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The Supplementary Information is organized as follows:1

Supplementary Equations2

- In section 1, we recall the theoretical framework with more details than in the main manuscript and similarly for3

the derivation of the theoretical 3D shape of a vortex in our setup;4

Supplementary Methods5

- In section 2, we detail the experimental methods. We illustrate them with visualizations and PIV fields (Fig.6

S1) and velocity profiles (Fig. S2). We provide details about the experimental uncertainties;7

- In section 3, we detail the numerical methods, the way we initialize our numerical simulations and discuss the8

stability of the considered vortices;9

- In section 4, we provide the list of the numerical and experimental non-dimensional parameters (Table S1);10

Supplementary Discussion11

- In section 5, we show that the dominant balances at play in numerical simulations are consistent with the12

hypotheses used to derive the theoretical shape of our vortices;13

- In section 6, we discuss the long-term evolution of the laboratory vortices. We propose a phenomenological law14

for the charateristic decay time of the vortex (Eq.[17]);15

- In section 7, we provide the data and parameters used to apply our laws to Jovian vortices (Tables S2 and S3).16

- In section 8, we show that if one uses the density anomaly to measure the thickness of the vortex, the latter17

could be 1.7 times what would be measured using the winds extent, which makes our results consistent with the18

(unpublished) results of the Juno mission2.19

1Corresponding author: lemasquerier.pro@protonmail.com
2http://www.nasa.gov/feature/jpl/nasas-juno-probes-the-depths-of-jupiters-great-red-spot
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Supplementary Equations20

1. Detailed theoretical framework and theoretical laws derivation21

1.1 Governing equations22

Let us first set the theoretical framework in which we stand and define all the parameters and variables that will be used in the23

following. We consider the flow of an incompressible fluid of constant kinematic viscosity ν rotating around the vertical axis24

(oriented upward) at a constant rate Ω = Ω ez. In cartesian coordinates, we denote the velocity field u = (u, v, w)ex,ey,ez .25

Note that the shear is applied along the x direction, so that consistently with the established plane Couette flow, we designate26

x and y as the stream-wise and cross-stream directions respectively. We start from the continuity and Navier-Stokes equations27

as well as the advection-diffusion equation of the stratifying agent of constant diffusivity κ (e.g. salt concentration field in28

our experiments). The concentration field of this stratifying agent is linearly related to the density field, which hence follows29

the same advection-diffusion equation. In the Boussinesq approximation and in the rotating frame these read30

∇ · u = 0,

∂u

∂t
+ (u·∇)u + fez × u = − 1

ρ0
∇p+

ρ

ρ0
g + ν∇2u,

∂ρ

∂t
+ (u · ∇)ρ = κ∇2ρ,


[1]

where f = 2Ω is the Coriolis parameter, ρ is the fluid density and ρ0 the mean density of the linear stratification. The31

stationary solution without any vortex nor plane Couette flow, i.e. the hydrostatic equilibrium of the rotating stratified flow,32

is33

ρ̄(z) = ρ0

(
1− N2

g z
)
,

p̄(z) = p0 − ρ0gz + N2ρ0
2 z2,

[2]

where N =
√
−g∂z ρ̄/ρ0 is the buoyancy frequency corresponding to the initial linear stratification. Defining the density and34

pressure perturbations as δρ = ρ(x, y, z, t) − ρ̄(z) and δp = p(x, y, z, t) − p̄(z) gives the following system of equations for35

the perturbations in the Boussinesq approximation:36

∇ · u = 0,

∂u

∂t
+ (u · ∇)u + fez × u = − 1

ρ0
∇δp− δρ

ρ0
gez + ν∇2u,

∂δρ

∂t
+ (u · ∇)δρ =

ρ0N
2

g
w + κ∇2δρ.


[3]

Both experimentally and numerically, the shear is added via the action of two rigid boundaries located at y = (−d, d) moving37

at constant velocity in opposite directions parallel to x. Using half the distance between the two shearing boundaries d as38

the length scale and 1/f as the time scale gives the non-dimensional variables (x, y, z,u′, δρ′, δp′) such that39

t = t′/f

(x, y, z) = (x′, y′, z′)d,

(u, v, w) = (u′, v′, w′)df,

δρ = δρ′ρ0df
2/g,

δp = δp′ρ0d
2f2.

[4]

The corresponding non-dimensional set of equations is40

∇′ · u′ = 0, [5a]

∂u′

∂t′
+ (u′ · ∇′)u′ + ez × u′ = −∇′δp′ − δρ′ ez +

1

Re
∇′2u′, [5b]

∂δρ′

∂t′
+ (u′ · ∇′)δρ′ = N2

fw
′ +

1

ScRe
∇′2δρ′, [5c]
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where we introduce the Reynolds number Re = d2f/ν, the Schmidt number Sc = ν/κ and the ratio of the Brunt-Väisälä41

frequency to the Coriolis frequency Nf = N/f . In the following of the Supplementary Information, we drop the ′ for the sake42

of clarity but all the variables are dimensionless.43

1.2 Theoretical 3D shape of an equilibrium vortex44

Following the same method as Aubert et al. (1), we discuss here the theoretical shape of a vortex in our setup. In the45

inviscid limit, we first derive the unperturbed pressure field corresponding to a rotating plane Couette flow, then we derive46

the pressure field inside a compact ellipsoidal vortex. We finally invoke pressure continuity between those two fields which47

leads to an ellipsoid equation for the vortex contour.48

We start from the Navier-Stokes equation for the perturbations in the Boussinesq approximation [5b] and neglect the49

viscous, non-linear and time-dependent terms since we search for a steady, weak, cyclo-geostrophic and hydrostatic equilibrium50

state. For a linear plane Couette flow U = (−σy, 0, 0), the pressure perturbation is51

