tangent basis t̂i.

ti =
∂p

∂si
, t̂i =

ti
|ti|

, ∇si =
t̂i
|ti|

.

These give the surface gradient ∇⊥, area measure dA = |t1||t2|ds1ds2, and surface divergence,

∇⊥ = ∇s1
∂

∂s1
+∇s2

∂

∂s2
= t̂1∇1 + t̂2∇2, ∇⊥ · u⊥ =

1

|t1||t2|

(
∂

∂s1
(|t2|u1) +

∂

∂s2
(|t1|u2)

)
.

The normal n̂ is everywhere equal to the gradient of the signed distance, and is therefore
its gradient is symmetric and diagonalisable. The eigenvectors are the principal directions
of curvature (which align with orthogonal surface coordinates), and the eigenvalues are the
principal curvatures κi,

n̂ = ∇σ, ∇n̂ = −κ1t̂1t̂1 − κ2t̂2t̂2 = −K.

We express the gradient using the orthonormal frame (n̂, t̂1, t̂2) and the scale tensor J

∇ = n̂∂σ + J−1 · ∇⊥, where J = I − σK.

We now give the remaining geometric quantities needed for all vector calculus operations. The
determinant |J | relates mean curvature K, Gaussian curvature |K|, and volume measure dV ,

K = κ1 + κ2, |K| = κ1κ2, |J | = 1− σK + σ2 |K| , dV = |J | dσ dA.

We define the adjugate tensors Ĵ and K̂,

K̂ = |K|K−1 = κ2t̂1t̂1 + κ1t̂2t̂2, Ĵ = |J |J−1 = I − σK̂.
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We also define the cross product with the unit normal, which admits simple identities,

∇⊥ = n̂×∇⊥, ∇⊥ · ∇⊥ = ∇⊥ · ∇⊥ = 0, n̂× (Ju⊥) = Ĵu⊥,

u⊥ = n̂× u⊥, u⊥ · u⊥ = u⊥ · u⊥ = 0, n̂× u⊥ = −u⊥,
We next find the gradient of the basis vectors, and define Ricci rotation coefficients,

∇⊥n̂ = −κ1t̂1t̂1 − κ2t̂2t̂2, Rjk
i = t̂j · (∇t̂i) · t̂k, R12

1 = t̂1 · (∇t̂1) · t̂2 = ω1,

∇⊥t̂i = κit̂in̂+Rjk
i t̂j t̂k, Rjk

i = −Rji
k , R21

2 = t̂2 · (∇t̂2) · t̂1 = −ω2.

These relations allow us to calculate all relevant vector calculus operators,

∇ · u =
∂σ(|J |uσ)

|J | +
∇⊥ · (Ĵu⊥)

|J | ,

∇2f =
∂σ(|J |∂σf)

|J | +
∇⊥ · (ĴJ−1∇⊥f)

|J | ,

∇× u = −n̂∇⊥ · (Ĵu
⊥)

|J | + Ĵ−1(∂σ(Ĵu⊥)−∇⊥uσ),

−∇×∇u =
n̂

|J |
(
−∇⊥ · (ĴJ−1(∂σ(Ju⊥)−∇⊥uσ)

)
+ Ĵ−1∂σ

(
ĴJ−1(∂σ(Ju⊥)−∇⊥uσ)

)
+ Ĵ−1∇⊥

(∇⊥ · (Ju⊥)

|J |

)
,

∇u = n̂ n̂ ∂σuσ + n̂∂σu⊥ + J−1(∇⊥uσ +Ku⊥) n̂+ J−1(∇⊥u⊥ −Kuσ),

u · ∇f = uσ∂σf + u⊥ · J−1∇⊥f,
u · ∇u = n̂

(
uσ∂σuσ + u⊥ · J−1(∇⊥uσ +Ku⊥)

)
+ uσ∂σu⊥ + u⊥ · J−1(∇⊥u⊥ −Kuσ),

∂tf = ∂τf − v∂σf + σ∇⊥v · J−1 · ∇⊥f,
∂tu =

(
∂τuσ − v∂σuσ + σ∇⊥v · J−1 · (∇⊥uσ +Ku⊥)

)
n̂,

+
(
∂τu⊥ − v∂σu⊥ + σ∇⊥v · J−1 · (∇⊥u⊥ −Kuσ)

)
.

