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Several studies have recently reported the formation of stacking faults in silicon compressed at
low temperatures and high stresses. This observation contradicts the generally accepted framework
for the plastic deformation of silicon. We propose here an original plasticity mechanism that could
potentially explain stacking fault formation in these conditions: the nucleation and migration of
a partial edge dislocation with Burgers vector 1/3〈112〉. These results are obtained thanks to a
multiscale approach combining three computational methods. Dislocation nucleation is determined
by molecular dynamics in both a nanowire and a 2D slab. The latter results are used as inputs for
hybrid MD/DFT “learn on the fly” calculations, allowing for studying the dynamical propagation
of the dislocation. Selected configurations at different steps are next used for initiating nudged
elastic band density functional theory calculations. These calculations revealed that the dislocation
displacement mechanism depends on the compression strain. For low values, a dangling bond is
temporarily created in the core, resulting in high activation energies. For compression strains larger
than about 8%, the reduction of the interlayer distance allows for a more complex displacement
mechanism with no dangling bonds in the dislocation core and a significant decrease of the activation
energy.
Keywords: Dislocations; Stacking faults; Plastic deformation; Elemental semiconductors; Nanostructures;
Multiscale Modeling; Density functional theory; Molecular dynamics

I. INTRODUCTION

Thanks to a large amount of dedicated investigations,
it seems that the mechanical properties of silicon are now
well known. In usual conditions, i.e. for a mechanical
stress exerted on a macroscopic sample at room temper-
ature, silicon is brittle as expected for a covalent mate-
rial. At high temperature, roughly above 600 ◦C, the
plastic deformation proceeds by 30◦ and 90◦ Shockley
partial dislocations located in {111} glide set planes, the
narrowly spaced planes along the 〈111〉 direction [1–3].
Leading and trailing partial dislocations are separated by
an intrinsic stacking fault. Plasticity can also be obtained
at low temperatures by using a confining pressure which
prevents cracks opening and fracture propagation [4]. In
these conditions, both experiments and numerical sim-
ulations reveal that dislocations are not dissociated and
glide in the widely spaced {111} ’shuffle’ set of planes [5–
8]. The non-dissociation of these dislocations is related
to the prohibitive energetic cost of a stacking fault in the
shuffle {111} planes [9]. There is currently a large consen-
sus in the community regarding the existence of separate
shuffle and glide dislocation regimes, although the transi-
tion from one to the other is not fully explained [10, 11].

Reducing the characteristic dimensions can also lead to
plastic deformation of silicon at low temperatures [12].
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This has been demonstrated in the case of the uniax-
ial compression at room temperature of nanopillars [13–
16] and nanoparticles [14, 17, 18]. An intriguing aspect
in some of these studies is the report of {111} stack-
ing faults. For instance, they are observed in compressed
nanometric silicon nanocubes [17]. The authors proposed
that below a given size there could be a transition from
shuffle perfect to glide partial dislocations, but it is not
clear why such a transition would occur. Twinning was
also reported in bent silicon nanowires [19]. More re-
cently, Merabet et al. performed high resolution trans-
mission electron microscopy experiments on compressed
nanopillars, and reported the presence of stacking faults
and complex dislocation patterns [16]. A comparison
with atomistic simulations suggests that the stacking
faults could be associated with shuffle partial disloca-
tions [20]. Similar defects were predicted in an earlier
study [21], but never observed since. As yet there is
therefore no clear consensus nor firmly established con-
clusions regarding the formation mechanisms of these
stacking faults.

There is a crucial need for a better understanding of
materials properties at small scales, and the mechani-
cal behavior of silicon is no exception. Silicon-based
nano-objects are particularly promising in numerous ap-
plications, such as nano-electro-mechanical systems [22]
or Li-ion batteries [23–25]. Furthermore, silicon nanos-
tructures are also key systems for elastic strain engineer-
ing [26]. In all these examples, relevant conditions of
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use are low temperatures and high stresses. Therefore
improving our knowledge on plasticity properties of sili-
con in this regime is important both for fundamental and
applied sciences.

In the present study we describe an original mechanism
leading to stacking fault formation during the plastic de-
formation of silicon at high stress and room temperature.
A similar mechanism was observed in an earlier investiga-
tion of dislocation nucleation [27] by some of the present
authors. This study was based on classical molecular dy-
namics calculations, and at that time there were doubts
about the reliability of the used interatomic potentials
in the high stress regime. The aforementioned new ex-
perimental evidences of stacking fault formation in sil-
icon at room temperature, as well as a recent work on
dislocation nucleation [28], motivated us to reopen the
case, but this time using more accurate electronic struc-
ture calculation techniques. To minimize errors associ-
ated to small system sizes [8], we develop a multiscale
approach combining classical molecular dynamics (MD)
simulations, the "Learn-On-The-Fly" (LOTF) technique,
density functional theory (DFT) calculations combined
with the Nudged Elastic Band (NEB) method.