δP = δP0 +
σ

2
y2, [6]

where δP0 is a constant. Neglecting diffusivity, viscosity and non-linearities allows to consider discontinuous velocity and52

density fields. We thus look for a compact ellipsoidal vortex of constant vertical vorticity ωc = 2Ro, whose velocity field can53

be written as54

uv = Ro

 −(1 + β)y
(1− β)x

0

 , [7]

where β = (a2 − b2)/(a2 + b2) is the equatorial ellipticity of the vortex which goes from 0 for an axisymmetric vortex to 155

for an infinitely stretched ellipse. The stratification inside the vortex is assumed to be linear with a buoyancy frequency Nc.56

The corresponding inviscid pressure field is57

δpv = δpc +
Ro

2
(1− β) [Ro(1 + β) + 1]x2

+
Ro

2
(1 + β) [Ro(1− β) + 1] y2

−
N2
f −N2

c

2
z2, [8]

where δpc is a constant – the pressure anomaly at the vortex center. While the velocity and the density fields are discontinuous,58

we require the continuity of the pressure field between the vortex and the surrounding rotating plane Couette flow. Equality59

between [6] and [8] leads to ellipsoidal surfaces defined by60

Ro (1− β) [1 + (1 + β)Ro] x2

+
(
Ro (1 + β) [1 + (1− β)Ro]− σ

)
y2

+
(
N2
c −N2

f

)
z2 = cst. [9]

Applying this relation at the points (x, y, z) = (a, 0, 0), (0, b, 0) and (0, 0, c) gives the relations for the ellipticity β and the61

vertical aspect ratio c/a given in the main manuscript:62

β2

(
2
Ro2x
σ

+ 1

)
+ 2β

(
Ro2x
σ
− 1

)
+ 1 = 0, [10]

( c
a

)2
=
Rox

[
1 +Rox

1+β
1−β

]
N2
c −N2

f

[11]

where Rox = (1 − β)Ro is the stream-wise Rossby number. In the present study, we focus on anticyclones (Rox < 0)63

embedded in an anticyclonic shear (σ < 0) since it is the situation of the vast majority of Jovian vortices (2).64

Note that in terms of scaling analysis, the dimensionless parameters entering those laws are fully consistent with our65

assumptions. A dissipationless floating vortex is fully characterized by 8 dimensional parameters: its dimensions a, b and c,66

its physical characteristics given by its vorticity ωc and the difference between its internal density gradient and the ambient one67

N2
c −N2 and the environment physical characteristics given by the Coriolis frequency f , the buoyancy frequency N and the68

shear σ∗. According to the Π-theorem, the whole system is thus characterised by 6 dimensionless numbers, that we chose to be69

the geometrical parameters given by the equatorial ellipticity β and the aspect ratio c/a, and the dynamical parameters given70
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by the Rossby number Ro = ωc/2f , the dimensionless shear σ = σ∗/f , the dimensionless buoyancy frequency Nf = N/f ,71

and the dimensionless buoyancy anomaly (N2
c −N2)/f2. Note that the dimensionless buoyancy frequency does not appear in72

the scaling laws for the vortex aspect ratio, at least in the Boussinesq approximation considered here. Only the dimensionless73

buoyancy anomaly does.74

The above parameters fully describe the quasi-static, inviscid and diffusion-less problem where our assumptions naturally75

lead us to neglect other dimensional parameters (the molecular viscosity ν and the stratifying agent diffusivity κ). In the full76

problem (equations 5a-5c), two supplementary non-dimensional parameters are necessary: the Reynolds number Re = d2f/ν77

and the Schmidt number Sc = ν/κ. These parameters (Re, Sc) are not relevant for determining the shape of the vortex,78

and they will only appear when we discuss the decay of the vortex through time (section 6), which is a completely different79

question.80
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Supplementary Methods81

2. Detailed experimental methods82

2.1 Experimental set-up83

The experimental set-up used in this study is the same as the one described in Facchini et al. (3), except that we create84

a vortex within the established linear plane Couette flow. We recall briefly its principal features. A tank (50 × 50 × 7085

cm) is filled with salt water linearly stratified in density using the double bucket method. The tank is mounted on a table86

that rotates around a vertical axis at a rate Ω. The stratification is measured vertically by sampling the fluid at different87

heights and measuring the corresponding density with a density-meter. In all the experiments discussed here, we generated88

stratifications corresponding to a buoyancy frequency N = 1± 0.1 rad s−1 with a rotation rate Ω = 0.5± 0.05 rad s−1 such89

that Nf = 1±0.2. Note that the topographic β-effect resulting from the free-surface deformation due to rotation is negligible90

in our case, the corresponding Rhines scale (1 m) being 10 times larger than the vortices scale (10 cm). To impose a shear in91

the flow, we use a PVC belt encircling two co-rotating cylinders. Two additional pairs of cylinders allow to stretch out the92

membrane while keeping a constant gap 2d = 6 cm between the two shearing sheets.93

After placing the shearing device inside the tank, we fill it with stratified salted water. We then gradually increase the94

rotation rate of the turntable to avoid disturbing the stratification during the spin-up. Note that we measure the stratification95

before and after each experiment to verify that it was not excessively modified. Once solid body rotation is reached, we96

activate the shear and wait for the stationary plane Couette profile to establish (∼ tens of minutes).97