Rescaling — Rescaling the normal coordinate by ξ = σ/ε gives the following operators:

∇ = ε−1n̂∂ξ +
∑∞

k=0
εkξkKk∇⊥,

|J |∇ · u = ε−1∂ξuσ − ∂ξ(ξKuσ) +∇⊥ · u⊥ + ε
(
∂ξ(ξ

2 |K|uσ)− ξ∇⊥ · (K̂u⊥)
)
,

∇2f = ε−2∂2ξf + ε−1(−K∂ξf) + ε0(−ξK2∂ξf +∇⊥ · ∇⊥f) +O(ε)

−∇×∇× u = ε−2∂2ξu⊥ + ε−1
(
−K∂ξu⊥ − ∂ξ∇⊥uσ − n̂∇⊥ · (∂ξu⊥)

)
+O(ε0)

u · ∇f = ε−1uσ∂ξf +
∑∞

k=0
εkξkKku⊥ · ∇⊥f

u · ∇u = ε−1 (uσ∂ξu⊥ + n̂uσ∂ξuσ)

+
∑∞

k=0
εkξku⊥K

k · ((∇⊥u⊥ −Kuσ) + (∇⊥uσ +Ku⊥)n̂) ,

∂t = −ε−1v∂ξ + ε0∂τ + ε1
(
ξ∇⊥v ·

∑∞

k=0
εkξkKk∇⊥

)
B Differential geometry of remapped coordinates

We solve section 4.2 by remapping to a fixed rectangular domain with coordinates τ, ξ, and ζ±,

τ(t, x, z) = t, ξ(t, x, z) = x, ζ+(t, x, z) =
z

h(t, x)
, ζ−(t, x, z) =

z − h(t, x)

2− h(t, x)
, η(τ, ξ) = h(t, x),
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where η is the interface height in the new coordinates. We now develop the differential geometry
required to write eq. (2) and eq. (5) in the new coordinates. We give explicit formulae for the
ζ+ remapping. The ζ− remapping is analogous and straightforward to derive. We use a tangent
vector basis derived from the Jacobian J of our transformation and its inverse K,

J + ≡

∂tτ ∂tξ ∂tζ
∂xτ ∂xξ ∂xζ
∂zτ ∂zξ ∂zζ

 =

1 0 −ζ ∂τη
η

0 1 −ζ ∂ξη
η

0 0 1
η

 , K+ ≡

∂τ t ∂τx ∂τz
∂ξt ∂ξx ∂ξz
∂ζt ∂ζx ∂ζz

 =

1 0 ζ∂τη
0 1 ζ∂ξη
0 0 η

 .
The tangent vector components are the rows of the spatial component of the inverse Jacobian
ei = Kij êj. We use Einstein notation to sum over the spatial indices i = 1, 2. These tangent
vectors induce dual vectors ωi = Jj i êj which satisfy ωi · ej = δij, with components from the
column vectors of the spatial component of the Jacobian. We record the length of the vectors
using the metric, with co/contravariant components gij = ei · ej, gij = ωi · ωj,

e+1 = ê1 + ζ∂ξη ê2, e+2 = η ê2, ω1+ = ê1, ω2+ =
ê2 − ζ∂ξη ê1

η
,

g+11 = (1 + ζ2∂ξη
2), g+12 = ζη∂ξη, g11

+
= 1, g12

+
= −ζ ∂ξη

η
,

g+21 = ζη∂ξη, g+22 = η2, g21
+

= −ζ ∂ξη
η
, g22

+
=

1

η2
(
1 + ζ2∂ξη

2
)
.