The paper is organized in a standard way. The multi-
scale methodology and the three calculation frameworks
used in this work are described in the section II. All
our results are reported then discussed in the sections III
and IV. In the last section, we summarize the results.

II. METHODS

MD LOTF DFT-NEBMD

[110]

[001]

FIG. 1. Multiscale modeling framework. From left to right:
〈110〉 oriented cylindrical nanowire (MD calculations), 2D-
periodic slabs (both MD and LOTF calculations), 1D-periodic
system (DFT-NEB). The dashed lines represent the supercells
used in periodic boundary calculations.

The multiscale methodology employed in this work is
sketched in Fig. 1. First, MD calculations are performed
for large nanowires and small 2D-periodic slabs. The out-
put of MD slab calculations leading to dislocation nucle-
ation and stacking fault formation is next used as input
for more time-consuming LOTF simulations. The latter
allow for exploring the dynamics of dislocation migration
with accuracy close to first principles. Finally, regions of
interest from LOTF results are extracted and employed

to feed DFT-NEB calculations, to determine the vari-
ation of activation energy as a function of the applied
compression strain.

A. MD simulations

We used the code LAMMPS [29, 30] to perform the
classical MD calculations. Silicon is described by the
SWm interatomic potential [31], an improved version
of the original Stillinger-Weber potential for modeling
defects and plastic behavior. The lattice parameter is
a0 = 5.431 Å. A timestep in the range 0.5–1 fs is used,
which allows for reasonable simulation times while ensur-
ing energy conservation.
Two different models were considered. One is a 〈110〉

oriented cylindrical nanowire with a length of 23.4 nm
and a diameter of 11.6 nm including 105209 atoms. An
amorphous coating is created by annealing the nanowire
at 3000 K during 5 ps, leading to surface melting, fol-
lowed by a linear decrease of the temperature to 300 K
for another 5 ps. This is intended to reproduce the dis-
ordered shell which is often observed at the surface of
silicon nanopillars [16]. Next, the resulting system is
compressed according to the following procedure. At one
end of the nanowire, six 〈110〉 atomic layers are frozen
in their initial positions. A flat punch, modeled by a
repulsive planar force field [32], is applied on the other
end. The flat punch position is modified at each timestep
with a strain rate equal to 106 s−1. The temperature is
controlled by a Nosé-Hoover thermostat [33, 34].
The second model is a 2D silicon slab, with orientations

x̂ = [001], ŷ = [11̄0], and ẑ = [110]. The dimensions are
7.5a0× a0/

√
2 × 10a0

√
2. Periodic boundary conditions

are enforced only for ŷ and ẑ orientations, thus yielding
a slab with (100) surfaces. A step is created in one of
these surfaces to act as a stress localization center and to
favor dislocation nucleation [35]. The slab is compressed
by decreasing the supercell dimension along ẑ at regu-
lar times during a temperature-controlled simulation. At
each compression step a remapping of atomic positions
is performed in order to avoid deformation waves.

B. LOTF

A hybrid method combining forces computed from
both quantum calculations and a classical empirical po-
tential is used to investigate the mechanisms obtained
from classical MD calculations. Reaching a better eval-
uation of the forces is indeed especially important in the
active region where the defect propagates with a series of
bond breaking and rebonding events, and where the ac-
curacy of a fully classical model is questionable. In this
work we use an implementation of the LOTF method
that was already described in several previous works and
that is especially well suited for silicon based systems
[36–39].
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The principle of the method as well as the algo-
rithm that selects the quantum region are detailed in
appendix A. All remaining technical details are identical
to those already reported in [39] and in its supplementary
material. In the present implementation the initial sys-
tem is imported from MD calculations using the 2D slab
model, with similar dimensions and orientations. Only
the length along ŷ was multiplied by two to obtain a cell
dimension larger than twice the potential cut-off. The
lattice parameter used in LOTF calculations is a0=5.421
Å.

C. DFT-NEB calculations

The DFT calculations were carried out using the Quan-
tum ESPRESSO suite of codes [40]. The standard
Perdew-Burke-Ernzerhof (PBE) functional is used to de-
termine exchange-correlation contributions [41]. The
electron-ion interactions are computed thanks to the full-
potential projector augmented wave PAW method [42].
The electronic structure convergence was tested on a sil-
icon bulk system with a dense k-points grid. Plane-wave
and charge density cutoffs of 25 Ry and 200 Ry yielded
a lattice constant a0 = 5.4698 Å and a bulk modulus of
91.2 GPa.