To create anticyclones in this gap, a one millimeter-diameter capillary tube is linked to a reservoir fixed above the tank.98

Using gravity fall only, we inject a volume of fluid having a constant density equal to the density at the injection height.99

In the experiments presented here, we typically inject fluid at mid-height during 6 seconds which corresponds to a volume100

V ∼ 40 mL. The parameters of the experimental cases discussed in this study are listed in table S1.101

2.2 Visualization and particle image velocimetry (PIV)102

Velocity field measurements are performed in the equatorial plane of the vortex using particle image velocimetry (PIV).103

We seed the fluid with 10 µm-diameter hollow glass spheres and their displacement is followed using a camera fixed in the104

rotating frame above the tank and looking downward. We use the software DPIVSoft 2010 (4) to extract velocity fields from105

these measurements. Typically, the field covers an area of 19× 7 cm with a resolution of 210× 52 grid points.106

PIV is performed before and during each experiment to measure the imposed shear rate σ, the vortex streamwise Rossby107

number Rox and the vortex horizontal aspect ratio a/b and ellipticity β. The shear rate is measured as the slope of the108

streamwise velocity profiles before the experiment. The streamwise Rossby number is measured as the slope of the cross-109

stream velocity profiles along (x, 0, 0) at the center of the vortex. For those two quantities σ and Rox, uncertainties are110

estimated by the least-squares method when fitting the streamwise velocity profiles. At each time step, the vortex horizontal111

aspect ratio is measured by plotting several streamlines near the vortex center. The variability in the measured aspect ratio112

of the elliptical streamlines provide us with upper and lower bounds for a/b, and hence for β.113

For some experiments we added Rhodamine B, a fluorescent dye, in the injected fluid to follow the vortex evolution in a114

vertical plane. A second vertical laser plane aligned with the x-axis is thus present along with a camera fixed on the side of115

the tank to record corresponding movies. Note that the two laser sheets could not be switched on simultaneously since this116

would deteriorate the PIV measurements. For that reason, we do not have a continuous recording of the vertical shape of117

the vortices but only a few instants per experiment during which we temporarily turned off the horizontal laser plane and118

switched on the vertical one. To compute the vertical aspect ratio, we binarize the images such that all pixels of intensity119

above an arbitrary threshold are equal to 1. We fill the holes inside the vortex that are due to PIV particles using the120

Matlab imfill function. We then use the regionprops function to detect all the elliptic patches on the binary image. We121

extract from it the largest form detected as well as its long and short-axis a and c respectively. To get an uncertainty on these122

measurements, we apply this procedure to tens of images over a time period during which the vortex shape does not evolve123

significantly (typically 1-3 seconds). From these measurements we get a mean and a standard deviation which is represented124

as a vertical error bar on Figure 3b in the main text.125

All of the experimental uncertainties are propagated to give the error bars in Figure 3 of the main text. The only126

parameter for which we have no uncertainty is the vortex stratification Nc which we cannot measure experimentally. The127

vortex is assumed to have a perfectly mixed interior, that is Nc = 0 (see however the discussion in section 5.2 about this128

assumption).129

Fig. S1 shows the typical evolution of a vortex as observed during an experiment in the equatorial plane. We chose a case130

where Rhodamine B was added to the injection fluid for a better visualization. The corresponding velocity fields deduced131

from PIV are represented, keeping only one grid point out of three in both directions for clarity. The injected vortex is132

initially compact, stable and axisymmetric and evolves laminarily towards an elliptic shape under the stretching action of133

shear. Fig. S2 shows velocity profiles along both x and y for experiments and the reference simulation (see table S1). The134
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shape evolution is accompanied by a decay of the strength of the vortex, that is a decay of its Rossby number |Ro| visible by135

the flattening of the slopes of the velocity profiles at x = 0 in Figure S2. The longevity of the experimental vortices is of the136

order of 30 rotations of the turntable, that is t ∼ 30× 4π ∼ 400 in our dimensionless units.137

Additionally, we verify that, similarly to (5), along the x direction (parallel to the shear), the velocity profiles are close138

to that of a gaussian vortex as defined by equation [12]. This is consistent with (6) who showed that when no net vorticity139

is introduced by the injection process, gaussian isolated vortices are a good approximation of laboratory vortices. In the y140

direction the effects of confinement are clearly visible, but the velocity field still resembles some gaussian profile superposed141

to the background shear. Note that the discontinuous linear model [7] exactly corresponds to the core of our experimental142

and numerical gaussian vortices.143

3. Detailed numerical methods144

3.1 Numerical method145

We performed direct numerical simulations (DNS) to compare with our experimental results and extend them to a wider146

range of parameters. To this aim, we solve the full system of equations [5a-5c] using the open-source spectral element solver147

Nek5000 (7). These equations are solved in a rectangular box of dimensions (Lx, Ly, Lz)=(8,2,4) centered around the origin148