These give “Jacobian” ‖K‖ determinants of ‖K+‖ ≡
√
‖gij‖ = η. The completely antisymmet-

ric tensor can be transformed from Cartesian coordinates,

E = [ij]ω̂iω̂j = [ij]KikKjl ωkωl = ‖K‖[kl]ωkωl =
1

‖K‖ [kl] ekel,

where [ij] is the antisymmetric symbol. We project the gradient to the tangent basis with the
covariant derivative ∇i = ei · ∇ ⇐⇒ ∇ = ωi∇i,. We measure spatial variation of the basis
with the connection coefficients Γkij = ωk · ∇jei ⇐⇒ ej · ∇ei = Γkijek. For the tangent basis,
the connection coefficients take a particularly simple and symmetric form

Γ1
11

+
= Γ1

12
+

= Γ1
21

+
= Γ1

22
+

= 0, Γ2
11

+
=
ζ∂2ξη

η
, Γ2

12
+

= Γ2
21

+
=
∂ξη

η
, Γ2

22
+

= 0.

We note the connection coefficients for the dual vectors are related to those for the tangent
basis by 0 = ∇k(ω

i ·ej) = ∇k(ω
i) ·ej+ωi ·∇k(ej) = ∇k(ω

i) ·ej+Γijk. The partial time derivative
∂t changes as defined in zeroth row of the Jacobian, and the basis vectors also evolve in time,

∂τe
+
1 ≡ Γi10

+
e+i =

ζ

η
∂τ∂ξη e

+
2 , ∂τe

+
2 ≡ Γi20

+
e+i =

∂τη

η
e+2 .
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These geometric quantities allow us to calculate all the relevant vector calculus quantities,

∇u = ∇i(u
j ej)ω

i = (∇iu
j + ukΓjki) ej ω

i,

∇ · u = ∇u : I = (∇iu
j + ukΓjki) ej · ωi = ∇iu

i + ukΓiki,

∇× u = E> : ∇u = (Eijωiωj) : ωk(∇k)(u
l el) = ‖K‖[ij]ul;k(ωi · ωk)(ωj · el) = ‖K‖[ij]gikuj;k,

∇× q = E> · ∇q = (E ij∇kq)(ej · ωk)ei =
1

‖K‖ [ij]q,jei =
1

‖K‖(q,2e1 − q,1e2),

∇2f = ∇i(∇jf ω
j)ωi : I = (∇i∇jf)ωj · ωi −∇jfΓjkiω

k · ωi = gji∇i∇jf − gki∇jfΓjki,

∇p = gjip,jei,

u× q = E · uq = (Eijωiωj) · (qukek) = ‖K‖gjk[ij]uiek = ‖K‖q(g2ku1 − g1ku2)ek,
∇×∇× u = [ij]∂j([kl]∂kul) êi = (δikδjl − δilδjk)∂j∂kulêi = ∇(∇ · u)−∇2u,

(∇× u)× u = [ij][kl]∂kuluj êi = (∂iuj − ∂jui)uj êi = 1
2
∇(u · u)− (u · ∇)u,

∇ · (uu) = (u · ∇)u+ (∇ · u)u,

∂t = ∂τ + J0
i∇i,

∂tu = ∂tu
iei + ui∂tei = (∂τ + J i

0∇i)u
jej + J0

i≥0Γjki≥0u
kej.

The normal vector at the interface is proportional to the ζ dual vector. This gives us the normal
gradient and normal velocity at the interface,

n̂ =
ω2√
g22

n̂ · ∇ =
g2i√
g22
∇i, v = ∂th êz, n̂ · v =

1√
g22

∂th

h
.

We finally write the interfacial curvature as κ = ∂2ξη/(1 + ∂ξη
2)3/2. This completes the relations

used to simulate the sharp interface and phase-field equations in remapped geometries.
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