For modeling the defect, an orthorhombic supercell of
dimensions 42 Å × a0

√
2 × 42 Å, including 177 atoms,

is chosen so as to allow periodicity only along the dis-
location line (corresponding to the ŷ axis of the slab in
MD simulations). For the two other directions, the su-
percell is large enough to ensure a minimum distance of
9 Å between consecutive replica, which is large enough to
suppress potential interactions (Fig. 1). The electronic
structure calculations are carried out using a 1 × 4 × 1
Monkhorst-Pack grid [43] for the Brillouin zone sampling,
and the Methfessel-Paxton smearing scheme [44]. More
details for the model can be found in section III C.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) ap-
proach is employed to relax ions for single systems, with
a convergence threshold of 2 × 10−3 eV Å−1. For DFT-
NEB calculations [45], seven replicas are considered, of
which five are optimized using the quick-min algorithm,
a convergence threshold of 0.05 eV Å−1, and spring con-
stants of 0.04 hartrees. After convergence, a second DFT-
NEB calculation was run with the climbing image tech-
nique [46], in order to accurately determine the transition
state.

III. RESULTS

In the following sections the results of the different
simulations are described and analyzed.

FIG. 2. View of a 5 Å thick slice in the center of the nanowire,
for a compression strain equal to 9.873%. The spheres repre-
sent silicon atoms, with colors according to their environment
determined with the polyedral template matching (PTM)
method [47]. Gold: cubic diamond, blue: hexagonal diamond,
green: unidentified. Two crystalline regions have been plasti-
cally deformed, leaving stacking faults revealed by the pres-
ence of hexagonal diamond atoms. The right pictures show
enlarged views of the framed areas.

A. Nanowire

We first focus on the nanowire compressed by a flat
punch at 300 K. For low strain values, the deformation
of the crystalline core remains elastic. At 9.36%, the plas-
tic deformation of the crystalline core starts by the nucle-
ation of a dislocation loop from the top of the nanowire.
The initiation of plastic deformation in the vicinity of
the flat punch is reported in several studies [16, 20, 48].
The dislocation slips in the (111) plane and escapes lat-
erally from the nanowire, leaving a stacking fault behind
(Fig. 2). At 9.87% a second slip system is activated with
the nucleation from the base of the nanowire of a disloca-
tion loop expanding in a (111̄) plane. Secondary loops are
next nucleated in adjacent planes. As for the first event,
dislocation loops expansion leads to stacking faults for-
mation and twinning (Fig. 2). This deformation mode is
similar to the one reported in an earlier study [27].
In the traditional picture of dislocations in silicon,

stacking faults are exclusively associated to Shockley par-
tial dislocations with 1/6〈112〉 Burgers vectors and lo-
cated in glide set of {111} planes. Although dislocations
identified in the present work also glide in {111} planes,
we determine the Burgers vector to be equal to 1/3〈112〉.
The leading part of the loop front has an edge character
with a line along 〈110〉. Enlarged views of this region
and of a dislocation core are shown in Fig. 2. The core is
characterized by a 7-atom ring sharing two atoms with a
5-atom ring, with no dangling bonds, and appears to be
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FIG. 3. Dislocation displacement and stacking fault expan-
sion (blue spheres) in a 2D silicon slab, obtained from a LOTF
calculation at a 12% compression strain. Top and bottom im-
ages correspond to simulation times of 0.19 ps and 6.10 ps,
respectively. The atoms represented by red spheres are in-
cluded in the electronic structure calculation of LOTF.

identical to previously reported core structures [27, 28].
A comparable topology is reported for the edge disloca-
tion 5/7-atom core in GaN [49] and the 60◦ dislocation G
core in silicon [8]. By analogy, one could consider that
this dislocation core belongs to the glide set of {111}
planes. However, it can also be viewed as the sum of
two Shockley partials [16, 20, 21] with Burgers vector
1/6〈112〉, located in the two shuffle planes on both sides
of the stacking fault.

The influence of strain rate and temperature was
checked with additional calculations. The same deforma-
tion mechanism is obtained in all cases, which confirms
its dominant role for compression along the 〈110〉 orien-
tation. Only the onset of plasticity depends on strain
rate and temperature. For a rate equal to 108 s−1 and
at 300 K, the first dislocation is nucleated at a strain
of 10.43%. Keeping this strain rate but increasing the
temperature to 500 K, the first nucleation occurred at

a lower strain of 9.52%. This behavior is in agreement
with the thermally activated character of dislocation nu-
cleation [50, 51]. It also suggests that the energy barrier
for dislocation nucleation is higher than the one for dis-
location migration. In the present conditions, we then
obtain an athermal expansion of the dislocation.