(x, y, z) = (0, 0, 0) to mimic the experimental setup. The boundary conditions are periodic in both the stream-wise (x) and149

vertical (z) directions and rigid no-slip insulating boundaries are imposed in the cross-stream (y) direction, i.e. u = ∓σy ex150

and ∂yδρ = 0 at y = ±1, where σ is the shear rate. The global geometry is partitioned into E hexahedral elements. Inside151

each element, velocity, density and pressure perturbations variables are projected onto N -th order Lagrange interpolating152

polynomials distributed on Gauss-Lobatto-Legendre nodes. For all the results discussed in this paper, the number of elements153

is E ∼ 3000 and we use Lagrange interpolating polynomials of order N = 15 (N = 10 after dealiasing) leading to ∼ 107 grid154

points. Time integration is performed with a third-order explicit scheme for the advection and buoyancy terms while viscous155

and dissipative terms are integrated using an implicit third-order scheme.156

3.2 Initial flow157

The simulations are initialized with an established linear plane Couette flow u(t = 0) = −σy ex + uv where uv corresponds158

to an axisymmetric ellipsoidal gaussian vortex centered around the origin, that is159

uv,0(x, y, z) = Ro0

 −yx
0

 exp

−[√x2 + y2

a0

]2
−
[
z

c0

]2 , [12]

where a0 and c0 are respectively the initial horizontal and vertical dimensions of the vortex. For all the results discussed in160

this paper, we take a0 = 0.8 for the vortex to fit between the two moving boundaries at y = ±1. The initial vertical extent161

c0 is the one given by equation [11] with an initial ellipticity β0 = 0. The choice of starting with a gaussian vortex is firstly162

motivated by the experimental results which show that the velocity profiles are nearly gaussian, as discussed in section 2.2.163

Secondly, we initially ran cases with an initial discontinuous vortex in solid body rotation and with uniform density. We164

abandoned this method since the very steep initial gradients in the density field would require a too high numerical resolution,165

namely because of the high Schmidt number of our simulations which would not allow their rapid regularization by diffusion.166

Finally, Ro0 = ωc,0/2 is the initial Rossby number of the vortex, ωc being the vertical component of the vorticity at the167

center of the vortex (divided by f). We explore the case where the shear and the vortex have the same vorticity sign hence168

we take Ro0 < 0 and σ < 0.169

Keeping in mind the results of Aubert et al. (1) and Hassanzadeh et al. (8) where the equilibrium shape is determined170

at zeroth-order by a hydrostatic and cyclo-geostrophic balance, the vortex is simultaneously initialized with an internal171

stratification of buoyancy frequency Nc,0. The density perturbation inside of the vortex relatively to the background linear172

stratification is thus173

δρv(x, y, z, t = 0) =
[
N2
f −N2

c,0

]
z exp

−[√x2 + y2

a0

]2
−
[
z

c0

]2 . [13]

To be consistent with experiments where the injected fluid is well-mixed, we initialize anticyclones with no internal absolute174

stratification, that is Nc,0 = 0. Thus, along the rotation axis ((x, y) = (0, 0)) and in the vicinity of z = 0 the density anomaly175

is δρv,0 ∼ N2
f z.176
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Figure S1: Evolution of a sheared anticyclone as observed during our experiments on a horizontal plane. The Rhodamine B added
to the injected fluid allows to follow the vortex shape evolution through time. The corresponding PIV vector fields are represented.
The shearing boundaries are parallel to the x-axis and are located at the borders of the images and vector fields. The injected vortex
is initially compact, stable and axisymmetric and evolves laminarily towards an elliptic shape under the action of shear. This shape
evolution is accompanied by a decay of the strength of the vortex. Note that at t = 230 s, the vortex semi long-axis turns out to
be a ≈ 2d. The shear rate is σ ≈ 0.07 s−1. If the vortex was passively advected by the simple shear, it would have reached this
extension at a much shorter time a/σd ≈ 2/σ ≈ 30 s. On the contrary, if we consider the initial extent b0 ≈ d/2, the viscous time scale
d2/4ν = 225 s is of the correct order of magnitude.
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Figure S2: (a,b) Measured velocity profiles for two anticyclones produced by a 6 seconds injection, (a) without shear but with the
PVC belt installed so that the vortex is confined in the y direction, and (b) with a shear rate σ ≈ 0.07 s−1 . The x direction is parallel
to the shear direction whereas y is orthogonal to it. The dots are experimental measurements and the lines are the best fitting gaussian
profiles. (c) Same velocity profiles extracted from the reference simulation (see table S1). The dashed lines are the best-fitting gaussian
profiles.
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Table S1: Experimental and numerical cases parameters. The bold and underlined parameters are those of the reference simulation
to which we refer several times in the text. The italic parameters are unstable ones, presumably because of an elliptical instability (see
section 3.3).

Re = fd2/ν Nf Ro0 σ Sc = ν/κ
Exp 900 ∼ 1 -0.5 -0.07 ∼700
Exp 900 ∼ 1 -0.5 -0.07 ∼700
Exp 900 ∼ 1 -0.5 -0.10 ∼700
Exp 900 ∼ 1 -0.5 -0.14 ∼700
Exp 900 ∼ 1 -0.5 -0.14 ∼700
Exp 900 ∼ 1 -0.5 -0.20 ∼700
Exp 900 ∼ 1 -0.5 -0.34 ∼700

DNS 900 1 -0.45 -[0.05:0.05:0.45] 35
DNS [1800,2700,3600] 1 -0.45 -0.15 35
DNS 900 1 -0.45 -0.15 [0.07,0.7,7,

35,70,175]
DNS 900 1 -[0.10:0.05:0.45] -0.15 35
DNS 900 [0.50,0.75, -0.45 -0.15 35

1.33,1.50
1.75,2.00 ]

3.3 Vortex stability177

All the cases reported in the main text and used to verify our model are cases where the vortex is stable. However, we want178

to mention that we numerically encountered unstable cases even if they are beyond the scope of our study. A wide variety179

of phenomena can destabilize an axisymmetric pancake-like vortex in a rotating-stratified flow, including gravitational,180

centrifugal, baroclinic and Gent-Mc Williams instabilities as well as combinations of them (e.g. 9–16). Such instabilities181

prevented us from exploring cases with strong stratifications, that is Nf > 1. Indeed, in those cases the core of the vortex182

becomes unstable. The study and the origin of this instability are beyond the scope of our study; however, we can locate183

our unstable cases in the maps of instabilities given in Yim et al. (16). Using their dimensionless parameters definitions,184

our unstable cases typically have an aspect ratio α = c0/a0 ≈ 0.25, a Froude number Fh = Ro/Nf ≈ 0.23, a Rossby number185

R̃o = 2Ro = −0.90, a Reynolds number of the vortex R̃e = RoRe ≈ 259 and a vertical Froude number Fh/α ≈ 0.9. The low186

Froude and Rossby numbers are consistent with the Gent-Mc Williams instability described in Yim et al. (16). However our187

Reynolds number is considerably smaller than the one fixed in their study (Re =10,000) and at such low Re, we would rather188

expect a displacement instability (see figure 5.18 in 17) which is not what we observed. We rather suspect that the observed189

instability finds its origin in the non-axisymmetric shape of the vortex. Due to the imposed strain field the streamlines in190

the vortex core are elliptical which may lead to the so-called elliptical instability via a parametric excitation of inertial waves191

in the core of the vortex (18–20).192

4. Non-dimensional parameters193

Table S1 lists the non-dimensional parameters of all experiments and simulations discussed in this study. The simulations194

were performed in the ranges Re ∈ [900, 3600], Sc ∈ [0.07, 175] and Nf ∈ [0.5, 2]. In the experimental conditions, Re = 900,195

Nf = 1 and Sc ≈ 700. The large experimental value of the Schmidt number is the consequence of the small salt diffusion.196

To be in the same physical regime without having to impose such a high Sc numerically, we varied it and search for the197

minimum Sc for which the vortex behavior no longer depends on salt diffusion. As discussed in section 5.2, we show that198

this is the case as soon as Sc ≥ 35. All the simulations discussed in this study are thus performed at Sc = 35.199
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Supplementary Discussion200

5. Dominant balances201

5.1 Momentum equations202

In this section, we want to show that at order 0, the observations and the dominant physical balances at play at any time203

during the vortex evolution are consistent with the hypotheses assumed to derive the equilibrium shape.204

Firstly, we verify that in the laboratory experiments, after reaching a quasi-static equilibrium state, the formed vortices205

are indeed ellipsoidal as assumed in section 1.2. To do so, the horizontal aspect ratio of the vortex is computed at each time206

by plotting several streamlines on the PIV velocity vector fields near the center of the vortex and fitting an ellipse to each207

of them. It is then verified that there is a factor (1 + β)y/(1 − β)x between the magnitude of the velocity along y and x208

according to equation [7].209

Then, we want to verify that the hypothesis of a quasi-cyclogeostrophic and hydrostatic equilibrium is justified. We focus210

on the results of the reference simulation (table S1) at time t = 140. In figure S3(a,b), the projections of equation [5b] onto211

ex and ey along the (x,0,0) and (0,y,0) directions show that the cyclo-geostrophic (or gradient wind) balance212

v ∂yu− v ≈ −∂xδp,
u ∂xv + u ≈ −∂yδp, [14]

is indeed verified at zeroth order. Besides, the projection onto ez (figure S3c) is dominated by the hydrostatic balance213

δρ ≈ −∂zδp. We hence verify that the viscous and diffusive effects are negligible to determine the instantaneous shape of the214

vortex, as well as the vertical velocity w. As a consequence, the theoretical pressure field [8] at the core of the vortex fits well215

those extracted from the numerical simulation, as shown in figure S4. Outside of the vortex, the pressure field recovers the216

theoretical rotating plane Couette pressure field given by equation [6]. This agreement justifies that we compute the aspect217

ratios from our simulations using the fact that the pressure perturbation inside the vortex is very close to parabolic in each218

direction:219 (a
b

)2
(t) =

(∂2yδp)c

(∂2xδp)c
and

( c
a

)2
(t) =

(∂2xδp)c
(∂2zδp)c

, [15]

where the subscript c means that the derivatives are computed at the center of the vortex.220
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Figure S3: Terms of equations [5b] and [5c] for different projections and along different directions. (a) First component of [5b] along x.
(b) Second component of [5b] along y. These projections show that at zeroth order the system verifies a cyclo-geostrophic equilibrium
where the Coriolis and centrifugal forces balances the pressure gradient. (c) Third component of [5b] along the z direction showing the
predominance of the hydrostatic equilibium δρ = −∂zδp. (d) Density anomaly evolution equation [5c] along the z direction.
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The dashed grey line is the theoretical plane Couette pressure field [6].