B. 2D slab

We also carry out MD calculations of 2D slabs, which
are periodic along ŷ = [11̄0] with a single period and com-
pressed along ẑ = [110]. Nucleated dislocations are then
necessarily straight, which allows for an easier analysis of
dislocation core motion than in the nanowire. The slab
is large enough to ensure that the internal stress state is
similar in both the nanowire and the slab during com-
pression. At 600 K, the deformation remains elastic up
to a strain equal to 6.9%. Then a dislocation nucleates
and propagates in {111} planes while leaving an intrinsic
stacking fault in its trailing path. This dislocation is the
same than those observed during the plastic deformation
of nanowires, i.e. it is an edge partial dislocation with
a Burgers vector of 1/3〈112〉. The nucleation strain can
be compared to values found in previous investigations.
Godet et al. determined a critical strain of 7.0% at 0 K
for the original SW potential [27], with a similar sur-
face geometry. More recently, Zhang and Cai reported
that the same defect could nucleate at 5.6% at 0 K for
the same potential but with a bent surface step. This
value could even be as low as 5.3% if another potential
is used [28]. These results tend to suggest that both the
temperature and the interatomic potential have a weaker
influence on the nucleation strain than the surface con-
formation. In fact the nucleation strain is larger for a
flat surface, with values greater than 10%. This is not
surprising since the critical influence of surface geometry
on dislocation nucleation has been largely documented,
in particular in Si [52].
At present the occurrence of stacking fault expansion

at room temperature associated to this unusual disloca-
tion has only been observed in classical MD simulations.
To corroborate this result, we next carry out LOTF cal-
culations using the 2D slab model. Our initial config-
uration is extracted from MD simulations. Dimensions
are rescaled to account for lattice parameter differences
between MD and LOTF, and residual forces are relaxed
at 0% compression strain. First, we focus on the mecha-
nism leading to dislocation core displacement and stack-
ing fault expansion. The system is compressed at 12%
by reducing the dimension along the ẑ axis, and let free
to evolve using a damped dynamics algorithm. We ob-
serve the displacement of the dislocation core in a {111}
plane and along a 〈112〉 direction, leading to the stacking
fault expansion. It takes about 6 ps for the dislocation
to travel over 13.32 Å (Fig. 3). The motion is not con-
tinuous, with periods where the dislocation seems at rest
alternating with displacements of one lattice repetition.
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FIG. 4. Sequence of dislocation core geometries extracted from a LOTF calculation (12% compression, damped dynamics), at
various times. Atoms marked 1–5 are those mainly involved in the core displacement (see text for details). A bond is drawn
between two atoms when their separation is lower or equal to 2.8 Å. Note that the 2D slab has been rotated along ŷ = [11̄0]
compared to Fig. 3.

Upon displacements, temperature rises of 30K are ob-
served, suggesting a decrease in potential energy. This
result confirms that the plasticity mechanism obtained
in classical MD calculations is plausible, albeit a large
applied strain is required.

The sequence of core atoms displacements leading to
dislocation core migration and stacking fault expansion
is represented in Fig. 4. At 4.32 ps, the dislocation core
is located in a Peierls valley and is close to its stable
geometry. LOTF simulations show that the shift of the
core to the next valley along 〈112〉 requires the rotation
along ŷ = [11̄0] of the dimer composed of atoms 2 and 3,
which bonds atoms 3 with 1, and 2 with 4. The dimer
rotation directly leads to the stacking fault expansion.
The red arrows in Fig. 4 shows the most straightforward
path. However, our calculations reveal that the mech-
anism is more complex and is decomposed into several
elementary steps. The first one, at 4.80 ps, is somewhat
counter-intuitive. Atom 2 moves close enough to make
a bond with atom 5. Next, the bond between atoms 2
and 1 is loosened (4.83 ps). It allows for atom 1 to con-
nect to atom 3 (4.85 ps). As a consequence, the bond
between atoms 3 and 4 breaks (4.89 ps), followed by the
creation of a new bond between atoms 2 and 4 (4.91 ps).
The last step involves the breaking of the bond between
atoms 2 and 5 (4.93 ps). At about 5.06 ps, the process is
completed. It is interesting to note that overcoordination
is always favored compared to undercoordination during
the different steps.

C. DFT-NEB

Atomistic simulations of dynamical phenomena, as re-
ported above, are severely limited in timescale. The in-
vestigations of dislocation nucleation and propagation

FIG. 5. Initial image for NEB calculation at 10% compression,
obtained by DFT-relaxation. Gold/violet (white) spheres rep-
resent silicon (hydrogen) atoms, respectively. Violet atoms
were not allowed to move during relaxation.