5.2 Advection-diffusion of the density anomaly221

Figure S3(d) shows the dominant terms in the advection-diffusion equation for the density anomaly. No assumptions were222

made regarding this equation to derive our theoretical laws. We simply want to mention here that, similarly to Facchini223

and Le Bars (5), we find that the evolution of the density anomaly of the vortex is due to the vertical advection of the224

background density field, as demonstrated by the dominant balance ∂tδρ ≈ N2
fw. This result is important since it can225

explain the discrepancy between the theory and numerics versus the experimental measurements in Figure 3b of the main226

text. To compute (c/a)theo, we assume that the vortex is well-mixed i.e. Nc = 0. This is true at t = 0, and would remain true227

at larger times if the stratifying agent was diffusing only since diffusion acts on very long timescales given the high Schmidt228

number of our experiments (Sc ≈ 700). But we just showed that advection of the background density field dominates over229

diffusion. This advection is sufficient to lead to significant variations of Nc during the vortex’s lifetime, as shown numerically230

by Figure S5. Even if we work at smaller Sc in our simulations (Sc = 35), Figure S5(a-d) shows that no diffusion occurs in231

the vertical direction, yet the stratification difference vanishes (Figure S5(e)). As a consequence, if we were able to measure232

Nc experimentally, it would likely increase, leading to a higher value for (c/a)theo for a given (c/a)mes. It could thus explain233

the discrepancy in Figure 3b of the main text.234
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Figure S5: (a,b) Evolution through time of the density perturbation δρ and the pressure perturbation δp along the vertical direction.
(c,d) The same vertical profiles normalized at each time by their maximum. Once rescaled, all the profiles collapse on the same curve
showing that approximately no diffusion occurs in the vertical direction. (e) Temporal evolution of the stratification difference between
the core of the vortex and the ambient. N2

f −Nc(t)
2 is computed as the slope of δρ(0, 0, z, t) at z = 0.

6. Long-term evolution of the vortex235

The previous section shows that the time derivatives are negligible compared to the dominant balance. This observation236

fully supports our hypothesis of a quasi-static equilibrium for the vortex, i.e. a time decoupling between the fast effects237

that control the equilibrium shape (pressure and azimuthal motion) and the slow dissipative processes that control the time238

evolution. This assumption is also valid in the Jovian atmosphere where vortices are long-lived. As a result, the equilibrium239

shape of vortices does not depend on the relevant dissipation mechanism (viscosity in the lab vs. radiative cooling in Jupiter).240

This is further justified by the work of Hassanzadeh et al. (8) which showed numerically that the laws for the vortex shape241

in the absence of shear are valid regardless of the dominant dissipation process.242
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- -), Ro0 (light green, – · –) and Nf (dark green, · · · ) compared to the reference case (see table S1). (b,d) Experiments with different
shear rates.

Even if it is not relevant for determining the shape of the vortex, we address here the question of the vortex decay for243

completeness of our experimental and numerical study. Note however that contrary to the quasi-static equilibrium shape,244

the following results only apply to our laboratory and numerical vortices, not to Jovian ones. Indeed, the Reynolds number245

of our laboratory vortices is too small, the background flow is not turbulent, and the density dissipation is related to salt246

diffusion, not thermal radiation.247

As previously mentioned, the shape evolution is accompanied by a decay of the strength of the vortex, that is a decay of248

its Rossby number |Ro| visible by the flattening of the slopes of the velocity profiles at x = 0 in Figure S2. The first row of249

Figure S6 represents the decay of the normalized Rossby number of the vortex as a function of time for different numerical250

simulations and experiments. The longevity of the experimental vortices is of the order of 30 rotations of the turntable, that251

is t ∼ 30× 4π ∼ 400 in our dimensionless units.252

In the absence of shear and confinement, Facchini and Le Bars (5) showed that in the limit where the Schmidt number253

Sc� 1, the Ekman number Ek = ν/(2ΩL2)� 1, the Rossby number Ro� 1 and Nf = 1, the pressure field verifies a radial254

diffusion equation. As long as the density diffusion does not play an important role, the dynamical evolution of the vortex is255

thus expected to occur mainly in horizontal directions. This result is fundamental since it is one of the keys to understand256

the longevity of such systems: even for a very flat vortex, the relevant distance L to estimate its longevity (T = L2/ν) is the257

horizontal extent of the vortex (i.e. the largest) rather than the vertical one (i.e. the shortest). In figure S5(a-d), we verify258

with our reference DNS that this result still holds in our configuration. We plot successive profiles of the density and pressure259

perturbations along the centered vertical direction (0, 0, z). These plots show their decay through time with no diffusion in260

the vertical direction since all the profiles collapse when normalizing them at each time with their maximum.261

However, in our case, when no shear is present, confinement prevents spreading in the cross-stream direction as seen in262

Figure S2. The decaying law Ro(t) should thus be different. We indeed verified that
√
Ro0/Ro− 1 is not linear in time263

contrary to what is expected for a radial diffusion of pressure. Similarly to Facchini and Le Bars (5), we find that the evolution264

of the density anomaly of the vortex is due to the vertical advection of the background density field, as demonstrated by the265

dominant balance ∂tδρ ≈ N2
fw shown in Figure S3(d). However, the balances in the momentum equation significantly differ266
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at order 1 (order 0 being the cyclo-geostrophic equilibrium): we verified that the diffusive term is not mainly balanced by267

the Coriolis term. Physically, this means that in our case viscosity does not mainly generate a radial secondary circulation268

but rather directly acts on the vortex temporal evolution through the viscous coupling with the shearing boundaries. This269

result further justifies that besides the pure effect of confinement, the physical process at play governing the vortex evolution270

differs from the case where no shear is applied. We hence expect the decay time to vary significantly with the shear rate.271

We performed a numerical systematic study to understand how the decay time varies with key parameters. For each272

simulation and experiment, we measure a characteristic decay time τmes corresponding to the time for which the vortex273

has lost 95% of its initial vorticity, that is (Ro(τmes) − σ/2)/(Ro0 − σ/2) = 0.05. The results are represented in Figure S7274

along with their best fits. First, the decay time is proportional to the Reynolds number Re, which confirms that the main275

dissipation mechanism at play is a viscous one. One also notices that the decay rate is independent on the Schmidt number276

(hence on salt diffusion) once Sc ≥ 35.277

Then, since the dominant balance for the evolution of the density anomaly associated with the vortex is ∂tδρ ≈ N2
fw,278

one would expect the characteristic time to be of the form τ ∼ δρ/(N2
f W ) where W is the characteristic vertical velocity.279

Then, since the vortex is well-mixed at the beginning of an experiment, the density anomaly scales as δρ ∼ N2
f c0 (see section280

3.2), hence τ ∼ c0/W : it is quite intuitive that for a given vertical advection of the background density field, it takes more281

time to destroy the density anomaly of the vortex if it extends more vertically. Now, considering a0 ∼ 1 and equation [11],282

c0 ∼ (−Ro0(1 +Ro0))1/2/Nf , which leads to283

τ ∼ (−Ro0(1 +Ro0))1/2

Nf W
. [16]

We verified numerically this scaling by varying the initial Rossby number of the vortex while keeping the other parameters284

constant. Figure S7a shows indeed that the measured decay time τmes is proportional to (−Ro0(1 +Ro0))1/2.285

Then, relation [16] suggests a dependence of the decay time on the background stratification. In the absence of shear,286

Facchini and Le Bars (5) showed that the decaying solution of their full linear model is bounded by two self-similar solutions287

corresponding to a radial diffusion of pressure of characteristic times τ1 = 2/Ek and τ2 = 2/(Ek N2
f ). When the background288

stratification is stronger, the vortex decays faster, and conversely for a weaker stratification. However, we do not observe here289

any quantitative tendency of how the decay rate varies with Nf . Numerically, we ran several simulations with Nf ranging290

from 0.5 to 2. As explained in section 3.3, the cases with Nf > 1 were unstable. For Nf < 1, no instability occurs and the291

changes in the vortex decay rate are too small to be significant or to deliver a clear tendency. From the previous estimate292

[16], it is not surprising that a clear scaling is not obtainable. Indeed, we expect the vertical velocity W to decrease as the293

stratification is stronger (higher Nf ), and increase as it is weaker (lower Nf ). Consequently, when increasing (or decreasing)294

Nf , there can be a compensation (NfW ∼ cst) leading to a non-significant variation of the decay time.295

Finally, we explored the influence of the shear rate σ. Both the experiments and the DNS show that τmes ∝ σ−1/2 (figure296

S7a). Besides, this scaling still holds when we remove both rotation and stratification of the background flow (i.e. when297

we simulate sheared columnar vortices). The scaling law of the decay rate with shear is thus independent of the two other298

physical ingredients of our study and solely depends on how the vortex reconnects with the no-slip shearing boundaries.299

In figure S7b, the measured decay time is plotted against the phenomenological one. A rather convincing linear 1:1300

relationship is found when a prefactor of ∼ 0.14 is added to the calculated τ , thus giving the final phenomenological relation301

τcalc ≈ 0.14 Re

(
Ro0(1 +Ro0)

σ

)1/2

. [17]

In figure S6, we show that the Rossby decay curves indeed collapse when rescaling the time by τcalc for both the simulations302

and the experiments.303

Note again that this scaling law for the time evolution is relevant for our laboratory vortices only, which have a Reynolds304

number much smaller that Jovian ones. Nevertheless, the zeroth order equilibrium describing the shape of vortices does not305

depend on their time evolution: it is equally valid for laboratory and Jovian vortices, as shown in the main text.306
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Figure S7: (a) Evolution of the characteristic decay time as a function of the Reynolds number Re, the Schmidt number Sc,
(−Ro0(1 + Ro0))1/2 and the absolute value of the shear rate |σ|. The decay time is defined as the time for which the vortex has lost
95% of its initial vorticity, that is (Ro(τ)− σ/2)/(Ro0 − σ/2) = 0.05. (b) Measured decay time as a function of the theoretical decay
time inferred from the systematic. Numerical simulations are represented by open circles while the black dots represent five experiments
with different shear rates σ.

7. Data and estimates for application to Jovian vortices307

In this section, we report the data and parameters used to apply our model to four Jovian anticyclones. The Great Red Spot308

(GRS) has been observed in Jupiter’s southern hemisphere for hundreds of years (21). In table S2, we report data for the309

GRS measured during the Voyager 1 mission in 1979 (22–24). Contrary to the GRS, Jupiter’s Oval BA was created recently310

after the merger of three White Ovals between 1998 and 2000. We report in table S2 data about the Oval BA measured311

during the New Horizons mission in 2007 (25), as well as data from Galileo about two of the three vortices that merged, the312

Ovals DE and BC, in 1997 (25–27).313

To apply our model to Jovian vortices, four parameters are required: the longitudinal Rossby number of the vortex Rox,314

the shear rate σ, the Coriolis frequency f and the stratification difference between the vortex and the surrounding atmosphere315

N2
c −N2. The methods employed to estimate each parameter are available in the Methods section of the main text. Here,316

we report in Table S2 all the deduced parameters, as well as the predictions of our model:317

• the predicted horizontal ellipticity (βcalc) or aspect ratio ((a/b)calc) of the vortex deduced from equation [10];318

• the predicted half-thickness ccalc of the vortex deduced from equation [11]. Note that ccalc is computed using the319

estimated value of β in equation [11], whereas for c′calc we use the measured value of β.320

In Table S3, we report the parameters and references used to compute the GRS aspect ratios as a function of time since 1979321

(Fig.5 of the main text).322
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Table S2: Estimation of the horizontal and vertical aspect ratios of the Great Red Spot (GRS) in 1979, the Oval BA in 2007 and
the Oval DE and BC in 1997. The horizontal aspect ratios (a/b) are computed using equation [10] and the vertical ones (c/a) using
equation [11].