are then usually restricted to high stress regimes for
which the activation energies are low. Such a limitation
can be overcome using saddle-point search techniques like
NEB in combination with DFT, the results of which are
described in this section.
The inputs for DFT-NEB calculations are constructed

from the LOTF results at a 12% compression strain de-
scribed above (Fig. 4). First, we select two configura-
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tions in which the dislocation is approximately located
in two adjacent Peierls valleys, to define the initial and
final images in NEB calculations. A homogeneous scal-
ing of the supercell dimension along ẑ is made to obtain
compression strains lower than 12%. Initial and final
configurations are next relaxed at 0 K with LOTF us-
ing a damped dynamics algorithm. Finally, they both
include a dislocation core in a Peierls valley, relaxed at
the DFT level of accuracy, and embedded in the strain
field described by an interatomic potential. In a sec-
ond step, approximately spherical clusters of 137 silicon
atoms are extracted from these two configurations. The
clusters center is chosen midway between the dislocation
cores in the two geometries. This allows for minimizing
boundary effects in the determination of dislocation mi-
gration energies [53]. After an appropriate rescaling to
take into account the lattice parameters difference be-
tween LOTF and DFT, each cluster is next embedded in
the orthorhombic supercell described in the section IIC.
The structure is then periodic along the ŷ while a sur-
face is present along the two other directions. Under-
coordinated silicon surface atoms are next passivated by
hydrogen atoms, initially located at 1.49 Å, amounting
to 177 atoms in total. The energy of the two configura-
tions is then minimized by atomic relaxation computed
by DFT, to obtain the initial and final images for DFT-
NEB calculations. In these calculations, the positions of
silicon atoms close to the surface are not updated, thus
ensuring that the strain field exerted on dislocation cores
is the same as in LOTF calculations. Fig. 5 shows an
example of relaxed configuration.

For a compression strain of 12%, we find that the dis-
location core moves to the next Peierls valley for both
initial and final images, in agreement with LOTF calcu-
lations. This result suggests that such a strain induces
a resolved shear stress greater than the Peierls stress of
the dislocation. Motionless cores are recovered for com-
pression strains lower or equal to 11%. A geometrical
characterization of the dislocation core relaxed with no
compression strain is included in the appendix B.

For DFT-NEB calculations, the inputs for the five in-
termediate images are generated by linear interpolation
of the position of all atoms between the initial and final
configurations. Both silicon atoms close to the surface
and hydrogen atoms are fixed to their initial positions
during the NEB relaxation. However, note that the po-
sitions of these atoms slightly change through the suc-
cessive images, which reflects the strain field evolution
associated with dislocation migration.

The top graph in Fig. 6 shows the results of the NEB
calculations. The energy curves along the minimum en-
ergy path (MEP) are characterized by an asymmetric
shape, as expected for dislocation displacement under
strain [53, 55]. Also, the maximum energy along the
MEP decreases as a function of compression strain. For
strains greater than 3% the minimum energy along the
path does not correspond to the final NEB image. We be-
lieve that this behavior might be the consequence of the

FIG. 6. Variations of relative energy as a function of (top)
NEB images (bottom) dislocation core position. Each color
corresponds to a different compression strain. Lines connect-
ing dots are guides for the eye obtained from spline-based
interpolations. The dislocation position is estimated using
the method described in the Appendix C.

use of fixed surfaces with interpolated positions. How-
ever, it is assumed to have a negligible influence on the
energy barrier. The bottom graph shows the same en-
ergy variations but now as a function of the dislocation
core position. The latter is determined by monitoring the
progressive formation of the stacking fault (Appendix C).
The curves suggest that increasing the compression strain
displaces the saddle point towards the starting geometry.
The activation energies Q(ε) determined as maximums

of energy barriers are reported in Fig. 7. As expected,
the values decrease for an increasing compression strain
and become lower than 1 eV above 9%. These data are
fitted using the expression

Q(ε) = Wp

(
1− ε

εath

)n

(1)

yielding a Peierls energy Wp = 1.744 eV, an ather-
mal compression limit εath = 11.07%, and an exponent
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FIG. 7. Activation energy for dislocation displacement as a
function of the applied compression strain along 〈110〉 (white
dots). The red line connecting dots is the result of a fit using
Eq. 1. The green line is the activation energy predicted by a
Peierls model. The three inset images represent the atomic
structure at the saddle point at different compression strains
(note that the structures are oriented like in Fig. 4, with the
dislocation moving from left to right). A bond is drawn be-
tween two atoms when their separation is lower or equal to
2.8 Å. Also shown is the electronic density in the (11̄0) plane
passing through atoms 1–5 (same atoms as in Fig. 4). The
colormap ranges from 0.0 e− bohr−3 (blue) to 0.082 e− bohr−3

(red). Maxima are found in the middle of a bond, with values
in excellent agreement with the literature [54].

n = 0.346. The activation energy as a function of the
resolved shear stress σ is readily obtained by assuming
that σ(ε) = mEε (with m = 0.471 the Schmid factor
and E = 170 GPa the elastic modulus for compres-
sion along 〈110〉 in silicon). Next, the activation volume
Ω(σ) = −∂Q/∂σ can be computed. With no compres-
sion, Ω is equal to 0.122 b3 (b = a0

√
6/3), which corre-

sponds to a localized atomistic mechanism [56]. Further-
more, we observe that Ω(σ) diverges if σ is close to the
athermal limit, since n is lower than 1. It is unclear how
this behavior could be explained.