GRS Oval BA Oval DE Oval BC
Voyager 1 (1979) New Horizons (2007) Galileo (1997) Galileo (1997)

Refs. (22–24) (25) (25) (26, 27)

Rotation, stratification
f · 104 (rad/s) 1.35 1.92 1.92 1.92
N2 −N2

c · 105 (rad2/s2) 2.53 ± 1.16 1.78 ± 1.19 1.78 ± 1.19 1.78 ± 1.19
Vortex dimensions
a (km) 9000 3350 2950 4890
b (km) 4667 2750 2200 2930
(a/b)mes 1.93 1.22 1.34 1.67
βmes 0.58 0.20 0.29 0.47
Vortex velocities
Rox · 102 a -15.41 ± 0.58 -18.78 ± 1.11 -19.13 ± 1.23 -12.78 ± 2.13
Shear
σ · 105 (s−1) 1.50±0.16b 1.54±0.07c 1.57±0.23d 1.57±0.23d

σ/f · 102 -11.11±1.17 -8.02±0.36 -8.18±1.20 -8.18±1.20
Computed dimensions
βcalc 0.55 ± 0.05 0.35 ± 0.05 0.35 ± 0.08 0.47 ± 0.15
(a/b)calc 1.84 ± 0.14 1.45 ± 0.08 1.44 ± 0.14 1.67 ± 0.30
(c/a)calc · 103 8.84+3.58

−1.73 15.37+12.08
−3.82 15.45+12.50

−4.00 13.04+11.58
−3.88

ccalc (km) 80+32
−16 51+40

−13 46+45
−12 64+56

−19
(c/a)′calc · 103 8.66+3.30

−1.58 16.75+12.85
−4.03 16.12+12.27

−3.85 13.06+10.28
−3.41

c′calc (km) 78+30
−14 56+43

−14 48+36
−11 64+50

−17

a longitudinal Rossby number. When meridional velocity profiles inside the vortices are available (Oval BA and
Oval DE), it is determined by a linear fit in the vortex core. Otherwise, we divide the peak North-South velocities
by the vortex semi-major axis a (Oval BC) or the vortex collar width (GRS, see Table S3). The velocity profiles used
are taken from (25) for the Oval BA and DE, and the peak velocities from (26) for the GRS and (27) for the Oval BC.
b estimated by a linear fit on the wind profile at the GRS latitude, given in (22).
c estimated from zonal winds data in 2009 provided in Tollefson et al. (30).
d estimated from zonal winds data obtained from Voyager 1 and 2 images (29).
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8. Roots of the vortex323

We conclude this Supplementary Information by an illustration of the potential difference between the dynamical thickness324

of the vortex and the thickness of the density anomaly associated with it. We expect the extent of the density anomaly to be325

larger than the extent of the wind because, starting from the vortex midplane at z = 0, the winds decay when going deeper326

within the vortex. On the contrary, the density anomaly increases from the center of the vortex down to its bottom because327

the vortex is under-stratified relative to the ambient, with no anomaly at the center. At the bottom of the vortex, there is328

no more winds (by definition), but at that location the density anomaly is the highest, and will just begin to reconnect with329

the ambient stratification.330

To make it more quantitative, one can start with equations [12] and [13] in the case of an axisymmetric gaussian vortex:331

uθ(r, z) = Ro r exp

(
−
[
r

a0

]2
−
[
z

c0

]2)
, [18]

δρ(r, z) = (N2
f −N2

c ) z exp

(
−
[
r

a0

]2
−
[
z

c0

]2)
. [19]

At any radius, the ratio of the velocity and density anomalies relative to their maximum are332

uθ
uθ,max

= exp

(
−
[
z

c0

]2)
, [20]

δρ

δρmax
=
√

2
z

c0
exp

(
−
[
z

c0

]2
+

1

2

)
. [21]

The density anomaly only starts to decay at z = c0/
√

2 whereas the velocities decrease from z = 0. In both cases, the333

inflection point in the decreasing part of the profiles corresponds to a decrease of ∼ 40% from the maximum value. But for334

the velocities the inflection point is located at z = c0√
2

whereas it is reached at z =
√

3
2c0 for the density anomaly, that is at335

a distance
√

3 ∼ 1.7 times larger.336

Fig. S8 represents the cross-stream velocity v and the density anomaly δρ on several horizontal slices along z for the337

reference numerical simulation. The density anomaly clearly spreads more vertically than the cross-stream velocity, even if338

we stand in a regime where it diffuses less (i.e. Sc� 1). For instance, a decay of 95% relatively to the max value is reached339

at |z| ≈ 0.9 in terms of density and at |z| ≈ 0.5 in terms of velocity. This justifies that our results (GRS thickness of ∼ 148340

km) are not incompatible with the latest (unpublished) Juno imaging3 which seems to indicate a 300-km thickness for the341

GRS roots, as discussed in the main text.342
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Figure S8: Vertical structure of the vortex for the reference simulation (Table S1) at time t ≈ 10. The cross-stream velocity v (left)
and the density perturbation δρ (right) are represented on 11 horizontal slices for z ∈ [−1, 1]. The percentages are the ratio of the
maximum velocity or density anomaly for a given slice relatively to the maximum velocity or density anomaly in the whole 3D-box.
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