To gain further insights, we compare the DFT results
with an ideal Peierls model. For the latter, the energy
variation can be written:

E(x, ε) = Wp

2

(
1− cos

(
2πx
d

))
− σ(ε)bxl (2)

The first term is the Peierls energy approximated by a
sinusoid [57]. We useWp = 1.744 eV from the DFT-NEB
fit. x is the dislocation position and d = a0

√
6/4 is the

lattice periodicity along 〈112〉. The second term is the
mechanical work due to dislocation displacement: b =
a0
√

6/3 is the Burgers vector norm and l = a0/
√

2 the

dislocation length along the ŷ axis. Finally, the resolved
shear stress σ(ε) is as previously approximated by mEε.
In principle, one should also add the contribution due to
stacking fault expansion +lxγ. It is neglected here due
to the low γ value (65 mJ m−2) of the silicon intrinsic
stacking fault energy [58]. The activation energy for each
ε value is obtained as the maximum of E(x, ε) for x ∈
[0, d]. The comparison in Fig. 7 shows that the shape of
DFT calculated energies is significantly different from the
Peierls model, with higher values except for compression
strains greater than 11%. It suggests that there is an
intricate relation between the lattice friction associated
to dislocation displacement and the applied compression.
Figure 7 also shows the geometry and electronic struc-

ture at saddle point for three strain values. The elec-
tronic structure allows for a finer analysis of the presence
of atomic bonds, compared to a simple distance criterion.
At 3% compression strain, the saddle configuration ex-
hibits a clear dangling bond in the core, and is markedly
different from all intermediate geometries determined us-
ing LOTF (Fig 4). This configuration is obtained by
bonding atoms 2 and 4. The next step is the atom 3
making a bond with atom 1. This simple two-step mech-
anism corresponds to the straightforward path depicted
by red arrows in Fig. 4. Increasing the compression strain
reveals a gradual change of the mechanism. At 6%, it re-
sembles the one at 3%, except that the existence of a
dangling bond in the saddle configuration is more am-
biguous. At 8%, the saddle configuration in Fig. 7 is
topologically equivalent to the initial NEB image, with
no broken or new bonds. Finally, at 9%–11%, atoms
2 and 5 are much closer than for lower strain values.
There is also an increase of electronic density between
these atoms, supporting the existence of a bond. For
such strain values, the saddle geometry is similar to the
LOTF configuration represented in Fig. 4 (4.80 ps). The
analysis of the next NEB images confirms that the DFT-
NEB mechanism at 9%–11% is like the one obtained with
LOTF at 12%.
Our DFT-NEB calculations indicate that the mech-

anism leading to dislocation displacement and stack-
ing fault expansion depends on the applied compression
strain. For values lower than 9%, the core dislocation
moves by the rotation of the dimer formed by atoms 2 and
3 (red arrows in Fig. 4). This process requires the tem-
porary existence of a dangling bond in the core, an ener-
getically costly defect in silicon, which probably explains
the high activation energies. At higher strain values the
mechanism depicted in Fig. 4 operates. This mechanism
is more complex but without dangling bonds clearly oc-
curring with dislocation displacement. It is noteworthy
that atoms 2 and 5 in Fig. 4 are aligned along ẑ in two
successive (110) atomic layers, and their separation is di-
rectly proportional to the applied strain. Increasing the
compression along the ẑ axis then facilitates the activa-
tion of the mechanism and reduces the associated energy.
This would explain the change of slope at high strain val-
ues of the DFT-NEB activation energy curve in Fig. 7.
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IV. DISCUSSION

All results obtained in our study demonstrate that the
activation of the 1/3〈112〉{111} slip system can occur in
silicon compressed along the 〈110〉 orientation. Its par-
tial character leads to the formation and expansion of
an intrinsic stacking fault. This key finding raises the
question of the significance of this deformation mode.
DFT-NEB results indicate that the activation energy is
relatively high, being greater than 1 eV when the com-
pression strain is below 9%. We determine that it is
equal to 1.74 eV at zero strain. Such high values are con-
flicting with an activation at room temperature, making
high stress/strain conditions a necessary requirement. It
is obviously not possible in bulk silicon, which fails in a
brittle manner due to the formation and propagation of
cracks. However, large strain/stresses values have been
reported in various nanostructures [13, 59–63]. In these
systems, the occurrence of the slip system studied here
cannot be excluded.

Several experiments reported the presence of stacking
faults in silicon nanostructures. For instance, Wagner
and co-workers observed by transmission electron mi-
croscopy the presence of a stacking fault created during
the flat punch compression of silicon blunt nanocubes
at room temperature [17]. They assumed that it was
produced by the propagation of a single glide partial dis-
location. It is conceivable that such a dislocation could
nucleate in a region where a beta-tin phase transition
occurred [64]. While there is no definite proof, it is prob-
ably different from the mechanism described here, since
the compression orientation was 〈100〉 [17]. The com-
pression of 〈110〉 oriented silicon nanopillars was inves-
tigated by Merabet et al. [16, 20]. Their transmission
electron microscopy observations revealed the presence
of stacking faults, tentatively explained by the dissocia-
tion of shuffle 60◦ dislocations into shuffle partial disloca-
tions [21]. This latter mechanism might also explain the
formation of stacking faults during compression of 〈111〉
oriented nanopillars [65]. Both nucleation from the beta-
tin phase and shuffle dislocation dissociation have been
recently discussed by J. Rabier [66]. Our work provides
an original and alternative explanation for the formation
of stacking faults in silicon at small scales.

Another interesting aspect concerns the current termi-
nology at use for dislocations in silicon. Since the pio-
neering work by Hornstra [9], it is common to distinguish
dislocations depending whether they belong to narrowly
spaced {111} ’glide’ planes or widely spaced {111} ’shuf-
fle’ planes [57]. Until ten years ago, the situation was
thought to be relatively simple with dissociated glide and
perfect shuffle set dislocations operating at high and low
temperatures, respectively [7]. New experimental and
theoretical data tend to suggest a greater intricacy, es-
pecially at small scale. We already discussed mounting
evidences of stacking faults and dissociated dislocations
at low temperature [16, 17, 20, 63–65]. The distinction
between glide and shuffle set dislocations also seems to

dilute. It is in fact difficult to decide in which set of
planes the dislocation investigated in this work belongs
to, because the core spreads over several glide and shuffle
planes. Note that the same can be said of the S3 core con-
figuration for the 60◦ dislocation [6]. These dislocation
cores are spread out enough to be described as shuffle-
glide complexes, borrowing the terminology introduced
by Zhang and Cai [28].

V. CONCLUSION

We report the formation of a stacking fault in silicon
compressed along 〈110〉 at low temperature, thanks to an
original plasticity mechanism. A partial edge dislocation
of Burgers vector equal to 1/3〈112〉 nucleates and slips in
{111} planes, leaving an intrinsic stacking fault behind.
These results are obtained by combining three different
simulation methods, molecular dynamics, learn on the
fly, and density functional theory. We fully characterize
the dislocation core geometry and mobility. In particular,
we describe the atomistic mechanism allowing for dislo-
cation displacement and stacking fault expansion. We
find that this mechanism changes according to the com-
pression strain. At low strain values the dislocation core
displacement is associated with the creation of a dangling
bond, with a large energy barrier which inhibits its acti-
vation. For compression strains greater than about 8%,
the reduction of the interlayer distance allows for a more
complex displacement mechanism with no dangling bond
in the dislocation core and a significant decrease of the
activation energy. Our results then offer a potential ex-
planation for the observation of stacking faults in 〈110〉
compressed silicon at small scales and low temperature.

Appendix A: LOTF

The hybrid LOTF technique allows for carrying out
molecular dynamics using forces coming from an ad-
justable classical potential form. The main idea of the
technique is to update the adjustable potential from the
knowledge of reference quantum forces calculated in a
quantum region (red atoms in Fig. 8) and from classical
reference forces elsewhere (light cyan and gold atoms in
Fig. 8). Practically, the adjustable potential is obtained
by tuning locally the parameters associated with pair
and triplet interactions in order to reproduce at best the
reference forces in the fitting region. The fitting region
where the potential is updated contains the quantum re-
gion plus a surrounding classical buffer region (light cyan
atoms in Fig. 8) including all atoms within a radius of
Rfit = 10 Å from the quantum region. A fitting region
larger than the quantum region allows for a smooth vari-
ation of the potential parameters from the active region
to the bulk. The buffer region also helps to reduce and
spread the fitting errors. The LOTF technique proceeds
by periodic updates of the adjustable potential, with the



9

FIG. 8. (a): Structure of the initial configuration of the
1206 atoms slab under 12% compression. The colors indi-
cate the different regions used in the hybrid LOTF scheme,
red: quantum region (reference forces calculated from DFT-
SIESTA[67]), light cyan: classical part of the fitting region
(reference forces calculated from a classical potential) , gold:
classical region (forces calculated from a classical potential).
The fitting region encompasses the red and light cyan atoms.
(b) Configuration obtained from (a) after 3.0 ps of LOTF
damped dynamics. (c) Configuration obtained from (a) after
4.1 ps of LOTF damped dynamics.

quantum and fitting regions both dynamically evolving to
follow the defect propagation. The adjustable potential is
updated through a series of extrapolation/interpolation
dynamical stretches separated by a periodic evaluation
of the reference forces and by a periodic force fitting
(see [36, 37, 39] for more details). The quantum and
fitting regions are updated using simple topological ar-
guments, detailed below.

The quantum reference forces on each atom of the
quantum region are approximated by separated quan-
tum calculations done with the SIESTA [67] approach
to density functional theory (with the same technical de-
tails as in [39]). For each atom in the quantum region we
carve out a cluster of 6.6 Å radius from the main system
and terminate the cut bonds with hydrogen atoms. After
the SIESTA calculation of the cluster, the force on the
central atom is retained in the list of the reference forces.
Both the classical potential of reference as well as the ad-
justable potential have a Stillinger-Weber form [68] (the
technical details are given in [39] and in its supplemen-
tary material). We recall that out of the fitting region
(gold atoms in Fig. 8), the adjustable potential has fixed
parameters identical to the classical potential of refer-
ence. The adjustment is restricted to the fitting region.

An example of an initial configuration is shown in fig-
ure 8(a), with a defect already present inside the bulk.
The initial quantum region is a cylinder of 7.5 Å centered
around an atom in the vicinity of the defect. Starting
from this initial set up, the selection algorithm detects
all the coordination changes through the analysis of the
neighbor lists of the quantum atoms at the boundary of
the quantum and buffer region. Whenever a change is de-
tected, all the neighbors of the concerned quantum atoms
are incorporated to the quantum region. Following this

algorithm, the quantum and buffer regions grow when
the defect propagates. As it can be seen from Fig. 8(b)
and 8(c) this selection scheme nicely follows the defect
propagation and quickly releases the relative arbitrari-
ness of the initial quantum region.

Appendix B: Dislocation core geometry

FIG. 9. Zoomed view of the 1/3〈112〉 partial dislocation core
relaxed by DFT calculations. The numbers indicate the bond
lengths (in Å) between silicon atoms, represented by gold
spheres.

In this section, we report the geometry of the 1/3〈112〉
partial dislocation core. It is obtained by relaxing with
DFT an initial configuration built from a LOTF-relaxed
system at 0% compression. The converged core structure
is shown in Fig. 9.

The dislocation core structure includes two rings of
respectively seven and five Si atoms. All the atoms be-
longing to these rings are four-fold coordinated. These
characteristics make this dislocation core apparently sim-
ilar to the 60◦ perfect glide dislocation core [8], except
that this one does not allow for stacking fault formation
and expansion. The bond lengths in the core are also re-
ported in Fig. 9. Except for one, values range from 2.309
to 2.462 Å, indicating moderate strains by comparison
to the bulk DFT value of 2.368 Å. Finally, note that the
lack of coordination defects prevents a possible recon-
struction along the dislocation line. This assertion was
confirmed by additional DFT calculations using initial
configurations with a double period along the ŷ axis.
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FIG. 10. (a) Dislocation core configuration for a 3% com-
pression. Blue spheres represent silicon atoms bordering the
stacking fault, and green tubes show bonds used for disloca-
tion position calculation. (b) The squares represent atomic
y-coordinate differences ∆y along the [111̄] axis as a function
of atomic x-coordinate averages along the [112] axis, for atoms
bonded by green tubes in (a). The dashed lines are guides for
the eye. The colors correspond to three different calculated
NEB images, for a 3% compression. The full lines show the
result of the fit using the elasticity expression reported in the
legend of the figure.

Appendix C: Determination of dislocation position

Final images relaxed using NEB-DFT calculations are
linearly spaced in configuration space (except the climb-
ing image associated to the saddle state). It obviously
does not mean that there is a constant distance between
dislocation core centers in successive configurations. This
issue is documented in the literature [53, 55].

In principle the dislocation core position could be de-
termined by fitting the calculated atomic displacements
with the strain field given by elasticity theory, but this
approach is difficult to implement for the small systems
used in this work. An alternative strategy relies on
monitoring the variation of a well chosen geometrical
quantity [53]. For instance, a possible indicator for the
1/3〈112〉 dislocation core is the atomic coordinate differ-
ence along the [111̄] axis between successive atoms along
[112] which form ’long’ bonds (colored in green in Fig. 10-
a). This quantity varies from a positive to a negative
value due to the formation of the stacking fault in the
wake of the dislocation (green arrows in Fig. 10-a), and
can then be used to define a dislocation core center.
Figure 10-b shows computed values for the initial,

final, and saddle-state images for a 3% compression
strain. These variations are fitted using the expression
α arctan(x− xc) + β derived from elasticity theory [57].
Here x is the center of the bond along the x-axis, and
α, β, and xc are fitting parameters. One can see in
Fig. 10 that the above expression is maybe too simple
for a perfect fit. Nevertheless, assuming that the disloca-
tion center is at xc, reasonable dislocation core positions
are obtained. For instance, the distance traveled by the
dislocation core from the initial to the final NEB image is
calculated to be equal to 3.43 Å, which is slightly larger
than the period along [112] (

√
6a0/4 = 3.35 Å). The dif-

ference is further reduced if one takes into account the
Poisson expansion along [112] due to the compression.
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